Skip to main content

A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces

Abstract

In recent years, nonhomogeneous wavelet frames have attracted some mathematicians’ interest. This paper investigates such problems in a Sobolev space setting. A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces pairs is obtained.

1 Introduction

Wavelet frames in \(L^{2}(\mathbb {R}^{d})\) have been widely investigated by many authors [18]. In particular, homogeneous wavelet dual frames in \(L^{2}(\mathbb {R}^{d})\) were first characterized by Han [9], and then studied by Bownik [3]. For homogeneous wavelet dual frames, regularity and vanishing moments have been both required. However, for nonhomogeneous wavelet dual frames in Sobolev space pairs \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\), they can be separated. It makes it easy to construct dual frames (see [1014] for details). This paper is devoted to characterizing nonhomogeneous wavelet dual frames in Sobolev spaces pairs \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\) via a pair of equations.

Before proceeding, we introduce some notions and notations. We denote by \(\mathbb {Z}\) and \(\mathbb {N}\) the set of integers and the set of positive integers, respectively. Let \(d\in \mathbb {N}\). We denote by \(\mathbb {T}^{d}=[0,1)^{d}\) the d-dimensional torus. For a Lebesgue measurable set E in \(\mathbb {R}^{d}\), we denote by \(\vert E\vert \) its Lebesgue measure and \(\chi_{E}\) the characteristic function of E, respectively. And we write δ for the Dirac sequence, i.e., \(\delta_{0, 0}=1\) and \(\delta _{0, k}=0\) for \(0\neq k\in \mathbb {Z}^{d}\). The Fourier transform of a function \(f\in L^{1}(\mathbb {R}^{d}) \cap L^{2}(\mathbb {R}^{d})\) is defined by

$$\hat{f}(\cdot)= \int_{\mathbb {R}^{d}} f(x)e^{-2\pi i \langle x, \cdot\rangle} \,dx, $$

and extended to \(L^{2}(\mathbb {R}^{d})\) as usual, where \(\langle\cdot, \cdot\rangle\) denotes the Euclidean inner product in \(\mathbb {R}^{d}\).

For \(s\in \mathbb {R}\), we define Sobolev spaces \(H^{s}(\mathbb {R}^{d})\) as the space of all tempered distributions f such that

$$\Vert f\Vert ^{2}_{H^{s}(\mathbb {R}^{d})}= \int_{\mathbb {R}^{d}}\bigl\vert \hat{f}(\xi)\bigr\vert ^{2} \bigl(1+\Vert \xi \Vert ^{2}\bigr)^{s}\,d\xi< \infty, $$

where \(\Vert \cdot \Vert \) denotes the Euclidean norm on \(\mathbb {R}^{d}\). The inner product in \(H^{s}(\mathbb {R}^{d})\) is given by

$$\langle f, g\rangle_{H^{s}(\mathbb {R}^{d})}= \int_{\mathbb {R}^{d}}\hat{f}(\xi) \overline{\hat{g}(\xi)}\bigl(1+\Vert \xi \Vert ^{2}\bigr)^{s}\,d\xi, \quad f,\, g \in H^{s} \bigl(\mathbb {R}^{d}\bigr). $$

Moreover, for each \(g\in H^{-s}(\mathbb {R}^{d})\),

$$\langle f, g\rangle= \int_{\mathbb {R}^{d}}\hat{f}(\xi) \overline{\hat{g}(\xi)}\,d\xi, \quad f\in H^{s}\bigl(\mathbb {R}^{d}\bigr), $$

is a linear continuous functional in \(H^{s}(\mathbb {R}^{d})\). The \(H^{s}(\mathbb {R}^{d})\) and \(H^{-s}(\mathbb {R}^{d})\) form pairs of dual spaces.

For functions \(f, g: \mathbb {R}^{d} \mapsto \mathbb {C}\), define

$$[f, g]_{t}(\cdot)=\sum_{k\in \mathbb {Z}^{d}}f(\cdot+k) \overline{g(\cdot +k)}\bigl(1+\Vert \cdot+k\Vert ^{2} \bigr)^{t}, \quad t\in \mathbb {R}. $$

For convenience, we write

$$f_{j,k}(\cdot)=2^{\frac{jd}{2}}f\bigl(2^{j}\cdot-k\bigr)\quad \mbox{and}\quad f_{j,k}^{s}(\cdot)=2^{j(\frac{d}{2}-s)}f \bigl(2^{j}\cdot-k\bigr) $$

for a distribution f, \(j\in \mathbb {Z}\), \(k\in \mathbb {Z}^{d}\), and \(s\in \mathbb {R}\).

