Skip to main content

On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function

Abstract

By applying the weight functions, the technique of real analysis and Hermite-Hadamard’s inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function with the best possible constant factor expressed by the gamma function is given. The more accurate equivalent forms, the operator expressions with the norm, the reverses, and some particular cases are considered.

1 Introduction

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),g(y)\geq 0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\Vert f\Vert _{p} =(\int_{0}^{\infty }f^{p}(x)\,dx)^{\frac{1}{p}}>0\), \(\Vert g\Vert _{q}>0\), and we have the following Hardy-Hilbert integral inequality (cf. [1]):

$$ \int_{0}^{\infty } \int_{0}^{\infty }\frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin (\pi /p)} \Vert f\Vert _{p}\Vert g\Vert _{q}, $$
(1)

where the constant factor \(\frac{\pi }{\sin (\pi /p)}\) is the best possible. If \(a_{m},b_{n}\geq 0\), \(a=\{a_{m}\}_{m=1}^{\infty }\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty }\in l^{q}\), \(\Vert a\Vert _{p}=(\sum_{m=1}^{\infty }a_{m}^{p})^{\frac{1}{p}}>0\), \(\Vert b\Vert _{q}>0\), then we have the following discrete analogy of (1) with the same best possible constant \(\frac{\pi }{\sin (\pi /p)}\) (cf. [1]):

$$ \sum_{m=1}^{\infty }\sum _{n=1}^{\infty }\frac{a_{m}b_{n}}{m+n}< \frac{\pi }{\sin (\pi /p)}\Vert a\Vert _{p}\Vert b\Vert _{q}. $$
(2)

Inequalities (1) and (2) are important in analysis and its applications (cf. [15]).

If \(\mu _{i},\upsilon _{j}>0\) (\(i,j\in \mathbf{N}=\{1,2,\ldots \}\)),

$$ U_{m}:=\sum_{i=1}^{m}\mu _{i},\qquad V_{n}:=\sum_{j=1}^{n} \nu _{j} (m,n\in \mathbf{N}), $$
(3)

then we have the following Hardy-Hilbert-type inequality (cf. [1], Theorem 321, replacing \(\mu _{m}^{1/q}a_{m}\) and \(\upsilon _{n}^{1/p}b_{n}\) by \(a_{m}\) and \(b_{n}\)):

$$ \sum_{m=1}^{\infty }\sum _{n=1}^{\infty }\frac{a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi }{\sin (\frac{\pi }{p})} \Biggl( \sum_{m=1}^{\infty }\frac{a_{m}^{p}}{\mu _{m}^{p-1}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty } \frac{b_{n}^{q}}{\nu _{n}^{q-1}} \Biggr) ^{\frac{1}{q}}. $$
(4)

For \(\mu _{i}=\upsilon _{j}=1\) (\(i,j\in \mathbf{N}\)), inequality (4) reduces to (2).

Note

The authors of [1] did not prove that (4) is valid with the best possible constant factor.

In 1998, by introducing an independent parameter \(\lambda \in (0,1]\), Yang [6] gave an extension of (1) with the kernel \(\frac{1}{(x+y)^{\lambda }}\) for \(p=q=2\). Following [6], Yang [5] gave some extensions of (1) and (2) as follows:

If \(\lambda _{1},\lambda _{2}\in \mathbf{R}\), \(\lambda _{1}+\lambda _{2}=\lambda \), \(k_{\lambda }(x,y)\) is a non-negative homogeneous function of degree −λ, with \(k(\lambda _{1})=\int_{0}^{\infty }k_{\lambda }(t,1)t^{\lambda _{1}-1}\,dt\in \mathbf{R}_{+}\), \(\phi (x)=x^{p(1-\lambda _{1})-1}\), \(\psi (x)=x^{q(1-\lambda _{2})-1}\), \(f(x),g(y)\geq 0\),

$$ f\in L_{p,\phi }(\mathbf{R}_{+})= \biggl\{ f;\Vert f\Vert _{p,\phi }:=\biggl( \int_{0}^{\infty }\phi (x)\bigl\vert f(x)\bigr\vert ^{p}\,dx\biggr)^{\frac{1}{p}}< \infty \biggr\} , $$

\(g\in L_{q,\psi }(\mathbf{R}_{+})\), \(\Vert f\Vert _{p,\phi }, \Vert g\Vert _{q,\psi }>0\), then we have

$$ \int_{0}^{\infty } \int_{0}^{\infty }k_{\lambda }(x,y)f(x)g(y)\,dx\,dy< k( \lambda _{1})\Vert f\Vert _{p,\phi }\Vert g\Vert _{q,\psi }, $$
(5)

where the constant factor \(k(\lambda _{1})\) is the best possible. Moreover, if \(k_{\lambda }(x,y)\) keeps a finite value and \(k_{\lambda }(x,y)x^{\lambda _{1}-1}\) (\(k_{\lambda }(x,y)y^{\lambda _{2}-1}\)) is decreasing with respect to \(x>0\) (\(y>0\)), then, for \(a_{m,}b_{n}\geq 0\),

$$ a\in l_{p,\phi }= \Biggl\{ a;\Vert a\Vert _{p,\phi }:=\Biggl( \sum_{n=1}^{\infty }\phi (n)\vert a_{n}\vert ^{p}\Biggr)^{\frac{1}{p}}< \infty \Biggr\} , $$

\(b=\{b_{n}\}_{n=1}^{\infty }\in l_{q,\psi }\), \(\Vert a\Vert _{p,\phi }, \Vert b\Vert _{q,\psi }>0\), we have

$$ \sum_{m=1}^{\infty }\sum _{n=1}^{\infty }k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda _{1})\Vert a\Vert _{p,\phi }\Vert b\Vert _{q,\psi }, $$
(6)

where the constant factor \(k(\lambda _{1})\) is still the best possible.

In 2015, by adding some conditions, Yang [7] gave an extension of (4) as follows:

$$\begin{aligned} &{\sum_{m=1}^{\infty }\sum _{n=1}^{\infty }\frac{a_{m}b_{n}}{(U_{m}+V_{n})^{\lambda }}} \\ &{\quad< B(\lambda _{1},\lambda _{2}) \Biggl( \sum _{m=1}^{\infty }\frac{U_{m}^{p(1-\lambda _{1})-1}a_{m}^{p}}{\mu _{m}^{p-1}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty }\frac{V_{n}^{q(1-\lambda _{2})-1}b_{n}^{q}}{\nu _{n}^{q-1}} \Biggr) ^{\frac{1}{q}},} \end{aligned}$$
(7)

where the constant \(B(\lambda _{1},\lambda _{2})\) is still the best possible.

Some other results including multidimensional Hilbert-type inequalities are provided by [830].

