- Research
- Open Access
- Published:
On approximating the error function
Journal of Inequalities and Applications volume 2016, Article number: 311 (2016)
Abstract
In the article, we present the necessary and sufficient condition for the parameter p on the interval \((7/5, \infty)\) such that the function \(x\rightarrow\operatorname{erf}(x)/B_{p}(x)\) is strictly increasing (decreasing) on \((0, \infty)\), and find the best possible parameters p, q on the interval \((7/5, \infty)\) such that the double inequality \(B_{p}(x)<\operatorname{erf}(x)<B_{q}(x)\) holds for all \(x>0\), where \(\operatorname{erf}(x)=2\int_{0}^{x}e^{-t^{2}}\,dt/\sqrt{\pi}\) is the error function, \(B_{p}(x)=\sqrt{1-\lambda(p)e^{-px^{2}}-[1-\lambda(p)]e^{-\mu(p)x^{2}}}\), \(\lambda(p)=16(5p-7)/[(15p^{2}-40p+28)(45p^{2}-60p-4)]\) and \(\mu(p)=4(5p-7)/[5(3p-4)]\).
1 Introduction
It is well known that the error function
has numerous applications in probability, statistics, and partial differential equations theory. Recently, the bounds for the error function have attracted the attention of many researchers. In particular, many remarkable inequalities for the error function can be found in the literature [1–13].
Pólya [14] proved that the inequality
holds for all \(x>0\).
In [15], Chu proved that the double inequality
holds for all \(x>0\) if and only if \(p\in(0, 1]\) and \(q\in[4/\pi, \infty)\).
Alzer [16] presented the double inequality
for \(x>0\) and \(p>0\) with \(p\neq1\), where \(\Gamma(x)=\int_{0}^{\infty}t^{x-1}e^{-t}\,dt\) is the classical gamma function, and \(\alpha(p)\) and \(\beta(p)\) are, respectively, given by
and
Let \(n\geq2\), and \(\alpha_{n}\), \(\beta_{n}\), \(\alpha^{\ast}_{n}\), \(\beta^{\ast}_{n}\) be, respectively, defined by
In [17, 18], Alzer proved that the double inequalities
hold for all \(x_{i}\geq0\) and \(y\geq x>0\) if and only if \(\lambda_{n}\leq\alpha_{n}\), \(\mu_{n}\geq\beta_{n}\), \(\lambda \leq\operatorname{erf}(1)=0.8427\ldots\) , \(\mu\geq2/\sqrt{\pi }=1.1283\ldots\) , \(\lambda^{\ast}\leq0\) and \(\mu^{\ast}\geq1\), and inequality (1.2) holds for all \(x_{i}\leq0\) if and only if \(\lambda_{n}\geq \alpha^{\ast}_{n}\) and \(\mu_{n}\leq\beta^{\ast}_{n}\).
Recently, Neuman [19] proved that the double inequality
holds for all \(x>0\).
Let \(x\in(0, \infty)\), \(p\in(7/5, \infty)\), \(\lambda(p)\), \(\mu(p)\), and \(B_{p}(x)\) be, respectively, defined by
The main purpose of this paper is to present the best possible parameters p and q on the interval \((7/5, \infty)\) such that the double inequality
holds for all \(x>0\).
2 Lemmas
In order to prove our main results, we need to introduce an auxiliary function at first.
Let \(-\infty\leq a< b\leq\infty\), f and g be differentiable on \((a,b)\), and \(g'\neq0\) on \((a,b)\). Then the function \(H_{f, g}\) [20, 21] is defined by
It is not difficult to verify that the auxiliary function \(H_{f,g}\) has the following properties:
if \(g\neq0\) on \((a,b)\), and
if both f and g are twice differentiable on \((a,b)\).
Lemma 2.1
[20], Theorem 8
Let \(-\infty\leq a< b\leq\infty\), f and g be differentiable on \((a,b)\) with \(f(a^{+})=g(a^{+})=0\), \(g^{\prime}(x)\neq0\) and \(g^{\prime}(x)H_{f, g}(b^{-})< (>)\, 0\) for all \(x\in(a,b)\). If there exists \(\lambda_{0}\in(a, b)\) such that \(f^{\prime}/g^{\prime}\) is strictly increasing (decreasing) on \((a, \lambda_{0})\) and strictly decreasing (increasing) on \((\lambda_{0}, b)\), then there exists \(\mu_{0}\in(a, b)\) such that \(f/g\) is strictly increasing (decreasing) on \((a, \mu_{0})\) and strictly decreasing (increasing) on \((\mu_{0}, b)\).