Let \(\mathbb {N}_{0}=\mathbb {N} \cup\{0\}\). Given \(L\in \mathbb {N}\) and \(s\in \mathbb {R}\), let \(\phi, \psi_{1}, \psi_{2}, \ldots, \psi_{L}\in H^{s}(\mathbb {R}^{d})\) and \(\tilde{\phi}, \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde {\psi}_{L}\in H^{-s}(\mathbb {R}^{d})\), we denote by \(X^{s}(\phi; \psi_{1}, \psi _{2}, \ldots, \psi_{L})\) and \(X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi}_{L})\) the following two nonhomogeneous wavelet systems in \(H^{s}(\mathbb {R}^{d})\) and \(H^{-s}(\mathbb {R}^{d})\), respectively:

$$ X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})= \bigl\{ \phi_{0,k}: k\in \mathbb {Z}^{d} \bigr\} \cup \bigl\{ \psi_{l,j,k}^{s}: j\in \mathbb {N}_{0}, k \in \mathbb {Z}^{d}, l=1, 2, \ldots, L \bigr\} $$
(1.1)

and

$$ X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \tilde{ \psi}_{2}, \ldots, \tilde{\psi}_{L})= \bigl\{ \tilde{ \phi}_{0,k}: k\in \mathbb {Z}^{d} \bigr\} \cup \bigl\{ \tilde{ \psi}_{l,j,k}^{-s}: j\in \mathbb {N}_{0}, k\in \mathbb {Z}^{d}, l=1, 2, \ldots, L \bigr\} . $$
(1.2)

We say that \(X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) is a nonhomogeneous wavelet frame in \(H^{s}(\mathbb {R}^{d})\) if there exist two positive constants A, B such that

$$\begin{aligned} A\Vert f\Vert _{H^{s}(\mathbb {R}^{d})}^{2}&\leq\sum _{k\in \mathbb {Z}^{d}}\bigl\vert \langle f, \phi_{0, k} \rangle_{H^{s}(\mathbb {R}^{d})}\bigr\vert ^{2}+\sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}}\bigl\vert \bigl\langle f, \psi_{l, j, k}^{s}\bigr\rangle _{H^{s}(\mathbb {R}^{d})}\bigr\vert ^{2} \\ &\leq B\Vert f\Vert _{H^{s}(\mathbb {R}^{d})}^{2}, \quad \forall f\in H^{s}\bigl(\mathbb {R}^{d}\bigr), \end{aligned}$$
(1.3)

where A, B are called frame bounds; it is called a nonhomogeneous wavelet Bessel sequence in \(H^{s}(\mathbb {R}^{d})\) if the right-hand inequality in (1.3) holds, where B is called a Bessel bound. Furthermore, we say that \((X^{s}(\phi; \psi_{1}, \psi _{2}, \ldots, \psi_{L}), X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi}_{L}))\) is a pair of nonhomogeneous wavelet dual frames in \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\) if \(X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) and \(X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \tilde{\psi }_{2}, \ldots, \tilde{\psi}_{L})\) are Bessel sequences in \(H^{s}(\mathbb {R}^{d})\) and \(H^{-s}(\mathbb {R}^{d})\), respectively, and

$$ \langle f, g\rangle=\sum_{k\in \mathbb {Z}^{d}}\langle f, \tilde{\phi }_{0,k} \rangle \langle\phi_{0,k}, g\rangle+\sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}}\bigl\langle f, \tilde{ \psi}_{l,j,k}^{-s} \bigr\rangle \bigl\langle \psi_{l,j,k}^{s}, g\bigr\rangle $$
(1.4)

holds for all \(f\in H^{s}(\mathbb {R}^{d})\) and \(g\in H^{-s}(\mathbb {R}^{d})\).