About the topic of half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors are the best possible. However, Yang [31] gave a result with the kernel \(\frac{1}{(1+nx)^{\lambda }}\) by introducing a variable and proved that the constant factor is the best possible. In 2011 Yang [32] gave the following half-discrete Hardy-Hilbert inequality with the best possible constant factor \(B ( \lambda _{1},\lambda _{2} ) \):

$$ \int_{0}^{\infty }f ( x ) \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{ ( x+n ) ^{\lambda }} \Biggr] \,dx< B ( \lambda _{1},\lambda _{2} ) \Vert f\Vert _{p,\phi } \Vert a\Vert _{q,\psi }, $$
(8)

where \(\lambda _{1}>0\), \(0<\lambda _{2}\leq 1\), \(\lambda _{1}+\lambda _{2}=\lambda \). Zhong et al. ([17, 33, 34]) investigated several half-discrete Hilbert-type inequalities with particular kernels. Applying weight functions, a half-discrete Hilbert-type inequality with a general homogeneous kernel of degree \(-\lambda \in \mathbf{R}\) and a best constant factor \(k ( \lambda _{1} ) \) are obtained as follows:

$$ \int_{0}^{\infty }f(x)\sum_{n=1}^{\infty }k_{\lambda }(x,n)a_{n}\,dx< k( \lambda _{1})\Vert f\Vert _{p,\phi }\Vert a\Vert _{q,\psi }, $$
(9)

which is an extension of (8) (cf. [35]). At the same time, a half-discrete Hilbert-type inequality with a general non-homogeneous kernel and a best constant factor are given by Yang [36]. In 2012-2014, Yang et al. published three books [37, 38] and [39] concerned with building the theory of half-discrete Hilbert-type inequalities.

In this paper, by applying weight functions, the technique of real analysis, and Hermite-Hadamard’s inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function with a best possible constant factor expressed by the gamma function is given, which is similar to (7) and an extension of (9) in the following particular kernel:

$$ k_{0}(x,n)=\frac{1}{e^{\alpha (\frac{n}{x})^{\gamma }}}\quad (\alpha >0,0< \gamma \leq 1). $$

Furthermore, the more accurate equivalent forms, the operator expressions with the norm, the reverses, and some particular cases are considered.

2 An example and some lemmas

In the following, we agree that \(\nu _{n}>0\), \(0\leq\tau _{n}\leq \frac{\nu _{n}}{2}\) (\(n\in \mathbf{N}\)), \(V_{n}=\sum_{i=1}^{n}\nu _{i}\), \(\mu (t) \) is a positive continuous function in \(\mathbf{R}_{+}=(0,\infty )\),

$$ U(0):=0;\qquad U(x):= \int_{0}^{x}\mu (t)\,dt< \infty\quad \bigl(x\in (0,\infty )\bigr), $$

\(\nu (t):=\nu _{n}\), \(t\in (n-\frac{1}{2},n+\frac{1}{2}]\) (\(n\in \mathbf{N}\)), and

$$ V\biggl(\frac{1}{2}\biggr):=0;\qquad V(y):= \int_{\frac{1}{2}}^{y}\nu (t)\,dt\quad \biggl(y\in \biggl(\frac{1}{2},\infty \biggr)\biggr), $$

\(p\neq 0,1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\delta \in \{-1,1\}\), \(f(x),a_{n}\geq 0\) (\(x\in \mathbf{R}_{+}\), \(n\in \mathbf{N}\)), \(\Vert f\Vert _{p,\Phi _{\delta }}=(\int_{0}^{\infty }\Phi _{\delta }(x)f^{p}(x)\,dx)^{\frac{1}{p}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}=(\sum_{n=1}^{\infty }\widehat{\Psi }(n)b_{n}^{q})^{\frac{1}{q}}\), where

$$ \Phi _{\delta }(x):=\frac{U^{p(1-\delta \sigma )-1}(x)}{\mu ^{p-1}(x)}\quad (x\in \mathbf{R}_{+}),\qquad \widehat{\Psi }(n):=\frac{(V_{n}-\tau _{n})^{q(1-\sigma )-1}}{\nu _{n}^{q-1}}\quad (n\in \mathbf{N}). $$

Example 1

For \(\alpha >0\), \(0<\gamma \), \(\sigma \leq 1\), we set \(h(t)=\frac{1}{e^{\alpha t^{\gamma }}}\) (\(t\in \mathbf{R}_{+}\)).

(i) Setting \(u=\alpha t^{\gamma }\), we find

$$ k(\sigma ):= \int_{0}^{\infty }\frac{t^{\sigma -1}}{e^{\alpha t^{\gamma }}}\,dt=\frac{1}{\gamma \alpha ^{\sigma /\gamma }} \int_{0}^{\infty }e^{-u}u^{\frac{\sigma }{\gamma }-1}\,du= \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\in \mathbf{R}_{+}, $$
(10)

where

$$ \Gamma (y):= \int_{0}^{\infty }e^{-v}v^{y-1}\,dv \quad (y>0) $$

is called the gamma function (cf. [40]).

(ii) We obtain, for \(t>0\), \(\alpha >0\), \(0<\gamma \leq 1\), \(h(t)=\frac{1}{e^{\alpha t^{\gamma }}}>0\), \(h^{\prime }(t)=-\alpha \gamma t^{\gamma -1}\frac{1}{e^{\alpha t^{\gamma }}}<0\) and

$$ h^{\prime \prime }(t)=-\alpha \gamma (\gamma -1)t^{\gamma -1} \frac{1}{e^{\alpha t^{\gamma }}}+\bigl(\alpha \gamma t^{\gamma -1}\bigr)^{2} \frac{1}{e^{\alpha t^{\gamma }}}>0. $$

(iii) If \(g(u)>0\), \(g^{\prime }(u)<0\), \(g^{\prime \prime }(u)>0\), then we find that, for \(y\in (n-\frac{1}{2},n+\frac{1}{2})\), \(g(V(y))>0\), \(\frac{d}{dy}g(V(y)) =g^{\prime }(V(y))\nu _{n}<0\), and

$$ \frac{d^{2}}{dy^{2}}g\bigl(V(y)\bigr)=g^{\prime \prime } \bigl(V(y)\bigr)\nu _{n}^{2}>0\quad (n\in \mathbf{N}); $$

For \(g_{1}(u)>0\), \(g_{1}^{\prime }(u)<0\), \(g_{1}^{\prime \prime }(u)>0\), \(g_{2}(u)>0\), \(g_{2}^{\prime }(u)\leq 0\), \(g_{2}^{\prime \prime }(u)\geq 0\) (\(u>0\)), we obtain \(g_{1}(u)g_{2}(u)>0\), \((g_{1}(u)g_{2}(u))^{\prime }=g_{1}^{\prime }(u)g_{2}(u)+g_{1}(u)g_{2}^{\prime }(u)<0\), and

$$ \bigl(g_{1}(u)g_{2}(u)\bigr)^{\prime \prime }=g_{1}^{\prime \prime }(u)g_{2}(u)+2g_{1}^{\prime }(u)g_{2}^{\prime }(u)+g_{1}(u)g_{2}^{\prime \prime }(u)>0\quad (u>0). $$

(iv) For \(\alpha >0\), \(0<\gamma \), \(\sigma \leq 1\), \(c>0\), we have \(h(cV(y))V^{\sigma -1}(y)>0\), \(\frac{d}{dy}(h(cV(y))V^{\sigma -1}(y))<0\), and

$$ \frac{d^{2}}{dy^{2}}\bigl(h\bigl(cV(y)\bigr)V^{\sigma -1}(y)\bigr)>0\quad \biggl(y \in \biggl(n-\frac{1}{2},n+\frac{1}{2}\biggr),n\in \mathbf{N} \biggr). $$