Lemma 2.2
Let \(p\in(7/5, \infty)\), \(p^{\ast}_{0}=(50+2\sqrt{30})/35=1.74155\ldots\) , \(\lambda(p)\) and \(\mu(p)\) be defined by (1.4), and \(u_{n}\) be defined by
Then the following statements are true:
-
(1)
\(p>\mu(p)\), \(0<\lambda(p)\leq(8+\sqrt{14})/16=0.73385\ldots\) and \(0<\mu(p)<4/3\) for \(p\in(7/5, \infty)\), \(0<\mu(p)\leq1\) for \(p\in(7/5, 8/5]\) and \(1<\mu(p)<4/3\) for \(p\in(8/5, \infty)\);
-
(2)
\(u_{n}<0\) for all \(n\geq2\) if \(p\in(7/5, 8/5]\);
-
(3)
\(u_{2}\geq0\) and \(u_{n}> 0\) for all \(n\geq3\) if \(p\in [p^{\ast}, \infty)\);
-
(4)
there exists \(n_{0}\geq2\) such that \(u_{n_{0}+1}\geq0\), \(u_{n}<0\) for \(2\leq n\leq n_{0}\) and \(u_{n}> 0\) for \(n\geq n_{0}+2\) and \(u_{n}>0\) for \(n>n_{0}\) if \(p\in(8/5, p^{\ast}_{0})\).
Proof
For part (1), from (1.4) we clearly see that
for \(p>7/5\).
Equation (2.7) implies that \(\lambda(p)\) is strictly increasing on \((7/5, (14+2\sqrt{14})/15]\) and strictly decreasing on \([(14+2\sqrt{14})/15, \infty)\). Therefore, \(0<\lambda(p)\leq(8+\sqrt{14})/16\) for \(p\in(7/5, \infty)\) as follows from (2.5) and the piecewise monotonicity of \(\lambda(p)\) on the interval \((7/5, \infty)\), and the remaining desired results for \(\mu(p)\) follow easily from (2.6) and (2.8).
For parts (2) and (3), let \(x\geq2\), \(p_{1}(x)\) and \(p_{2}(x)\) be defined by
Then simple computations lead to
for \(x\geq2\).
It follows from (2.9)-(2.13) that
for \(n\geq2\) and
for \(n\geq3\)
Therefore, parts (2) and (3) follow easily from (2.11) and (2.14)-(2.16).
For part (4), if \(p\in(8/5, p^{\ast}_{0})\), then from (2.4) and (2.14) we clearly see that the sequence \(\{u_{n}\}_{n=2}^{\infty}\) is strictly increasing and
Therefore, part (4) follows from (2.17) and the monotonicity of the sequence \(\{u_{n}\}_{n=2}^{\infty}\). □
Lemma 2.3
Let \(x\in(0, \infty)\), \(p\in(7/5, \infty)\), \(\lambda(p)\), \(\mu(p)\) and \(B_{p}(x)\) be defined by (1.4) and (1.5), and \(C_{p}(x)\) and \(\alpha(p)\) be defined by
and
Then the following statements are true:
-
(1)
the function \(p\rightarrow B_{p}(x)\) is strictly increasing on \((7/5, \infty)\);
-
(2)
the function \(p\rightarrow C_{p}(x)\) is strictly decreasing on \((7/5, \infty)\);
-
(3)
the function \(p\rightarrow\alpha(p)B_{p}(x)\) is strictly decreasing on \((7/5, \infty)\).
Proof
For part (1), it suffices to show that \(\partial B^{2}_{p}(x)/\partial p>0\) for \(x\in(0, \infty)\) and \(p\in(7/5, \infty)\). Let \(t=(p-\mu(p))x^{2}\) and
Then it follows from (1.4), (1.5), (2.19), and Lemma 2.2(1) that
for \(p\in(7/5, \infty)\) and \(t>0\).
From (2.22)-(2.24) we clearly see that
for \(p\in(7/5, \infty)\) and \(t>0\).
Therefore, part (1) follows from (2.20), (2.21), and (2.25).
