- Research
- Open Access
- Published:
A certain \((p,q)\)-derivative operator and associated divided differences
Journal of Inequalities and Applications volume 2016, Article number: 301 (2016)
Abstract
Recently, Sofonea (Gen. Math. 16:47-54, 2008) considered some relations in the context of quantum calculus associated with the q-derivative operator \(D_{q}\) and divided difference. As applications of the post-quantum calculus known as the \((p,q)\)-calculus, we derive several relations involving the \((p,q)\)-derivative operator and divided differences.
1 Introduction
The quantum calculus has many applications in the fields of special functions and many other areas (see [1–7]). Further there is possibility of extension of the q-calculus to post-quantum calculus denoted by the \((p,q)\)-calculus. Actually such an extension of quantum calculus cannot be obtained directly by substitution of q by \(q/p\) in q-calculus. When the case \(p=1\) in \((p,q)\)-calculus, the q-calculus may be obtained (see [6, 7]). Recently, Chakrabarti and Jagannathan [8] introduced a consideration of the \(( p,q ) \)-integer in order to generalize or unify several forms of q-oscillator algebras well known in the physics literature related to the representation theory of single-paramater quantum algebras (see also [3–5] and [9]). They also considered the necessary elements of the \(( p,q ) \)-calculus involving \(( p,q ) \)-exponential, \(( p,q ) \)-integration and the \(( p,q ) \)-differentiation. Corcino [10] developed the theory of a \(( p,q ) \)-extension of the binomial coefficients and also established some properties parallel to those of the ordinary and q-binomial coefficients, which is comprised horizontal generating function, the triangular, vertical, and the horizontal recurrence relations and the inverse and the orthogonality relations. Sadjang [11] investigated some properties of the \(( p,q ) \)-derivatives and the \(( p,q ) \)-integrations. Sadjang [11] also provided two suitable polynomial bases for the \(( p,q ) \)-derivative and gave various properties of these bases.
The \(( p,q )\)-number is given by
which is a natural generalization of the q-number: that is, we have (cf. [10] and [11])
It is clear that the notation \([ n ] _{p,q}\) is symmetric, that is,
The \((p,q)\)-Gauss binomial coefficients given by
and the \((p,q)\)-factorial given by
are also known from [10] and [11]. Further, the \((p,q)\)-analogs of Pascal’s identity are given by
where \(k\in \{ 0,1,2,\ldots,n \}\) (cf. [10] and [11]).
Let p and q be elements of complex numbers and \(D=D_{p,q}\subset \mathbb{C}\) such that \(x\in D\) implies \(px\in D\) and \(qx\in D\). Here, in this investigation, we give the following two definitions which involve a post-quantum generalization of Sofonea’s work [1].
Definition 1
Let \(0<\vert q\vert <\vert p\vert \leqq1\). A given function \(f:D_{p,q}\rightarrow\mathbb{C}\) is called \((p,q)\)-differentiable under the restriction that, if \(0\in D_{p,q}\), then \(f^{\prime} ( 0 )\) exists.
Definition 2
Let \(0<\vert q\vert <\vert p\vert \leqq1\). A given function \(f:D_{p,q}\rightarrow\mathbb{C}\) is called \((p,q)\)-differentiable of order n, if and only if \(0\in D_{p,q}\) implies that \(f^{ ( n ) } ( 0 ) \) exists.
The \((p,q)\)-derivative operator of a function f is defined by
and
provided that the function f is differentiable at 0. We note that
Furthermore,
and
hold true for the linear operator \(D_{p,q}\) (cf. [11]).
The divided differences at a system of distinct points \(x_{0},x_{1},\ldots ,x_{n}\) are denoted by \([ x_{0},x_{1},\ldots,x_{n};f ]\). In fact, we have (see [1] and [2])
In the next part of the paper, we obtain some potentially useful results and relations between the \((p,q)\)-derivative operator and divided differences. The results presented here provide a good generalization of the above-mentioned Sofonea results.
2 Main results
Let us consider the points
as follows:
We now state the following theorem.
Theorem 1
Let p and q be complex numbers with
Then, by taking the knots \(x_{k}=p^{k}q^{n-k}x\),
Proof
For \(0\leqq l< k\), we have
and, for \(k< l\leqq n\), we find that
Since
we have the following consequence from (1.4):
Therefore, the proof of Theorem 1 is completed. □
By using the following expressions:
we now give a representation of the operator \(D_{p,q}^{n}\) as in Theorem 2 below.