Then by Hermite-Hadamard’s inequality (cf. [41]), we have

$$ h\bigl(cV(n)\bigr)V^{\sigma -1}(n)< \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}h\bigl(cV(y)\bigr)V^{\sigma -1}(y)\,dy\quad (n\in \mathbf{N}). $$
(11)

Lemma 1

If \(g(t)\) (>0) is a strictly decreasing continuous function in \((\frac{1}{2},\infty )\), which is strictly convex satisfying \(\int_{\frac{1}{2}}^{\infty }g(t)\,dt\in \mathbf{R}_{+}\), then we have

$$ \int_{1}^{\infty }g(t)\,dt< \sum _{n=1}^{\infty }g(n)< \int_{\frac{1}{2}}^{\infty }g(t)\,dt. $$
(12)

Proof

By Hermite-Hadamard’s inequality and the decreasing property, we have

$$ \int_{n}^{n+1}g(t)\,dt< \int_{n}^{n+1}g(n)\,dt=g(n)< \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}g(t)\,dt\quad (n\in \mathbf{N}), $$
(13)

and, for \(n_{0}\in \mathbf{N}\), it follows that

$$\begin{aligned} &{\int_{1}^{n_{0}+1}g(t)\,dt < \sum _{n=1}^{n_{0}}g(n)< \sum_{n=1}^{n_{0}} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}g(t)\,dt= \int_{\frac{1}{2}}^{n_{0}+\frac{1}{2}}g(t)\,dt,} \\ &{\int_{n_{0}+1}^{\infty }g(t)\,dt \leq \sum _{n=n_{0}+1}^{\infty }g(n)\leq \int_{n_{0}+\frac{1}{2}}^{\infty }g(t)\,dt< \infty . } \end{aligned}$$

Hence, choosing plus for the above two inequalities, we have (12). □

Lemma 2

If \(\alpha >0\), \(0<\gamma \), \(\sigma \leq 1\), define the following weight coefficients:

$$\begin{aligned} &{\omega _{\delta }(\sigma ,x) :=\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{\delta \sigma }(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }},\quad x\in \mathbf{R}_{+}, } \end{aligned}$$
(14)
$$\begin{aligned} &{\varpi _{\delta }(\sigma ,n) := \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{\sigma }\mu (x)}{U^{1-\delta \sigma }(x)}\,dx,\quad n \in \mathbf{N}.} \end{aligned}$$
(15)

Then we have the following inequalities:

$$\begin{aligned} &{\omega _{\delta }(\sigma ,x) < k(\sigma )\quad (x\in \mathbf{R}_{+}),} \end{aligned}$$
(16)
$$\begin{aligned} &{\varpi _{\delta }(\sigma ,n) \leq k(\sigma )\quad (n\in \mathbf{N}),} \end{aligned}$$
(17)

where \(k(\sigma )\) is indicated by (10).

Proof

Since \(V_{n}-\tau _{n}\geq \int_{\frac{1}{2}}^{n+\frac{1}{2}}\nu (t)\,dt-\frac{\nu _{n}}{2}=\int_{\frac{1}{2}}^{n}\nu (t)\,dt=V(n)\), and, for \(t\in (n-\frac{1}{2},n+\frac{1}{2})\), \(\nu _{n}=V^{\prime }(t)\), by (11) (for \(c=U^{\delta }(x)\)) and (12), we have

$$\begin{aligned} &{\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{\delta \sigma }(x)}{(V_{n}-\tau _{n})^{1-\sigma }}\leq \frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(n)}}\frac{U^{\delta \sigma }(x)}{V^{1-\sigma }(n)}} \\ &{\phantom{\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{\delta \sigma }(x)}{(V_{n}-\tau _{n})^{1-\sigma }}}< \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(t)}}\frac{U^{\delta \sigma }(x)}{V^{1-\sigma }(t)}\,dt \quad (n\in \mathbf{N}),} \\ &{\omega _{\delta }(\sigma ,x) < \sum_{n=1}^{\infty } \nu _{n} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(t)}}\frac{U^{\delta \sigma }(x)}{V^{1-\sigma }(t)}\,dt }\\ &{\phantom{\omega _{\delta }(\sigma ,x)}=\sum_{n=1}^{\infty } \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(t)}}\frac{U^{\delta \sigma }(x)V^{\prime }(t)}{V^{1-\sigma }(t)}\,dt }\\ &{\phantom{\omega _{\delta }(\sigma ,x)}= \int_{\frac{1}{2}}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(t)}}\frac{U^{\delta \sigma }(x)V^{\prime }(t)}{V^{1-\sigma }(t)}\,dt. } \end{aligned}$$

Setting \(u=U^{\delta }(x)V(t)\), by (10), we find

$$\begin{aligned} \omega _{\delta }(\sigma ,x) < & \int_{U^{\delta }(x)V(\frac{1}{2})}^{U^{\delta }(x)V(\infty )}\frac{1}{e^{\alpha u^{\gamma }}}\frac{U^{\delta \sigma }(x)U^{-\delta }(x)}{(uU^{-\delta }(x))^{1-\sigma }}\,du \\ \leq & \int_{0}^{\infty }\frac{1}{e^{\alpha u^{\gamma }}}u^{\sigma -1}\,du=k( \sigma ). \end{aligned}$$

Hence, (16) follows.

Setting \(u=(V_{n}-\tau _{n})U^{\delta }(x)\) in (15), we find \(du=\delta (V_{n}-\tau _{n})U^{\delta -1}(x)\mu (x)\,dx\) and

$$ \varpi _{\delta }(\sigma ,n)=\frac{1}{\delta } \int_{(V_{n}-\tau _{n})U^{\delta }(0)}^{(V_{n}-\tau _{n})U^{\delta }(\infty )}\frac{1}{e^{\alpha u^{\gamma }}}u^{\sigma -1}\,du. $$

If \(\delta =1\), then

$$ \varpi _{1}(\sigma ,n)= \int_{0}^{(V_{n}-\tau _{n})U(\infty )}\frac{1}{e^{\alpha u^{\gamma }}}u^{\sigma -1}\,du \leq \int_{0}^{\infty }\frac{1}{e^{\alpha u^{\gamma }}}u^{\sigma -1}\,du; $$

if \(\delta =-1\), then

$$ \varpi _{-1}(\sigma ,n)=- \int_{\infty }^{(V_{n}-\tau _{n})U^{-1}(\infty )}\frac{1}{e^{\alpha u^{\gamma }}}u^{\sigma -1}\,du \leq \int_{0}^{\infty }\frac{1}{e^{\alpha u^{\gamma }}}u^{\sigma -1}\,du. $$

Hence, by (10), we have (17). □

Remark 1

(i) We do not need the condition of \(\sigma \leq 1\) in obtaining (17). (ii) If \(U(\infty )=\infty \), then we have

$$ \varpi _{\delta }(\sigma ,n)=k(\sigma )\quad (n\in \mathbf{N}). $$
(18)

For example, we set \(\mu (t)=\frac{1}{(1+t)^{a}}\) (\(t>0\); \(0\leq a\leq 1\)), then for \(x\geq 0\), we find

$$ U(x)= \int_{0}^{x}\frac{dt}{(1+t)^{a}}=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{(1+x)^{1-a}-1}{1-a},&0\leq a< 1, \\ \ln (1+x),&a=1\end{array}\displaystyle \right . < \infty , $$

\(U(0)=0\), and \(U(\infty )=\int_{0}^{\infty }\frac{dt}{(1+t)^{a}}=\infty \).