For part (2), it is enough to prove that \(\partial C_{p}(x)/\partial p<0\) for \(x\in(0, \infty)\) and \(p\in(7/5, \infty)\). Let \(t=(p-\mu(p))x^{2}\) and
Then elaborated computations lead to
for \(p\in(7/5,\infty)\) and \(t>0\).
Therefore, part (2) follows from (2.21), (2.26), and (2.27).
For part (3), let \(G_{p}(x)\) be defined by
Then elaborated computations lead to
It follows from Lemma 2.3(2) and (2.29) that
for \(x>0\) and \(p\in(7/5, \infty)\).
Inequality (2.30) implies that the function \(x\rightarrow\partial G_{p}(x)/\partial p\) is strictly decreasing on \((0, \infty)\) and
for \(x>0\) and \(p\in(7/5, \infty)\).
Therefore, part (3) follows from (2.28) and (2.31). □
Lemma 2.4
Let \(p\in(7/5, \infty)\), \(x\in(0, \infty)\), \(\lambda(p)\), \(\mu(p)\), \(B_{p}(x)\) and \(H_{f, g}(x)\) be, respectively, defined by (1.4), (1.5) and (2.1), and \(f_{1}(x)\), \(g_{1}(x)\), \(f_{2}(x)\) and \(g_{2}(x)\) be, respectively, defined by
Then
Proof
Let \(t=(p-\mu(p))x^{2}\) and
If \(p\in(8/5, \infty)\), then Lemma 2.2(1), (2.36), and (2.37) lead to
Therefore, \(H_{f_{2}, g_{2}}(\infty)=-\infty\) for \(p\in(8/5, \infty)\) follows from (2.38), (2.39), and (2.41).
If \(p\in(7/5, 8/5]\), then it follows from Lemma 2.2(1) and (2.36) together with (2.37) that
Therefore,
for \(p\in(7/5, 8/5]\) as follows from (2.38) and (2.42)-(2.44).
Similarly, from (2.1) and (2.32) we have
If \(p\in(7/5, 8/5]\), then Lemma 2.2(1) gives
Therefore, \(H_{f_{1}, g_{1}}(\infty)=\infty\) for \(p\in(7/5, 8/5]\) as follows from (2.45) and (2.46).
If \(p\in(8/5, \infty)\), then Lemma 2.2(1) leads to
Therefore, \(H_{f_{1}, g_{1}}(\infty)=-1\) for \(p\in(8/5, \infty)\) as follows from (2.45) and (2.47). □
Lemma 2.5
Let \(p\in(7/5, \infty)\), \(p^{\ast}_{0}=(50+2\sqrt{30})/35=1.74155\ldots\) , \(x\in(0, \infty)\), \(\lambda(p)\), \(\mu(p)\), \(B_{p}(x)\), \(H_{f, g}(x)\), \(f_{1}(x)\), \(g_{1}(x)\), \(f_{2}(x)\) and \(g_{2}(x)\) be, respectively, defined by (1.4), (1.5), (2.1), (2.32) and (2.33). Then the following statements are true:
-
(1)
if \(f_{1}(x)/g_{1}(x)\) is strictly increasing on \((0, \infty)\), then \(p\in(7/5, 8/5]\);
-
(2)
if \(f_{1}(x)/g_{1}(x)\) is strictly decreasing on \((0, \infty)\), then \(p\in[p^{\ast}_{0}, \infty)\).
Proof
(1) It follows from (2.1) and (2.32) that
If \(f_{1}(x)/g_{1}(x)\) is strictly increasing on \((0, \infty)\), then (2.48) leads to
and we assert that \(p\in(7/5, 8/5]\). Otherwise, \(p>8/5\) and (2.35) lead to the conclusion \(H_{f_{1}, g_{1}}(\infty)=-1\), which contradicts with (2.49).