If \((X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L}), X^{-s}(\tilde {\phi}; \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi }_{L}))\) is a pair of dual frames in \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\), then it follows from (1.4) that

$$f=\sum_{k\in \mathbb {Z}^{d}}\langle f, \tilde{\phi}_{0,k} \rangle\phi _{0,k}+\sum_{l=1}^{L} \sum_{j=0}^{\infty}\sum _{k\in \mathbb {Z}^{d}} \bigl\langle f, \tilde{\psi}_{l,j,k}^{-s} \bigr\rangle \psi_{l,j,k}^{s}, \quad f\in H^{s}\bigl(\mathbb {R}^{d}\bigr), $$

and

$$g=\sum_{k\in \mathbb {Z}^{d}}\langle g, \phi_{0,k} \rangle \tilde{\phi}_{0,k} +\sum_{l=1}^{L} \sum_{j=0}^{\infty}\sum _{k\in \mathbb {Z}^{d}} \bigl\langle g, \psi_{l,j,k}^{s} \bigr\rangle \tilde{\psi}_{l,j,k}^{-s},\quad g\in H^{-s}\bigl(\mathbb {R}^{d}\bigr), $$

with the series converging unconditionally in \(H^{s}(\mathbb {R}^{d})\) and \(H^{-s}(\mathbb {R}^{d})\), respectively.

The paper is organized as follows. Section 2 is devoted to some lemmas used latter. Section 3 is devoted to characterizing nonhomogeneous wavelet dual frames in \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\) via a pair of equations.

2 Some lemmas

In this section, we give some auxiliary lemmas which are necessary in proving Theorem 3.1 below.

Definition 2.1

Define a function \(\kappa: \mathbb {Z}^{d}\to \mathbb {Z}\) by

$$\kappa(n)=\sup \bigl\{ j\geq0: 2^{-j}n\in \mathbb {Z}^{d} \bigr\} $$

for \(0\neq n\in \mathbb {Z}^{d}\), and set \(\kappa(0)=+\infty\).

Lemma 2.1

Let \(s\in \mathbb {R}\), \(j\in \mathbb {Z}\), and \(\psi\in H^{-s}(\mathbb {R}^{d})\). Then, for \(f\in H^{s}(\mathbb {R}^{d})\) and \(k\in \mathbb {Z}^{d}\), the kth Fourier coefficient of \([2^{\frac{jd}{2}}\hat{f}(2^{j}\cdot), \hat{\psi }(\cdot)]_{0}(\xi)\) is \(\langle f, \psi_{j, k}\rangle\). In particular,

$$ \bigl[2^{\frac{jd}{2}}\hat{f}\bigl(2^{j}\cdot\bigr), \hat{\psi}(\cdot)\bigr]_{0}(\xi )=\sum_{k\in \mathbb {Z}^{d}} \langle f, \psi_{j, k}\rangle e^{2\pi i\langle k, \xi\rangle} $$
(2.1)

if \(\{\psi_{j, k}: k\in \mathbb {Z}^{d}\}\) is a Bessel sequence in \(H^{-s}(\mathbb {R}^{d})\).

Proof

Since \(f\in H^{s}(\mathbb {R}^{d})\) and \(\psi\in H^{-s}(\mathbb {R}^{d})\), we have \(\hat {f}(2^{j}\cdot)\overline{\hat{\psi}(\cdot)}\in L^{1}(\mathbb {R}^{d})\), and thus

$$\begin{aligned} \int_{\mathbb {T}^{d}}\bigl[2^{\frac{jd}{2}}\hat{f}\bigl(2^{j} \cdot\bigr), \hat{\psi }(\cdot)\bigr]_{0}(\xi)e^{-2\pi i\langle k, \xi\rangle}\,d\xi &=2^{\frac{jd}{2}} \int_{\mathbb {T}^{d}}\sum_{l\in \mathbb {Z}^{d}} \hat{f} \bigl(2^{j}(\xi+l)\bigr)\overline{\hat{\psi}(\xi+l)} e^{-2\pi i\langle k, \xi\rangle} \,d\xi \\ &=2^{\frac{jd}{2}} \int_{\mathbb {R}^{d}}\hat{f}\bigl(2^{j}\xi\bigr) \overline{\hat{ \psi}(\xi)}e^{-2\pi i\langle k, \xi\rangle}\,d\xi \\ &=2^{-\frac{jd}{2}} \int_{\mathbb {R}^{d}}\hat{f}(\xi) \overline{\hat{\psi}\bigl(2^{-j} \xi\bigr)}e^{-2\pi i\langle k, 2^{-j}\xi \rangle}\,d\xi \\ &= \int_{\mathbb {R}^{d}}\hat{f}(\xi) \overline{ \bigl[\psi_{j, k}( \cdot) \bigr]^{\wedge}(\xi)}\,d\xi, \end{aligned}$$

by the Plancherel theorem. So

$$ \int_{\mathbb {T}^{d}}\bigl[2^{\frac{jd}{2}}\hat{f}\bigl(2^{j} \cdot\bigr), \hat{\psi }(\cdot)\bigr]_{0}(\xi)e^{-2\pi i\langle k, \xi\rangle}\,d\xi = \langle f, \psi_{j, k}\rangle. $$
(2.2)