Lemma 3

If \(\alpha >0\), \(0<\gamma \), \(\sigma \leq 1\), there exists \(n_{0}\in \mathbf{N}\), such that \(\{\nu _{n}\}_{n=n_{0}}^{\infty }\) is decreasing and \(V(\infty )=\infty \), then: (i) for \(x\in \mathbf{R}_{+}\), we have

$$ k(\sigma ) \bigl(1-\theta _{\delta }(\sigma ,x)\bigr)< \omega _{\delta }(\sigma ,x), $$
(19)

where

$$ \theta _{\delta }(\sigma ,x):=\frac{1}{k(\sigma )} \int_{0}^{U^{\delta }(x)V(n_{0}+1)}\frac{u^{\sigma -1}}{e^{\alpha u^{\gamma }}}\,du=O \bigl(\bigl(U(x)\bigr)^{\delta \sigma }\bigr)\in (0,1); $$

(ii) for any \(b>0\), we have

$$ \sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}= \frac{1}{b}\biggl(\frac{1}{\nu _{1}^{b}}+bO(1)\biggr). $$
(20)

Proof

Since \(V_{n}-\tau _{n}\leq V_{n}\leq V_{n+1}-\frac{\nu _{n+1}}{2}=V(n+1)\), and \(\nu _{n}\geq V^{\prime }(t)\) (\(t\in (n,n+1)\); \(n\geq n_{0}\)), by (13), we find

$$\begin{aligned} \omega _{\delta }(\sigma ,x) \geq &\sum_{n=n_{0}}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(n+1)}}\frac{U^{\delta \sigma }(x)\nu _{n+1}}{V^{1-\sigma }(n+1)} \\ =&\sum_{n=n_{0}+1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(n)}} \frac{U^{\delta \sigma }(x)\nu _{n}}{V^{1-\sigma }(n)} \\ >&\sum_{n=n_{0}+1}^{\infty } \int_{n}^{n+1}\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(t)}}\frac{U^{\delta \sigma }(x)V^{\prime }(t)}{V^{1-\sigma }(t)}\,dt \\ =& \int_{n_{0}+1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)V^{\gamma }(t)}}\frac{U^{\delta \sigma }(x)V^{\prime }(t)}{V^{1-\sigma }(t)}\,dt. \end{aligned}$$

Setting \(u=U^{\delta }(x)V(t)\), in view of \(V(\infty )=\infty \), by (10), we find

$$\begin{aligned} \omega _{\delta }(\sigma ,x) >& \int_{U^{\delta }(x)V(n_{0}+1)}^{\infty }\frac{u^{\sigma -1}}{e^{\alpha u^{\gamma }}}\,du=k( \sigma )- \int_{0}^{U^{\delta }(x)V(n_{0}+1)}\frac{u^{\sigma -1}}{e^{\alpha u^{\gamma }}}\,du =k(\sigma ) \bigl(1-\theta _{\delta }(\sigma ,x)\bigr). \end{aligned}$$

We find

$$ 0< \theta _{\delta }(\sigma ,x)\leq \frac{1}{k(\sigma )} \int_{0}^{U^{\delta }(x)V(n_{0}+1)}u^{\sigma -1}\,du=\frac{(U^{\delta }(x)V(n_{0}+1))^{\sigma }}{\sigma k(\sigma )}\quad (x\in \mathbf{R}_{+}), $$

and then (19) follows.

For \(b>0\), we find

$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}\leq \sum_{n=1}^{\infty }\frac{\nu _{n}}{V^{1+b}(n)}= \frac{\nu _{1}}{V^{1+b}(1)}+\sum_{n=2}^{\infty } \frac{\nu _{n}}{V^{1+b}(n)} }\\ &{\phantom{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}}< \frac{2^{1+b}}{\nu _{1}^{b}}+\sum_{n=2}^{\infty } \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{V^{\prime }(x)\,dx}{V^{1+b}(x)}= \frac{2^{1+b}}{\nu _{1}^{b}}+ \int_{\frac{3}{2}}^{\infty }\frac{V^{\prime }(x)\,dx}{V^{1+b}(x)} }\\ &{\phantom{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}}=\frac{2^{1+b}}{\nu _{1}^{b}}+\frac{\nu _{1}^{-b}}{b}=\frac{1}{b} \biggl( \frac{1}{\nu _{1}^{b}}+b\frac{2^{1+b}}{\nu _{1}^{b}} \biggr) , }\\ &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}\geq \sum_{n=n_{0}}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}\geq \sum _{n=n_{0}}^{\infty }\frac{\nu _{n+1}}{V^{1+b}(n+1)} }\\ &{\phantom{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}}=\sum_{n=n_{0}+1}^{\infty }\frac{\nu _{n}}{V^{1+b}(n)}>\sum _{n=n_{0}+1}^{\infty } \int_{n}^{n+1}\frac{V^{\prime }(x)\,dx}{V^{1+b}(x)}= \int_{n_{0}+1}^{\infty }\frac{V^{\prime }(x)\,dx}{V^{1+b}(x)} }\\ &{\phantom{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+b}}}=\frac{1}{bV^{b}(n_{0}+1)}=\frac{1}{b} \biggl( \frac{1}{\nu _{1}^{b}}+b \frac{V^{-b}(n_{0}+1)-\nu _{1}^{-b}}{b} \biggr) . } \end{aligned}$$

Since \(\frac{V^{-b}(n_{0}+1)-\nu _{1}^{-b}}{b}\rightarrow \mathrm{Constant}\) (\(b\rightarrow 0^{+}\)), we have (20). □

Note

For example, \(\nu _{n}=\frac{1}{n^{a}}\) (\(n\in \mathbf{N}\); \(0\leq a\leq 1\)) satisfies the conditions of \(\{\nu _{n}\}_{n=1}^{\infty }\) in Lemma 3 (for \(n_{0}=1\)).