(2) Let \(t=(p-\mu(p))x^{2}\), \(u_{n}\) and \(h_{1}(t)\) be, respectively, defined by (2.4) and (2.36), and \(h_{2}(t)\) and \(v_{n}\) be, respectively, defined by
Then from (2.1)-(2.3), (2.32), (2.33), (2.36), and (2.50) we have
Note that \(H_{f_{1}, g_{1}}(0^{+})=H_{f_{2}, g_{2}}(0^{+})=0\). Making use of the L’Hôspital rule we get
If \(p\in(7/5, \infty)\) and \(f_{1}(x)/g_{1}(x)\) is strictly decreasing on \((0, \infty)\), then it follows from Lemma 2.2(1) and (2.54) that
which leads to \(p\geq(50+2\sqrt{30})/35=p^{\ast}_{0}\). □
3 Main results
Theorem 3.1
Let \(p\in(7/5, \infty)\), \(x>0\), \(p^{\ast}_{0}=(50+2\sqrt{30})/35\), \(\lambda(p)\), \(\mu(p)\), \(B_{p}(x)\) and \(\alpha(p)\) be, respectively, defined by (1.4), (1.5), and (2.18), \(x_{0}\) be the unique solution of the equation
on the interval \((0, \infty)\) and \(\beta(p)=\operatorname{erf}(x_{0})/B_{p}(x_{0})\). Then the following statements are true:
-
(1)
the function \(x\rightarrow Q_{p}(x)=\operatorname {erf}(x)/B_{p}(x)\) is strictly decreasing on \((0, \infty)\) if and only if \(p\in(7/5, 8/5]\), and the double inequality
$$ 1< \frac{\operatorname{erf}(x)}{B_{p}(x)}< \alpha(p) $$(3.1)holds for all \(x>0\) with the best possible parameters 1 and \(\alpha(p)\) if \(p\in(7/5, 8/5]\);
-
(2)
the function \(x\rightarrow Q_{p}(x)=\operatorname {erf}(x)/B_{p}(x)\) is strictly increasing on \((0, \infty)\) if and only if \(p\in [p^{\ast}_{0}, \infty)\), and the double inequality
$$ \alpha(p)< \frac{\operatorname{erf}(x)}{B_{p}(x)}< 1 $$(3.2)holds for all \(x>0\) with the best possible parameters 1 and \(\alpha(p)\) if \(p\in[p^{\ast}_{0}, \infty)\);
-
(3)
if \(p\in(8/5, p^{\ast}_{0})\), then \(Q_{p}(x)\) is strictly decreasing on \((0, x_{0}]\) and strictly increasing on \([x_{0}, \infty)\), and the double inequality
$$ \beta(p)\leq\frac{\operatorname{erf}(x)}{B_{p}(x)}< \max\bigl\{ 1, \alpha (p)\bigr\} $$(3.3)for all \(x>0\).
Proof
Let \(t=(p-\mu(p))x^{2}\), \(f_{1}(x)\), \(g_{1}(x)\), \(f_{2}(x)\), \(g_{2}(x)\), \(u_{n}\), \(v_{n}\), and \(h_{2}(t)\) be defined by (2.32) and (2.33), (2.4), (2.51), and (2.53). Then
(1) If \(Q_{p}(x)=\operatorname{erf}(x)/B_{p}(x)\) is strictly decreasing on \((0, \infty)\), then \(f_{1}(x)/g_{1}(x)\) is strictly increasing on \((0, \infty)\) and \(p\in(7/5, 8/5]\) by Lemma 2.5(1).
If \(p\in(7/5, 8/5]\), then it follows from Lemma 2.2(1) and (2) together with (2.51)-(2.53) that the function \(f^{\prime}_{2}(x)/g^{\prime}_{2}(x)\) is strictly increasing on \((0, \infty)\). Then from the monotone form of L’Hôpital’s rule [22], Theorem 1.25, and (3.5) together with (3.6) we know that the function \(f^{\prime}_{1}(x)/g^{\prime}_{1}(x)\) is strictly increasing on \((0, \infty)\). Therefore, \(Q_{p}(x)\) is strictly decreasing or \(f_{1}(x)/g_{1}(x)\) is strictly increasing on \((0, \infty)\) as follows from the monotone form of L’Hôpital’s rule [22], Theorem 1.25, and (3.4) together with the monotonicity of the function \(f^{\prime}_{1}(x)/g^{\prime}_{1}(x)\) on the interval \((0, \infty)\).
Note that
Therefore, the double inequality (3.1) holds for all \(x>0\) and \(p\in (7/5, 8/5]\) with the best possible parameters 1 and \(\alpha(p)\) as follows from (3.7) and the monotonicity of \(f_{1}(x)/g_{1}(x)\) on the interval \((0, \infty)\).
(2) If \(Q_{p}(x)=\operatorname{erf}(x)/B_{p}(x)\) is strictly increasing on \((0, \infty)\), then \(f_{1}(x)/g_{1}(x)\) is strictly decreasing on \((0, \infty)\) and \(p\in[p^{\ast}_{0}, \infty)\) by Lemma 2.5(2).