If \(\{\psi_{j, k}: k\in \mathbb {Z}^{d}\}\) is a Bessel sequence in \(H^{-s}(\mathbb {R}^{d})\), then \(\{\langle f, \psi_{j, k}\rangle\}_{k\in \mathbb {Z}^{d}}\in\ell^{2}(\mathbb {Z}^{d})\), and thus (2.1) follows by (2.2). □

By a careful observation of the proof of [13], Proposition 2.1, we have the following.

Lemma 2.2

Let \(s\in \mathbb {R}\), \(\phi, \psi_{1}, \psi_{2}, \ldots, \psi_{L}\in H^{s}(\mathbb {R}^{d})\). Then \(X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) is a Bessel sequence in \(H^{s}(\mathbb {R}^{d})\) with Bessel bound B if and only if

$$ \sum_{k\in \mathbb {Z}^{d}}\bigl\vert \langle g, \phi_{0,k}\rangle\bigr\vert ^{2}+\sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}}\bigl\vert \bigl\langle g, \psi_{l, j, k}^{s} \bigr\rangle \bigr\vert ^{2}\leq B \Vert g\Vert ^{2}_{H^{-s}(\mathbb {R}^{d})} \quad \textit{for } g\in H^{-s} \bigl(\mathbb {R}^{d}\bigr). $$
(2.3)

Lemma 2.3

Let \(s\in \mathbb {R}\), \(\phi, \psi_{1}, \psi_{2}, \ldots, \psi_{L}\in H^{s}(\mathbb {R}^{d})\). Suppose that \(X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) is a Bessel sequence in \(H^{s}(\mathbb {R}^{d})\) with Bessel bound B, then

$$ \bigl\vert \hat{\phi}(\cdot)\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}2^{-2js} \bigl\vert \hat{\psi}_{l}\bigl(2^{-j}\cdot\bigr)\bigr\vert ^{2}\leq B\bigl(1+\Vert \cdot \Vert ^{2} \bigr)^{-s} $$
(2.4)

holds a.e. on \(\mathbb {R}^{d}\).

Proof

Since \(X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) is a Bessel sequence in \(H^{s}(\mathbb {R}^{d})\) with Bessel bound B, by Lemma 2.2, we have

$$ \sum_{k\in \mathbb {Z}^{d}}\bigl\vert \langle g, \phi_{0,k}\rangle\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}} \bigl\vert \bigl\langle g, \psi_{l, j, k}^{s}\bigr\rangle \bigr\vert ^{2}\leq B \Vert g\Vert _{H^{-s}(\mathbb {R}^{d})}^{2} \quad \mbox{for } g\in H^{-s} \bigl(\mathbb {R}^{d}\bigr). $$
(2.5)

By Lemma 2.1 and an argument similar to that of [6], Theorem 1, we get

$$\begin{aligned} &\sum_{k\in \mathbb {Z}^{d}}\bigl\vert \langle g, \phi_{0,k}\rangle\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}} \bigl\vert \bigl\langle g, \psi_{l, j, k}^{s}\bigr\rangle \bigr\vert ^{2} \\ &\quad = \int_{\mathbb {R}^{d}}\hat{\phi}(\xi)\overline{\hat{g}(\xi)}\sum _{k\in \mathbb {Z}^{d}} \hat{g}(\xi+k)\overline{\hat{\phi}(\xi+k)}\,d\xi \\ &\quad\quad{} + \sum_{l=1}^{L}\sum _{j=0}^{\infty}2^{-2js} \int_{\mathbb {R}^{d}} \hat{\psi}_{l}\bigl(2^{-j}\xi \bigr)\overline{\hat{g}(\xi)}\sum_{k\in \mathbb {Z}^{d}} \hat{g}\bigl( \xi+2^{j}k\bigr)\overline{\hat{\psi}_{l} \bigl(2^{-j}\xi+k\bigr)}\,d\xi. \end{aligned}$$