3 Main results and operator expressions

Theorem 1

If \(\alpha >0\), \(0<\gamma \), \(\sigma \leq 1\), then for \(p>1\), \(0<\Vert f\Vert _{p,\Phi _{\delta }}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{I :=\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha U^{\delta\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(21)
$$\begin{aligned} &{J_{1} :=\sum_{n=1}^{\infty } \frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)\,dx}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \biggr] ^{p}< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{\delta }},} \end{aligned}$$
(22)
$$\begin{aligned} &{J_{2}:= \Biggl\{ \int_{0}^{\infty }\frac{\mu (x)}{U^{1-q\delta \sigma }(x)} \Biggl[ \sum_{n=1}^{\infty }\frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }}.} \end{aligned}$$
(23)

Proof

By Hölder’s inequality with weight (cf. [41]), we have

$$\begin{aligned} &{ \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] ^{p}} \\ &{\quad= \biggl[ \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{\frac{1-\delta \sigma }{q}}(x)f(x)}{(V_{n}-\tau _{n})^{\frac{1-\sigma }{p}}\mu ^{\frac{1}{q}}(x)} \frac{(V_{n}-\tau _{n})^{\frac{1-\sigma }{p}}\mu ^{\frac{1}{q}}(x)}{U^{\frac{1-\delta \sigma }{q}}(x)}\,dx \biggr] ^{p}} \\ &{\quad\leq \int_{0}^{\infty }\frac{(V_{n}-\tau _{n} )^{\gamma }}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \biggl[ \frac{U^{\frac{p(1-\delta \sigma )}{q}}(x)f^{p}(x)}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{\frac{p}{q}}(x)} \biggr] \,dx} \\ &{{}\qquad\times \biggl[ \int_{0}^{\infty }\frac{(V_{n}-\tau _{n})^{\gamma }}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(p-1)}\mu (x)}{U^{1-\delta \sigma }(x)}\,dx \biggr] ^{p-1} } \\ &{\quad=\frac{(\varpi _{\delta }(\sigma ,n))^{p-1}}{(V_{n}-\tau _{n})^{p\sigma -1}\nu _{n}} \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}f^{p}(x)}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}\,dx.} \end{aligned}$$
(24)

In view of (17) and the Lebesgue term by term integration theorem (cf. [42]), we find

$$\begin{aligned} J_{1} \leq &\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \Biggl[ \int_{0}^{\infty }\sum_{n=1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \biggl[ \int_{0}^{\infty }\omega _{\delta }(\sigma ,x) \frac{U^{p(1-\delta \sigma )-1}(x)}{\mu ^{p-1}(x)}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$
(25)

Then by (16), we have (22).

By Hölder’s inequality (cf. [41]), we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty } \biggl[ \frac{\nu _{n}^{\frac{1}{p}}}{(V_{n}-\tau _{n})^{\frac{1}{p}-\sigma }} \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] \biggl[ \frac{(V_{n}-\tau _{n})^{\frac{1}{p}-\sigma }a_{n}}{\nu _{n}^{1/p}} \biggr] \\ \leq &J_{1}\Vert a\Vert _{q,\widehat{\Psi }}. \end{aligned}$$
(26)

Then by (22), we have (21). On the other hand, assuming that (21) is valid, we set

$$ a_{n}:=\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}f(x)\,dx \biggr] ^{p-1},\quad n\in \mathbf{N}. $$

Then we find \(J_{1}^{p}=\Vert a\Vert _{q,\widehat{\Psi }}^{q}\). If \(J_{1}=0\), then (22) is trivially valid; if \(J_{1}=\infty \), then (22) remains impossible. Suppose that \(0< J_{1}<\infty \). By (21), we have

$$\begin{aligned} &{\Vert a\Vert _{q,\widehat{\Psi }}^{q} =J_{1}^{p}=I< k( \sigma )\Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},} \\ &{\Vert a\Vert _{q,\widehat{\Psi }}^{q-1} =J_{1}< k(\sigma ) \Vert f\Vert _{p,\Phi _{\delta }}, } \end{aligned}$$

and then (22) follows, which is equivalent to (21).

Still by Hölder’s inequality with weight (cf. [41]), we have

$$\begin{aligned} &{ \Biggl[ \sum_{n=1}^{\infty } \frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}} \\ &{\quad= \Biggl[ \sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\cdot \frac{U^{\frac{1-\delta \sigma }{q}}(x)\nu _{n}^{\frac{1}{p}}}{(V_{n}-\tau _{n})^{\frac{1-\sigma }{p}}}\cdot \frac{(V_{n}-\tau _{n})^{\frac{1-\sigma }{p}}a_{n}}{U^{\frac{1-\delta \sigma }{q}}(x)\nu _{n}^{1/p}} \Biggr] ^{q}} \\ &{\quad\leq \Biggl[ \sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }} \Biggr] ^{q-1}} \\ &{\qquad{}\times \sum_{n=1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{(V_{n}-\tau _{n})^{\frac{q(1-\sigma )}{p}}}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}} \\ &{\quad=\frac{(\omega _{\delta }(\sigma ,x))^{q-1}}{U^{q\delta \sigma -1}(x)\mu (x)}\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}.} \end{aligned}$$
(27)

Then by (16) and the Lebesgue term by term integration theorem (cf. [42]), it follows that

$$\begin{aligned} J_{2} < &\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \int_{0}^{\infty }\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}\,dx \Biggr] ^{\frac{1}{q}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}\,dx \Biggr] ^{\frac{1}{q}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \sum _{n=1}^{\infty }\varpi _{\delta }(\sigma ,n) \frac{(V_{n}-\tau _{n})^{q(1-\sigma )-1}}{\nu _{n}^{q-1}}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(28)

Then by (17), we have (23).

By Hölder’s inequality (cf. [41]), we have

$$\begin{aligned} I =& \int_{0}^{\infty } \biggl( \frac{U^{\frac{1}{q}-\delta \sigma }(x)}{\mu ^{\frac{1}{q}}(x)}f(x) \biggr) \Biggl[ \frac{\mu ^{\frac{1}{q}}(x)}{U^{\frac{1}{q}-\delta \sigma }(x)}\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}a_{n} \Biggr] \,dx \\ \leq &\Vert f\Vert _{p,\Phi _{\delta }}J_{2}. \end{aligned}$$
(29)

Then by (23), we have (21). On the other hand, assuming that (23) is valid, we set

$$ f(x):=\frac{\mu (x)}{U^{1-q\delta \sigma }(x)} \Biggl[ \sum_{n=1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}a_{n} \Biggr] ^{q-1},\quad x\in \mathbf{R}_{+}. $$

Then we find \(J_{2}^{q}=\Vert f\Vert _{p,\Phi _{\delta }}^{p}\). If \(J_{2}=0\), then (23) is trivially valid; if \(J_{2}=\infty \), then (23) keeps impossible. Suppose that \(0< J_{2}<\infty \). By (21), we have

$$ \Vert f\Vert _{p,\Phi _{\delta }}^{p}=J_{2}^{q}=I< k( \sigma )\Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},\qquad \Vert f\Vert _{p,\Phi _{\delta }}^{p-1}=J_{2}< k(\sigma )\Vert a \Vert _{q,\widehat{\Psi }}, $$

and then (23) follows, which is equivalent to (21).

Therefore, (21), (22), and (23) are equivalent. □

Theorem 2

As regards the assumptions of Theorem  1, if there exists \(n_{0}\in \mathbf{N}\), such that \(\{\nu _{n}\}_{n=n_{0}}^{\infty }\) is decreasing and \(U(\infty )=V(\infty )=\infty \), then the constant factor \(k(\sigma )=\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\) in (21), (22), and (23) is the best possible.