If \(p\in[p^{\ast}_{0}, \infty)\), then it follows from Lemma 2.2(1) and (3) together with (2.51)-(2.53) that the function \(f^{\prime}_{2}(x)/g^{\prime}_{2}(x)\) is strictly decreasing on \((0, \infty)\). Therefore, \(Q_{p}(x)\) is strictly increasing or \(f_{1}(x)/g_{1}(x)\) is strictly decreasing on \((0, \infty)\) as follows from the monotone form of L’Hôpital’s rule and (3.4)-(3.6) together with the monotonicity of the function \(f^{\prime}_{2}(x)/g^{\prime}_{2}(x)\) on the interval \((0, \infty)\), and the double inequality (3.2) holds for all \(x>0\) and \(p\in [p^{\ast}_{0}, \infty)\) with the best possible parameters 1 and \(\alpha(p)\) as follows from (3.7) and the monotonicity of \(f_{1}(x)/g_{1}(x)\) on the interval \((0, \infty)\).
(3) If \(p\in(8/5, p^{\ast}_{0})\), then it follows from [23], Lemma 6.4, or [24], Lemma 7, Lemma 2.2(1) and (4), (2.34), (2.35), and (2.51)-(2.53) that there exists \(x_{1}\in(0, \infty)\) such that \(f^{\prime}_{2}(x)/g^{\prime}_{2}(x)\) is strictly increasing on \((0, x_{1})\) and strictly decreasing on \((x_{1}, \infty)\), and
From Lemma 2.1, (3.5), (3.6), (3.9) and the piecewise monotonicity of \(f^{\prime}_{2}(x)/g^{\prime}_{2}(x)\) on the interval \((0, \infty)\) we known that there exists \(x_{2}\in(0, \infty)\) such that \(f^{\prime}_{1}(x)/g^{\prime}_{1}(x)\) is strictly increasing on \((0, x_{2})\) and strictly decreasing on \((x_{2}, \infty)\). Then (3.4), (3.8) and Lemma 2.1 lead to the conclusion that there exists \(x_{0}\in(0, \infty)\) such that the function \(f_{1}(x)/g_{1}(x)=B^{2}_{p}(x)/\operatorname{erf}^{2}(x)\) is strictly increasing on \((0, x_{0})\) and strictly decreasing on \((x_{0}, \infty)\). We clearly see that \(x_{0}\) is the unique solution of the equation
on the interval \((0, \infty)\). Therefore, \(Q_{p}(x)=\operatorname{erf}(x)/B_{p}(x)=(f_{1}(x)/g_{1}(x))^{-1/2}\) is strictly decreasing on \((0, x_{0}]\) and strictly increasing on \([x_{0}, \infty)\), and inequality (3.3) holds for all \(x>0\) as follows easily from (3.7). □
Let \(p\in(7/5, \infty)\) and \(\alpha(p)=\sqrt{ (45p^{2}-60p-4 )/[3p\pi(5p-7)]}=1\), then \(p=p_{0}=(21\pi-60+\sqrt{3}\sqrt{147\pi^{2}-920\pi+1440})/[30(\pi -3)]=1.71318\ldots\in (7/5, p^{\ast}_{0})\). Numerical computations show that \(x_{0}=1.68913\ldots\) is the unique solution of the equation
on the interval \((0, \infty)\), \(\beta(p_{0})=\operatorname{erf}(x_{0})/B_{p_{0}}(x_{0})=0.9998\ldots \) . Therefore, Theorem 3.1(3) leads to Corollary 3.1 immediately.
Corollary 3.1
Let \(p_{0}=(21\pi-60+\sqrt{3}\sqrt{147\pi^{2}-920\pi+1440})/[30(\pi-3)]\), \(B_{p}(x)\) be defined by (1.5) and \(x_{0}=1.68913\ldots\) be the unique solution of equation (3.10) on the interval \((0, \infty)\). Then the double inequality
holds for all \(x>0\).
Theorem 3.2
Let \(p_{0}=(21\pi-60+\sqrt{3}\sqrt{147\pi^{2}-920\pi+1440})/[30(\pi-3)]\), \(p\in(7/5, \infty)\), \(x>0\), \(\lambda(p)\), \(\mu(p)\) and \(B_{p}(x)\) be, respectively, defined by (1.4) and (1.5). Then the inequality
holds for all \(x>0\) if and only if \(p\in(7/5, 8/5]\), and inequality (3.12) is reversed if and only if \(p\in[p_{0}, \infty)\).