It can be rewritten as

$$\begin{aligned} &\sum_{k\in \mathbb {Z}^{d}}\bigl\vert \langle g, \phi_{0,k}\rangle\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}} \bigl\vert \bigl\langle g, \psi_{l, j, k}^{s}\bigr\rangle \bigr\vert ^{2} \\ &\quad = \int_{\mathbb {R}^{d}}\bigl\vert \hat{g}(\xi)\bigr\vert ^{2} \Biggl(\bigl\vert \hat{\phi}(\xi)\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}2^{-2js} \bigl\vert \hat{\psi}_{l}\bigl(2^{-j}\xi\bigr)\bigr\vert ^{2} \Biggr)\,d\xi \\ &\quad\quad{} + \int_{\mathbb {R}^{d}}\overline{\hat{g}(\xi)}\sum _{0\neq k\in \mathbb {Z}^{d}} \hat{g}(\xi+k) \\ &\quad\quad{}\times \Biggl(\hat{\phi}(\xi) \overline{\hat{ \phi}(\xi+k)}+ \sum_{l=1}^{L}\sum _{j=0}^{\kappa(k)}2^{-2js}\hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\psi}_{l} \bigl(2^{-j}(\xi+k)\bigr)} \Biggr)\,d\xi \end{aligned}$$
(2.6)

by the definition of κ.

Suppose (2.4) does not hold. Then there exists \(E\subset \mathbb {R}^{d}\) with \(\vert E\vert >0\) such that

$$\bigl\vert \hat{\phi}(\cdot)\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}2^{-2js} \bigl\vert \hat{\psi}_{l}\bigl(2^{-j}\cdot\bigr)\bigr\vert ^{2}>B\bigl(1+\Vert \cdot \Vert ^{2} \bigr)^{-s} \quad \mbox{on } E, $$

and thus

$$\bigl\vert \hat{\phi}(\cdot)\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}2^{-2js} \bigl\vert \hat{\psi}_{l}\bigl(2^{-j}\cdot\bigr)\bigr\vert ^{2}>B\bigl(1+\Vert \cdot \Vert ^{2} \bigr)^{-s} $$

on some \(E'=E\cap ( [0, 1)^{d}+k_{0} )\) with \(\vert E'\vert >0\) and \(k_{0} \in \mathbb {Z}^{d}\). Take g such that \(\hat{g}(\cdot)=(1+ \Vert \cdot \Vert ^{2})^{s/2}\chi_{E'}\) in (2.6), then we obtain

$$\sum_{k\in \mathbb {Z}^{d}}\bigl\vert \langle g, \phi_{0,k}\rangle\bigr\vert ^{2}+ \sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}} \bigl\vert \bigl\langle g, \psi_{l, j, k}^{s}\bigr\rangle \bigr\vert ^{2}>B\bigl\vert E'\bigr\vert =B\Vert g\Vert _{H^{-s}(\mathbb {R}^{d})}^{2}, $$

contradicting (2.5). □

3 The characterization of nonhomogeneous wavelet dual frames in Sobolev spaces

This section is devoted to characterizing nonhomogeneous wavelet dual frames in \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\). The following theorem provides us with a characterization via a pair of equations.

Theorem 3.1

Let \(s\in \mathbb {R}\), \(\phi, \psi_{1}, \psi_{2}, \ldots, \psi_{L}\in H^{s}(\mathbb {R}^{d})\) and \(\tilde{\phi}, \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi}_{L}\in H^{-s}(\mathbb {R}^{d})\). Define wavelet systems \(X^{s}(\phi ; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) and \(X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi}_{L})\) as in (1.1) and (1.2), respectively. Suppose that \(X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L})\) is a Bessel sequence in \(H^{s}(\mathbb {R}^{d})\), and \(X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \ldots , \tilde{\psi}_{L})\) is a Bessel sequence in \(H^{-s}(\mathbb {R}^{d})\). Then \((X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L}), X^{-s}(\tilde {\phi}; \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi }_{L}))\) is a pair of dual frames in \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\) if and only if, for every \(k\in \mathbb {Z}^{d}\),

$$ \hat{\phi}(\cdot)\overline{\hat{\tilde{\phi}}(\cdot+k)}+ \sum _{l=1}^{L}\sum_{j=0}^{\kappa(k)} \hat{\psi}_{l}\bigl(2^{-j}\cdot\bigr) \overline{\hat{\tilde{ \psi}}_{l}\bigl(2^{-j}(\cdot+k)\bigr)} =\delta_{0,k} \quad \textit{a.e. on } \mathbb {R}^{d}. $$
(3.1)