Proof

For \(\varepsilon \in (0,q\sigma )\), we set \(\widetilde{\sigma }=\sigma -\frac{\varepsilon }{q}\) (\(\in (0,1)\)), and \(\widetilde{f}=\widetilde{f}(x)\), \(x\in \mathbf{R}_{+}\), \(\widetilde{a}=\{\widetilde{a}_{n}\}_{n=1}^{\infty }\),

$$\begin{aligned} &{\widetilde{f}(x) =\left \{ \textstyle\begin{array}{l@{\quad}l} U^{\delta (\widetilde{\sigma }+\varepsilon )-1}(x)\mu (x),&0< x^{\delta }\leq 1, \\ 0,&x^{\delta }>0,\end{array}\displaystyle \right .} \end{aligned}$$
(30)
$$\begin{aligned} &{\widetilde{a}_{n} =(V_{n}-\tau _{n})^{\widetilde{\sigma }-1} \nu _{n}=(V_{n}-\tau _{n})^{\sigma -\frac{\varepsilon }{q}-1}\nu _{n},\quad n\in \mathbf{N}.} \end{aligned}$$
(31)

Then for \(\delta =\pm 1\), since \(U(\infty )=\infty \), we find

$$ \int_{\{x>0;0< x^{\delta }\leq 1\}}\frac{\mu (x)}{U^{1-\delta \varepsilon }(x)}\,dx=\frac{1}{\varepsilon }U^{\delta \varepsilon }(1). $$
(32)

By (20), (32), and (19), we obtain

$$\begin{aligned} &{\Vert \widetilde{f}\Vert _{p,\Phi _{\delta }}\Vert \widetilde{a}\Vert _{q,\Psi } = \biggl( \int_{\{x>0;0< x^{\delta }\leq 1\}}\frac{\mu (x)\,dx}{U^{1-\delta \varepsilon }(x)} \biggr) ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+\varepsilon }} \Biggr] ^{\frac{1}{q}}} \\ &{\phantom{\Vert \widetilde{f}\Vert _{p,\Phi _{\delta }}\Vert \widetilde{a}\Vert _{q,\Psi }}=\frac{1}{\varepsilon }U^{\frac{\delta \varepsilon }{p}}(1) \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+ \varepsilon O(1) \biggr) ^{\frac{1}{q}},} \\ &{\widetilde{I} := \int_{0}^{\infty }\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\widetilde{a}_{n}\widetilde{f}(x)\,dx} \\ &{\phantom{\widetilde{I}}= \int_{\{x>0;0< x^{\delta }\leq 1\}}\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{\widetilde{\sigma }-1}\nu _{n}\mu (x)}{U^{1-\delta (\widetilde{\sigma }+\varepsilon )}(x)}\,dx} \\ &{\phantom{\widetilde{I}}= \int_{\{x>0;0< x^{\delta }\leq 1\}}\omega _{\delta }(\widetilde{\sigma },x)\frac{\mu (x)}{U^{1-\delta \varepsilon }(x)}\,dx } \\ &{\phantom{\widetilde{I}}\geq k(\widetilde{\sigma }) \int_{\{x>0;0< x^{\delta }\leq 1\}}\bigl(1-\theta _{\delta }(\widetilde{\sigma },x) \bigr)\frac{\mu (x)}{U^{1-\delta \varepsilon }(x)}\,dx} \\ &{\phantom{\widetilde{I}}=k(\widetilde{\sigma }) \int_{\{x>0;0< x^{\delta }\leq 1\}}\bigl(1-O\bigl(\bigl(U(x)\bigr)^{\delta \widetilde{\sigma }}\bigr) \bigr)\frac{\mu (x)}{U^{1-\delta \varepsilon }(x)}\,dx} \\ &{\phantom{\widetilde{I}}=k(\widetilde{\sigma }) \biggl[ \int_{\{x>0;0< x^{\delta }\leq 1\}}\frac{\mu (x)\,dx}{U^{1-\delta \varepsilon }(x)}- \int_{\{x>0;0< x^{\delta }\leq 1\}}O\biggl(\frac{\mu (x)}{U^{1-\delta (\sigma +\frac{\varepsilon }{p})}(x)}\biggr)\,dx \biggr] } \\ &{\phantom{\widetilde{I}}=\frac{1}{\varepsilon }k\biggl(\sigma -\frac{\varepsilon }{q}\biggr) \bigl(U^{\delta \varepsilon }(1)-\varepsilon O_{1}(1)\bigr). } \end{aligned}$$
(33)

If there exists a positive constant \(K\leq k(\sigma )\), such that (21) is valid when replacing \(k(\sigma )\) to K, then in particular, by Lebesgue term by term integration theorem, we have \(\varepsilon \widetilde{I}<\varepsilon K\Vert \widetilde{f}\Vert _{p,\Phi _{\delta }}\Vert \widetilde{a}\Vert _{q,\Psi }\), namely,

$$ k\biggl(\sigma -\frac{\varepsilon }{q}\biggr) \bigl(U^{\delta \varepsilon }(1)- \varepsilon O_{1}(1)\bigr)< K\cdot U^{\frac{\delta \varepsilon }{p}}(1) \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+\varepsilon O(1) \biggr)^{\frac{1}{q}}. $$

It follows that \(k(\sigma )\leq K\) (\(\varepsilon \rightarrow 0^{+}\)). Hence, \(K=k(\sigma )\) is the best possible constant factor of (21).

The constant factor \(k(\sigma )\) in (22) ((23)) is still the best possible. Otherwise, we would reach a contradiction by (26) ((29)) that the constant factor in (21) is not the best possible. □

For \(p>1\), we find \(\widehat{\Psi }^{1-p}(n)=\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }}\) (\(n\in \mathbf{N}\)), \(\Phi _{\delta }^{1-q}(x)=\frac{\mu (x)}{U^{1-q\delta \sigma }(x)}\) (\(x\in \mathbf{R}_{+}\)), and we define the following real normed spaces:

$$\begin{aligned} &{L_{p,\Phi _{\delta }}(\mathbf{R}_{+}) =\bigl\{ f;f=f(x),x\in \mathbf{R}_{+},\Vert f\Vert _{p,\Phi _{\delta }}< \infty \bigr\} , }\\ &{l_{q,\widehat{\Psi }} =\bigl\{ a;a=\{a_{n}\}_{n=1}^{\infty }, \Vert a\Vert _{q,\widehat{\Psi }}< \infty \bigr\} , }\\ &{L_{q,\Phi _{\delta }^{1-q}}(\mathbf{R}_{+}) =\bigl\{ h;h=h(x),x\in \mathbf{R}_{+},\Vert h\Vert _{q,\Phi _{\delta }^{1-q}}< \infty \bigr\} , }\\ &{l_{p,\widehat{\Psi }^{1-p}} =\bigl\{ c;c=\{c_{n}\}_{n=1}^{\infty }, \Vert c\Vert _{p,\widehat{\Psi }^{1-p}}< \infty \bigr\} . } \end{aligned}$$

Assuming that \(f\in L_{p,\Phi _{\delta }}(\mathbf{R}_{+})\), setting

$$ c=\{c_{n}\}_{n=1}^{\infty },\qquad c_{n}:= \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}f(x)\,dx,\quad n\in \mathbf{N}, $$

we can rewrite (22) as \(\Vert c\Vert _{p,\widehat{\Psi }^{1-p}}< k(\sigma )\Vert f\Vert _{p,\Phi _{\delta }}<\infty \), namely, \(c\in l_{p,\widehat{\Psi }^{1-p}}\).