Proof
Making use of the L’Hôspital rule and Lemma 2.2(1) we have
It follows from (3.13)-(3.16) that
If inequality (3.12) holds for all \(x>0\), then
and \(p\in(7/5, 8/5]\) as follows easily from (3.17) and (3.18).
If \(p\in(7/5, 8/5]\), then inequality (3.12) holds for all \(x>0\) as follows directly from Theorem 3.1(1).
If \(\operatorname{erf}(x)< B_{p}(x)\) for all \(x>0\), then \(p\geq p_{0}\) as follows easily from
If \(p\in[p_{0}, \infty)\), then we divide the proof into two cases.
Case 1. \(p\in[p^{\ast}_{0}, \infty)\). Then \(\operatorname {erf}(x)< B_{p}(x)\) for all \(x>0\) as follows from Theorem 3.1(2).
Case 2. \(p\in[p_{0}, p^{\ast}_{0})\). Then
and \(\operatorname{erf}(x)< B_{p}(x)\) for all \(x>0\) as follows from Theorem 3.1(3) and (3.19). □
Remark 3.1
Let \(p^{\ast}_{0}=(50+2\sqrt{30})/35\), and \(f_{2}(x)\) and \(g_{2}(x)\) be defined by (2.33). Then from (3.6) and the proof of Theorem 3.1 we know that the function \(f_{2}(x)/g_{2}(x)\) is strictly increasing on \((0, \infty)\) if \(p\in(7/5, 8/5]\) and strictly decreasing on \((0, \infty)\) if \(p\in[p^{\ast}_{0}, \infty)\). Therefore, we have
for all \(x\in(0, \infty)\) and \(p\in(7/5, 8/5]\), and
for all \(x\in(0, \infty)\) and \(p\in[p^{\ast}_{0}, \infty)\).
Remark 3.1 can be restated as Theorem 3.3.
Theorem 3.3
Let \(p^{\ast}_{0}=(50+2\sqrt{30})/35\) and \(C_{p}(x)\) be defined by Lemma 2.3. Then the inequality
holds for all \(x>0\) if \(p\in(7/5, 8/5]\), and inequality (3.20) is reversed for all \(x>0\) if \(p\in[p^{\ast}_{0}, \infty)\).
Remark 3.2
Let \(p_{0}=(21\pi-60+\sqrt{3}\sqrt{147\pi^{2}-920\pi+1440})/[30(\pi-3)]\), \(p, q\in(7/5, \infty)\), \(x>0\), \(\lambda(p)\), \(\mu(p)\) and \(B_{p}(x)\) be, respectively, defined by (1.4) and (1.5). Then it follows from Lemma 2.3(1) and Theorem 3.2 that the double inequality
holds for all \(x>0\) with the best possible parameters \(p=8/5\) and \(q=p_{0}\).
Corollary 3.2
Let \(p_{0}=(21\pi-60+\sqrt{3}\sqrt{147\pi^{2}-920\pi+1440})/[30(\pi-3)]\), and \(\lambda(p)\) and \(\mu(p)\) be defined by (1.4). Then the inequalities
hold for all \(x>0\).
Proof
From (1.4) one has
Note that \(p_{0}\) satisfies the identity
It follows from Remark 3.2 and (3.21) that
for all \(x>0\). Therefore, it suffices to prove that
for all \(x>0\).
Inequality (3.23) follows easily from
Making use of (1.4) and (3.22) together with the arithmetic-geometric mean inequality one has
for all \(x>0\). □
Remark 3.3
We clearly see that the results given in Theorem 3.2, Remark 3.2, and Corollary 3.2 are improvements and refinements of inequality (1.1).
Let \(p^{\ast}_{0}=(50+2\sqrt{30})/35\) and \(\alpha(p)\) be defined by (2.18). Then
Corollary 3.3
Let \(p=3/2, 8/5\) in Theorem 3.1(1) and \(p=p^{\ast}_{0}, 2, \infty\) in Theorem 3.1(2). Then Lemma 2.3(1) and (3) together with (3.25) and (3.26) leads to
Remark 3.4
From inequality (3.27) we clearly see that the double inequalities
hold for all \(x>0\).