Proof

By the definition, \((X^{s}(\phi; \psi_{1}, \psi_{2}, \ldots, \psi_{L}), X^{-s}(\tilde{\phi}; \tilde{\psi}_{1}, \tilde{\psi}_{2}, \ldots, \tilde{\psi}_{L}))\) is a pair of dual frames for \((H^{s}(\mathbb {R}^{d}), H^{-s}(\mathbb {R}^{d}))\) if and only if

$$\begin{aligned} &\sum_{k\in \mathbb {Z}^{d}}\langle f, \tilde{ \phi}_{0,k} \rangle \langle \phi_{0,k}, g\rangle+\sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}} \bigl\langle f, \tilde{ \psi}_{l,j,k}^{-s} \bigr\rangle \bigl\langle \psi _{l,j,k}^{ s}, g\bigr\rangle \\ &\quad =\langle f, g\rangle,\quad f\in H^{s}\bigl(\mathbb {R}^{d}\bigr),\, g\in H^{-s}\bigl(\mathbb {R}^{d}\bigr). \end{aligned}$$
(3.2)

By the Plancherel theorem and Lemma 2.1, we deduce that

$$\begin{aligned} &\sum_{k\in \mathbb {Z}^{d}}\bigl\langle f, \tilde{\phi}(\cdot-k) \bigr\rangle \bigl\langle \phi(\cdot-k), g\bigr\rangle +\sum _{l=1}^{L}\sum_{j=0}^{\infty}\sum_{k\in \mathbb {Z}^{d}}\bigl\langle f, \tilde{ \psi}_{l,j,k}^{-s}\bigr\rangle \bigl\langle \psi_{l,j,k}^{s}, g\bigr\rangle \\ &\quad = \int_{\mathbb {T}^{d}} \biggl(\sum_{k\in \mathbb {Z}^{d}}\hat{f}( \xi+k)\overline {\hat{\tilde{\phi}}(\xi+k)} \biggr) \biggl(\sum _{k\in \mathbb {Z}^{d}}\hat{\phi}(\xi+k)\overline{\hat{g}(\xi +k)} \biggr)\,d\xi \\ &\quad\quad{} + \sum_{l=1}^{L}\sum _{j=0}^{\infty}2^{jd} \int_{\mathbb {T}^{d}} \biggl(\sum_{k\in \mathbb {Z}^{d}}\hat{f} \bigl(2^{j}(\xi+k)\bigr) \overline{\hat{\tilde{\psi}}_{l}( \xi+k)} \biggr) \biggl(\sum_{k\in \mathbb {Z}^{d}}\hat{ \psi}_{l}(\xi+k) \overline{\hat{g}\bigl(2^{j}(\xi+k)\bigr)} \biggr)\,d\xi \\ &\quad = \int_{\mathbb {R}^{d}}\sum_{k\in \mathbb {Z}^{d}} \hat{f}(\xi+k) \overline{\hat{\tilde{\phi}}(\xi+k)} \hat{\phi}(\xi)\overline{\hat{g}(\xi)}\,d\xi \\ &\quad\quad{} + \sum_{l=1}^{L}\sum _{j=0}^{\infty}2^{jd} \int_{\mathbb {R}^{d}} \sum_{k\in \mathbb {Z}^{d}}\hat{f} \bigl(2^{j}(\xi+k)\bigr) \overline{\hat{\tilde{\psi}}_{l}( \xi+k)}\hat{\psi}_{l}(\xi) \overline{\hat{g}\bigl(2^{j}\xi \bigr)}\,d\xi \\ &\quad = \int_{\mathbb {R}^{d}}\hat{f}(\xi)\overline{\hat{g}(\xi)} \Biggl( \hat{ \phi}(\xi)\overline{\hat{\tilde{\phi}}(\xi)} +\sum_{l=1}^{L} \sum_{j=0}^{\infty}\hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}\xi\bigr)} \Biggr)\,d\xi \\ &\quad\quad{} + \int_{\mathbb {R}^{d}}\overline{\hat{g}(\xi)} \Biggl(\sum _{0\neq k\in \mathbb {Z}^{d}}\hat{f}(\xi+k)\hat{\phi}(\xi) \overline{\hat{\tilde{ \phi}}(\xi+k)} \\ &\quad\quad{} +\sum_{l=1}^{L}\sum _{j=0}^{\infty}\sum_{0\neq k\in \mathbb {Z}^{d}} \hat{f}\bigl(\xi+2^{j}k\bigr) \hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}\xi+k\bigr)} \Biggr)\,d\xi \\ &\quad = \int_{\mathbb {R}^{d}}\hat{f}(\xi)\overline{\hat{g}(\xi)} \Biggl( \hat{ \phi}(\xi)\overline{\hat{\tilde{\phi}}(\xi)} +\sum_{l=1}^{L} \sum_{j=0}^{\infty}\hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}\xi\bigr)} \Biggr)\,d\xi \\ &\quad\quad{} + \int_{\mathbb {R}^{d}}\overline{\hat{g}(\xi)} \sum _{0\neq k\in \mathbb {Z}^{d}}\hat{f}(\xi+k) \Biggl( \hat{\phi}(\xi)\overline{\hat{ \tilde{\phi}}(\xi+k)} +\sum_{l=1}^{L}\sum _{j=0}^{\kappa(k)} \hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}(\xi+k)\bigr)} \Biggr)\,d\xi. \end{aligned}$$