Definition 1

Define a half-discrete Hardy-Hilbert-type operator \(T_{1}:L_{p,\Phi _{\delta }}(\mathbf{R}_{+})\rightarrow l_{p,\widehat{\Psi }^{1-p}}\) as follows: For any \(f\in L_{p,\Phi _{\delta }}(\mathbf{R}_{+})\), there exists a unique representation \(T_{1}f=c\in l_{p,\widehat{\Psi }^{1-p}}\). Define the formal inner product of \(T_{1}f\) and \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\widehat{\Psi }}\) as follows:

$$ (T_{1}f,a):=\sum_{n=1}^{\infty } \biggl[ \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}f(x)\,dx \biggr] a_{n}. $$
(34)

Then we can rewrite (21) and (22) as follows:

$$\begin{aligned} &{(T_{1}f,a) < k(\sigma )\Vert f\Vert _{p,\Phi _{\delta }}\Vert a \Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(35)
$$\begin{aligned} &{\Vert T_{1}f\Vert _{p,\widehat{\Psi }^{1-p}} < k(\sigma )\Vert f\Vert _{p,\Phi _{\delta }}.} \end{aligned}$$
(36)

Define the norm of operator \(T_{1}\) as follows:

$$ \Vert T_{1}\Vert :=\sup_{f(\neq \theta )\in L_{p,\Phi _{\delta }}(\mathbf{R}_{+})}\frac{\Vert T_{1}f\Vert _{p,\widehat{\Psi }^{1-p}}}{\Vert f\Vert _{p,\Phi _{\delta }}}. $$

Then by (36), it follows that \(\Vert T_{1}\Vert \leq k(\sigma )\). Since, by Theorem 2, the constant factor in (36) is the best possible, we have

$$ \Vert T_{1}\Vert =k(\sigma )=\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}. $$
(37)

Assuming that \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\widehat{\Psi }}\), setting

$$ h(x):=\sum_{n=1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}a_{n},\quad x \in \mathbf{R}_{+}, $$

we can rewrite (23) as \(\Vert h\Vert _{q,\Phi _{\delta }^{1-q}}< k(\sigma )\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), namely, \(h\in L_{q,\Phi _{\delta }^{1-q}}(\mathbf{R}_{+})\).

Definition 2

Define a half-discrete Hardy-Hilbert-type operator \(T_{2}:l_{q,\widehat{\Psi }}\rightarrow L_{q,\Phi _{\delta }^{1-q}}(\mathbf{R}_{+})\) as follows: For any \(a=\{a_{n}\}_{n=1}^{\infty }\in l_{q,\widehat{\Psi }}\), there exists a unique representation \(T_{2}a=h\in L_{q,\Phi _{\delta }^{1-q}}(\mathbf{R}_{+})\). Define the formal inner product of \(T_{2}a\) and \(f\in L_{p,\Phi _{\delta }}(\mathbf{R}_{+})\) as follows:

$$ (T_{2}a,f):= \int_{0}^{\infty } \Biggl[ \sum _{n=1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}a_{n} \Biggr] f(x)\,dx. $$
(38)

Then we can rewrite (21) and (23) as follows:

$$\begin{aligned} &{(T_{2}a,f) < k(\sigma )\Vert f\Vert _{p,\Phi _{\delta }}\Vert a \Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(39)
$$\begin{aligned} &{\Vert T_{2}a\Vert _{q,\Phi _{\delta }^{1-q}} < k(\sigma )\Vert a\Vert _{q,\widehat{\Psi }}.} \end{aligned}$$
(40)

Define the norm of operator \(T_{2}\) as follows:

$$ \Vert T_{2}\Vert :=\sup_{a(\neq \theta )\in l_{q,\widehat{\Psi }}} \frac{\Vert T_{2}a\Vert _{q,\Phi _{\delta }^{1-q}}}{\Vert a\Vert _{q,\widehat{\Psi }}}. $$

Then by (40), we find \(\Vert T_{2}\Vert \leq k(\sigma )\). Since, by Theorem 2, the constant factor in (40) is the best possible, we have

$$ \Vert T_{2}\Vert =k(\sigma )=\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}=\Vert T_{1}\Vert . $$
(41)

4 Some equivalent reverses

In the following, we also set

$$ \widetilde{\Phi }_{\delta }(x):=\bigl(1-\theta _{\delta }(\sigma ,x) \bigr)\frac{U^{p(1-\delta \sigma )-1}(x)}{\mu ^{p-1}(x)}\quad (x\in \mathbf{R}_{+}). $$

For \(0< p<1\) or \(p<0\), we still use the formal symbols \(\Vert f\Vert _{p,\Phi _{\delta }}\), \(\Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}\), and \(\Vert a\Vert _{q,\widehat{\Psi }}\).

Theorem 3

As regards the assumptions of Theorem  2, for \(p<0\), \(0<\Vert f\Vert _{p,\Phi _{\delta }}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities with the best possible constant factor \(k(\sigma )=\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\):

$$\begin{aligned} &{I =\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha U^{\delta\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(42)
$$\begin{aligned} &{J_{1} =\sum_{n=1}^{\infty } \frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] ^{p}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{\delta }},} \end{aligned}$$
(43)
$$\begin{aligned} &{J_{2} = \Biggl\{ \int_{0}^{\infty }\frac{\mu (x)}{U^{1-q\delta \sigma }(x)} \Biggl[ \sum_{n=1}^{\infty }\frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }}.} \end{aligned}$$
(44)

Proof

By the reverse Hölder inequality with weight (cf. [41]), since \(p<0\), in the similar way to obtaining (24) and (25), we have

$$\begin{aligned} &{\biggl[ \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}f(x)\,dx \biggr] ^{p} }\\ &{\quad\leq \frac{(\varpi _{\delta }(\sigma ,n))^{p-1}}{(V_{n}-\tau _{n})^{p\sigma -1}\nu _{n}} \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}f^{p}(x)\,dx. } \end{aligned}$$

Then by (18) and the Lebesgue term by term integration theorem, it follows that

$$\begin{aligned} J_{1} \geq &\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \biggl[ \int_{0}^{\infty }\omega _{\delta }(\sigma ,x) \frac{U^{p(1-\delta \sigma )-1}(x)}{\mu ^{p-1}(x)}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$

Then by (16), we have (43).

By the reverse Hölder inequality (cf. [41]), we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty } \biggl[ \frac{\nu _{n}^{\frac{1}{p}}}{(V_{n}-\tau _{n})^{\frac{1}{p}-\sigma }} \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] \biggl[ \frac{(V_{n}-\tau _{n})^{\frac{1}{p}-\sigma }a_{n}}{\nu _{n}^{1/p}} \biggr] \\ \geq &J_{1}\Vert a\Vert _{q,\widehat{\Psi }}. \end{aligned}$$
(45)

Then by (43), we have (42). On the other hand, assuming that (42) is valid, we set \(a_{n}\) as in Theorem 1. Then we find \(J_{1}^{p}=\Vert a\Vert _{q,\widehat{\Psi }}^{q}\). If \(J_{1}=\infty \), then (43) is trivially valid; if \(J_{1}=0\), then (43) keeps impossible. Suppose that \(0< J_{1}<\infty \). By (42), it follows that

$$ \Vert a\Vert _{q,\widehat{\Psi }}^{q}=J_{1}^{p}=I>k( \sigma )\Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},\qquad \Vert a\Vert _{q,\widehat{\Psi }}^{q-1}=J_{1}>k(\sigma )\Vert f \Vert _{p,\Phi _{\delta }}, $$

and then (43) follows, which is equivalent to (42).