Theorem 2
Let the function \(f:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q) \)-differentiable of order n. Then
Proof
Theorem 2 is proved by making use of the following results:
and
Continuing this process, we deduce
by using the following formula:
It follows from Theorem 1 that
which completes the proof of Theorem 2. □
In the case when
in Theorem 2, we get the following corollary.
Corollary 1
The following result holds true:
We now consider the \(( p,q ) \)-analog of the Leibniz rule to represent it by means of the divided differences. First of all, we need to get the \(( p,q ) \)-analog of the Leibniz rule by the following lemma.
Lemma
Let the functions \(f:D_{p,q}\rightarrow \mathbb{C}\) and \(g:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q)\)-differentiable of order n. Then
Proof
The lemma can easily be proved by applying the principle of mathematical induction. We, therefore, omit the proof of the lemma. □
We now state the \(( p,q )\)-Leibniz rule by using divided differences as follows.
Theorem 3
Let the functions \(f:D_{p,q}\rightarrow\mathbb{C}\) and \(g:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q)\)-differentiable of order n. Then \((fg ) (x)\) is also \((p,q)\)-differentiable of order n and
Proof
Our assertion in Theorem 3 follows from equation (2.3) and the above lemma. The details involved are being omitted here. □
Now also we give a function at a point \(p^{n}x\) by binomial expression and \((p,q)\)-derivative of order k.
Theorem 4
Let the function \(f:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q) \)-differentiable of order n. Then
Proof
We consider Newton’s formula as follows:
Upon setting
in equation (2.4) and \(z=p^{n}x\), if we use equation (2.1), we find that
as asserted by Theorem 4. □
Finally, we are in a position to give the following result.
Corollary 2
Let p and q be complex numbers such that
Also let the function \(f:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q)\)-differentiable of order n. Then
Proof
Since, for \(k\in \{ 0,1,\ldots,n \} \),
we have
and
Continuing the process, we readily observe that
From Theorem 4, we thus conclude that
which evidently proves Corollary 2. □
3 Conclusion
We have considered \((p,q)\)-analogs of several results investigated recently by Sofonea [1]. We have also given the \((p,q)\)-Leibniz rule and stated the \((p,q)\)-Leibniz rule by means of divided differences. Moreover, we have shown that a function f at a point \(q^{n}x\) can be generated by a linear combination of the \((p,q)\)-derivatives of order k. In the case when \(p=1\), the results derived in this paper would correspond to those based upon the relatively more familiar q-numbers.
References
Sofonea, DF: Some properties in q-calculus. Gen. Math. 16, 47-54 (2008)
Sofonea, DF: Numerical analysis and q-calculus. I. Octogon 11, 151-156 (2003)
Srivastava, HM: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011)
Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
Victor, K, Pokman, C: Quantum Calculus. Springer, New York (2002)
Gupta, V: \((p,q)\)-Baskakov-Kantorovich operators. Appl. Math. Inf. Sci. 10(4), 1551-1556 (2016)
Milovanović, GV, Gupta, V, Malik, N: \((p,q)\)-beta functions and applications in approximation. Bol. Soc. Mat. Mexicana (2016). arXiv:1602.06307v2 [math.CA]
Chakrabarti, R, Jagannathan, R: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24, L711 (1991)
Jagannathan, R, Rao, KS: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv:math/0602613 [math.NT]
Corcino, RB: On \(P,Q\)-binomial coefficients. Electron. J. Comb. Number Theory 8, Article ID A29 (2008)
Sadjang, PN: On the fundamental theorem of (\(p,q\))-calculus and some \((p,q)\)-Taylor formulas. arXiv:1309.3934 [math.QA]
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Araci, S., Duran, U., Acikgoz, M. et al. A certain \((p,q)\)-derivative operator and associated divided differences. J Inequal Appl 2016, 301 (2016). https://doi.org/10.1186/s13660-016-1240-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-016-1240-8
MSC
- 11B68
- 11B83
- 81S40
Keywords
- q-calculus
- \((p,q)\)-calculus
- divided differences
- \((p,q)\)-derivative operator
- \((p,q)\)-Leibniz rule
- principle of mathematical induction