Remark 3.5
Let \(p_{0}=(21\pi-60+\sqrt{3}\sqrt{147\pi^{2}-920\pi+1440})/[30(\pi-3)]\), \(p^{\ast}_{0}=(50+2\sqrt{30})/35\), \(B_{p}(x)\) be defined by (1.5) and \(x_{0}=1.68913\ldots\) be the unique solution of equation (3.10) on the interval \((0, \infty)\), \(\beta(p_{0})=\operatorname{erf}(x_{0})/B_{p_{0}}(x_{0})=0.9998\ldots \) . Then Corollary 3.1 and (3.28) lead to
for all \(x>0\).
Corollary 3.4
Let \(p=(7/5)^{+}, 3/2, 8/5\) and \(p=2, \infty\) in Theorem 3.3. Then it follows from Lemma 2.3(2) that the inequalities
hold for all \(x>0\).
Remark 3.6
From the identities
and
we know that the results given in Theorem 3.3 or Corollary 3.4 are better than that in (1.3).
References
Laforgia, A, Sismondi, S: Monotonicity results and inequalities for the gamma and error functions. J. Comput. Appl. Math. 23(1), 25-33 (1988)
Alzer, H: Error function inequalities. Adv. Comput. Math. 33(3), 349-379 (1988)
Qi, F, Guo, S-L: Inequalities for the incomplete gamma and related functions. Math. Inequal. Appl. 2(1), 47-53 (1999)
Qi, F, Cui, L-H, Xu, S-L: Some inequalities constructed by Tchebysheff’s integral inequality. Math. Inequal. Appl. 2(4), 517-528 (1999)
Qi, F, Mei, J-Q: Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwend. 18(3), 793-799 (1999)
Qi, F: Monotonicity results and inequalities for the gamma and incomplete gamma functions. Math. Inequal. Appl. 5(1), 61-67 (2002)
Guo, B-N, Qi, F: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications. J. Korean Math. Soc. 48(3), 655-667 (2011)
Gasull, A, Utzet, F: Approximating Mills ratio. J. Math. Anal. Appl. 420(2), 1832-1853 (2014)
Chu, Y-M, Li, Y-M, Xia, W-F: Best possible inequalities for the harmonic mean of error function. J. Inequal. Appl. 2014, Article ID 525 (2014)
Xia, W-F, Chu, Y-M: Optimal inequalities for the convex combination of error function. J. Math. Inequal. 9(1), 85-99 (2015)
Yang, Z-H, Chu, Y-M: On approximating Mills ratio. J. Inequal. Appl. 2015, Article ID 273 (2015)
Li, Y-M, Xia, W-F, Chu, Y-M, Zhang, X-H: Optimal lower and upper bounds for the geometric convex combination of the error function. J. Inequal. Appl. 2015, Article ID 382 (2015)
Chu, Y-M, Zhao, T-H: Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 19(2), 589-595 (2016)
Pólya, G: Remarks on computing the probability integral in one and two dimensions. In: Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkely (1949)
Chu, J-T: On bounds for the normal integral. Biometrika 42, 263-265 (1955)
Alzer, H: On some inequalities for the incomplete gamma function. Math. Comput. 66(218), 771-778 (1997)
Alzer, H: Functional inequalities for the error function. Aequ. Math. 66(1-2), 119-127 (2003)
Alzer, H: Functional inequalities for the error function II. Aequ. Math. 78(1-2), 113-121 (2009)
Neuman, E: Inequalities and bounds for the incomplete gamma function. Results Math. 2013(3-4), 1209-1214 (2009)
Yang, Z-H: A new way to prove L’Hospital monotone rules with applications. arXiv:1409.6408 [math.CA]
Yang, Z-H, Chu, Y-M, Wang, M-K: Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 428(1), 587-604 (2015)
Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)
Belzunce, F, Ortega, E-M, Ruiz, JM: On non-monotonic ageing properties from the Laplace transform, with actuarial applications. Insur. Math. Econ. 40(1), 1-14 (2007)
Yang, Z-H, Chu, Y-M, Tao, X-J: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014)
Acknowledgements
The research was supported by the Natural Science Foundation of China under Grants 61374086, 11371125 and 11401191.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Yang, ZH., Chu, YM. On approximating the error function. J Inequal Appl 2016, 311 (2016). https://doi.org/10.1186/s13660-016-1261-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-016-1261-3
MSC
- 33B20
- 26D15
- 26A48
Keywords
- error function
- monotonicity
- bound