And thus (3.2) can be rewritten as

$$\begin{aligned} & \int_{\mathbb {R}^{d}}\hat{f}(\xi)\overline{\hat{g}(\xi)} \Biggl( \hat{ \phi}(\xi)\overline{\hat{\tilde{\phi}}(\xi)} +\sum_{l=1}^{L} \sum_{j=0}^{\infty}\hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}\xi\bigr)} \Biggr)\,d\xi \\ &\quad \quad{} + \int_{\mathbb {R}^{d}}\overline{\hat{g}(\xi)} \sum _{0\neq k\in \mathbb {Z}^{d}}\hat{f}(\xi+k) \Biggl( \hat{\phi}(\xi)\overline{\hat{ \tilde{\phi}}(\xi+k)} +\sum_{l=1}^{L}\sum _{j=0}^{\kappa(k)} \hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}(\xi+k)\bigr)} \Biggr)\,d\xi \\ &\quad = \int_{\mathbb {R}^{d}}\hat{f}(\xi)\overline{\hat{g}(\xi)}\,d\xi. \end{aligned}$$
(3.3)

Obviously, (3.1) implies (3.3). To finish the proof, next we prove the converse implication.

Suppose (3.3) holds. By Lemma 2.3 and the Cauchy-Schwarz inequality, the series

$$\hat{\phi}(\cdot)\overline{\hat{\tilde{\phi}}(\cdot+k)}+ \sum _{l=1}^{L}\sum_{j=0}^{\kappa(k)} \hat{\psi}_{l}\bigl(2^{-j}\cdot\bigr) \overline{\hat{\tilde{ \psi}}_{l}\bigl(2^{-j}(\cdot+k)\bigr)} $$

with \(k\in \mathbb {Z}^{d}\) converges absolutely a.e. on \(\mathbb {R}^{d}\) and belongs to \(L^{\infty}(\mathbb {R}^{d})\), and almost all points in \(\mathbb {R}^{d}\) are Lebesgue points. Let \(\xi_{0}\in \mathbb {R}^{d}\) be such a point. For \(0<\epsilon<\frac{1}{2}\), take f and g such that

$$\hat{f}(\cdot)=\frac{ (1+\Vert \cdot \Vert ^{2} )^{-s/2}\chi _{B(\xi_{0},\epsilon)}}{ \sqrt{\vert B(\xi_{0},\epsilon)\vert }} \quad \mbox{and}\quad \hat{g}(\cdot)=\frac{ (1+\Vert \cdot \Vert ^{2} )^{s/2} \chi_{B(\xi_{0},\epsilon)}}{ \sqrt{\vert B(\xi_{0},\epsilon)\vert }} $$

in (3.3), where \(B(\xi_{0},\epsilon)=\{\xi\in \mathbb {R}^{d}: \vert \xi-\xi_{0}\vert <\epsilon\} \). Then

$$\frac{1}{\vert B(\xi_{0},\epsilon)\vert } \int_{B(\xi_{0},\epsilon)} \Biggl(\hat{\phi}(\xi)\overline{\hat{\tilde{\phi}}( \xi)}+ \sum_{l=1}^{L}\sum _{j=0}^{\infty}\hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}\xi\bigr)} \Biggr)\,d\xi =1, $$

letting \(\epsilon\to0\) and applying the Lebesgue differentiation theorem, we obtain

$$\hat{\phi}(\xi_{0})\overline{\hat{\tilde{\phi}}(\xi_{0})}+ \sum_{l=1}^{L}\sum _{j=0}^{\infty}\hat{\psi}_{l} \bigl(2^{-j}\xi_{0}\bigr) \overline{\hat{\tilde{ \psi}}_{l}\bigl(2^{-j}\xi_{0}\bigr)}=1. $$

For \(0\neq k_{0}\in \mathbb {Z}^{d}\), take f and g such that

$$\hat{f}(\cdot+k_{0})=\frac{ (1+\Vert \cdot \Vert ^{2} )^{-s/2}\chi _{B(\xi_{0},\epsilon)}}{ \sqrt{\vert B(\xi_{0},\epsilon)\vert }} \quad \mbox{and}\quad \hat{g}(\cdot)= \frac{ (1+\Vert \cdot \Vert ^{2} )^{s/2} \chi_{B(\xi_{0},\epsilon)}}{ \sqrt{\vert B(\xi_{0},\epsilon)\vert }} $$

in (3.3), where \(0<\epsilon<\frac{1}{2}\). Then

$$\frac{1}{\vert B(\xi_{0},\epsilon)\vert } \int_{B(\xi_{0},\epsilon)} \Biggl(\hat{\phi}(\xi)\overline{\hat{\tilde{\phi}}( \xi+k_{0})} +\sum_{l=1}^{L}\sum _{j=0}^{\kappa(k_{0})} \hat{\psi}_{l} \bigl(2^{-j}\xi\bigr) \overline{\hat{\tilde{\psi}}_{l} \bigl(2^{-j}(\xi+k_{0})\bigr)} \Biggr)\,d\xi=0, $$

letting \(\epsilon\to0\) and applying the Lebesgue differentiation theorem, we obtain

$$\hat{\phi}(\xi_{0})\overline{\hat{\tilde{\phi}}(\xi_{0}+k_{0})} +\sum_{l=1}^{L}\sum _{j=0}^{\kappa(k_{0})} \hat{\psi}_{l} \bigl(2^{-j}\xi_{0}\bigr) \overline{\hat{\tilde{ \psi}}_{l}\bigl(2^{-j}(\xi_{0}+k_{0}) \bigr)}=0. $$

By the arbitrariness of \(\xi_{0}\) and \(k_{0}\), we obtain (3.1). □

References

  1. Atreas, N, Melas, A, Stavropoulos, T: Affine dual frames and extension principles. Appl. Comput. Harmon. Anal. 36, 51-62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bownik, M: Tight frames of multidimensional wavelets. J. Fourier Anal. Appl. 3, 525-542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bownik, M: A characterization of affine dual frames in \(L^{2}(\mathbb {R}^{n})\). Appl. Comput. Harmon. Anal. 8, 203-221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christensen, O, Kim, HO, Kim, RY: On Parseval wavelet frames with two or three generators via the unitary extension principle. Can. Math. Bull. 57, 254-263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, O, Kim, HO, Kim, RY: On extensions of wavelet systems to dual pairs of frames. Adv. Comput. Math. 42, 489-503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chui, CK, Shi, X: Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal. 24, 263-277 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I, Han, B, Ron, A, Shen, Z: Framelets, MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1-46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I, Han, B: Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20, 325-352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, B: On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4, 380-413 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ehler, M: The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces. Jaen J. Approx. 2, 193-214 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Han, B: Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Appl. Comput. Harmon. Anal. 29, 330-353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, B: Nonhomogeneous wavelet systems in high dimensions. Appl. Comput. Harmon. Anal. 32, 169-196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, B, Shen, Z: Dual wavelet frames and Riesz bases in Sobolev spaces. Constr. Approx. 29, 369-406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, B, Shen, Z: Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames. Isr. J. Math. 172, 371-398 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The article is supported by the National Natural Science Foundation of China (Grant No. 11271037). The authors would like to thank the reviewers for their suggestions which greatly improved the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Zhang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JP., Li, YZ. A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces. J Inequal Appl 2016, 288 (2016). https://doi.org/10.1186/s13660-016-1232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-016-1232-8

MSC

Keywords