Still by the reverse Hölder’s inequality with weight (cf. [41]), since \(0< q<1\), in the similar way to obtaining (27) and (28), we have

$$\begin{aligned} &{ \Biggl[ \sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}a_{n} \Biggr] ^{q} }\\ &{\quad\geq \frac{(\omega _{\delta }(\sigma ,x))^{q-1}}{U^{q\delta \sigma -1}(x)\mu (x)}\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}. } \end{aligned}$$

Then by (16) and the Lebesgue term by term integration theorem, it follows that

$$\begin{aligned} J_{2} >&\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \int_{0}^{\infty }\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}\,dx \Biggr] ^{\frac{1}{q}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \sum _{n=1}^{\infty }\varpi _{\delta }(\sigma ,n) \frac{(V_{n}-\tau _{n})^{q(1-\sigma )-1}}{\nu _{n}^{q-1}}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$

Then by (18), we have (44).

By the reverse Hölder inequality (cf. [41]), we have

$$\begin{aligned} I =& \int_{0}^{\infty } \biggl( \frac{U^{\frac{1}{q}-\delta \sigma }(x)}{\mu ^{\frac{1}{q}}(x)}f(x) \biggr) \Biggl[ \frac{\mu ^{\frac{1}{q}}(x)}{U^{\frac{1}{q}-\delta \sigma }(x)}\sum_{n=1}^{\infty } \frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] \,dx \\ \geq &\Vert f\Vert _{p,\Phi _{\delta }}J_{2}. \end{aligned}$$
(46)

Then by (44), we have (42). On the other hand, assuming that (44) is valid, we set \(f(x)\) as in Theorem 1. Then we find \(J_{2}^{q}=\Vert f\Vert _{p,\Phi _{\delta }}^{p}\). If \(J_{2}=\infty \), then (44) is trivially valid; if \(J_{2}=0\), then (44) remains impossible. Suppose that \(0< J_{2}<\infty \). By (42), it follows that

$$ \Vert f\Vert _{p,\Phi _{\delta }}^{p}=J_{2}^{q}=I>k( \sigma )\Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},\qquad \Vert f\Vert _{p,\Phi _{\delta }}^{p-1}=J_{2}>k(\sigma )\Vert a \Vert _{q,\widehat{\Psi }}, $$

and then (44) follows, which is equivalent to (42).

Therefore, inequalities (42), (43), and (44) are equivalent.

For \(\varepsilon \in (0,q\sigma )\), we set \(\widetilde{\sigma }=\sigma -\frac{\varepsilon }{q}\) (\(\in (0,1)\)) and \(\widetilde{f}=\widetilde{f}(x)\), \(x\in \mathbf{R}_{+}\), \(\widetilde{a}=\{\widetilde{a}_{n}\}_{n=1}^{\infty }\),

$$\begin{aligned} &{\widetilde{f}(x) =\left \{ \textstyle\begin{array}{l@{\quad}l} U^{\delta (\widetilde{\sigma }+\varepsilon )-1}(x)\mu (x),&0< x^{\delta }\leq 1, \\ 0,&x^{\delta }>0,\end{array}\displaystyle \right . }\\ &{\widetilde{a}_{n} =(V_{n}-\tau _{n})^{\widetilde{\sigma }-1} \nu _{n}=(V_{n}-\tau _{n})^{\sigma -\frac{\varepsilon }{q}-1}\nu _{n},\quad n\in \mathbf{N}. } \end{aligned}$$

By (20), (32), and (16), we obtain

$$\begin{aligned} &{\Vert \widetilde{f}\Vert _{p,\Phi _{\delta }}\Vert \widetilde{a}\Vert _{q,\widehat{\Psi }}=\frac{1}{\varepsilon }U^{\frac{\delta \varepsilon }{p}}(1) \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+\varepsilon O(1) \biggr) ^{\frac{1}{q}},} \\ &{\widetilde{I} =\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{\widetilde{a}_{n}\widetilde{f}(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx= \int_{\{x>0;0< x^{\delta }\leq 1\}}\omega _{\delta }(\widetilde{\sigma },x)\frac{\mu (x)}{U^{1-\delta \varepsilon }(x)}\,dx }\\ &{\phantom{\widetilde{I}}\leq k(\widetilde{\sigma }) \int_{\{x>0;0< x^{\delta }\leq 1\}}\frac{\mu (x)}{U^{1-\delta \varepsilon }(x)}\,dx=\frac{1}{\varepsilon }k\biggl( \sigma -\frac{\varepsilon }{q}\biggr)U^{\delta \varepsilon }(1).} \end{aligned}$$

If there exists a positive constant \(K\geq k(\sigma )\), such that (42) is valid when replacing \(k(\sigma )\) to K, then in particular, we have \(\varepsilon \widetilde{I}>\varepsilon K\Vert \widetilde{f}\Vert _{p,\Phi _{\delta }}\Vert \widetilde{a}\Vert _{q,\widehat{\Psi }}\), namely,

$$ k\biggl(\sigma -\frac{\varepsilon }{q}\biggr)U^{\delta \varepsilon }(1)>K\cdot U^{\frac{\delta \varepsilon }{p}}(1) \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}. $$

It follows that \(k(\sigma )\geq K\) (\(\varepsilon \rightarrow 0^{+}\)). Hence, \(K=k(\sigma )\) is the best possible constant factor of (42).

The constant factor \(k(\sigma )\) in (43) ((44)) is still the best possible. Otherwise, we would reach a contradiction by (45) ((46)) that the constant factor in (42) is not the best possible. □

Theorem 4

As regards the assumptions of Theorem  2, if \(0< p<1\), \(0<\Vert f\Vert _{p,\Phi _{\delta }}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), then we have the following equivalent inequalities with the best possible constant factor \(k(\sigma )=\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \):

$$\begin{aligned} &{I =\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha U^{\delta\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(47)
$$\begin{aligned} &{J_{1} =\sum_{n=1}^{\infty } \frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)\,dx}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \biggr] ^{p}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}, } \end{aligned}$$
(48)
$$\begin{aligned} &{J := \Biggl\{ \int_{0}^{\infty }\frac{(1-\theta _{\delta }(\sigma ,x))^{1-q}\mu (x)}{U^{1-q\delta \sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}} \\ &{\phantom{J}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }}.} \end{aligned}$$
(49)

Proof

By the reverse Hölder inequality with weight (cf. [41]), since \(0< p<1\), in a similar way to obtaining (24) and (25), we have

$$\begin{aligned} &{\biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] ^{p} }\\ &{\quad\geq \frac{(\varpi _{\delta }(\sigma ,n))^{p-1}}{(V_{n}-\tau _{n})^{p\sigma -1}\nu _{n}} \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}f^{p}(x)\,dx. } \end{aligned}$$

In view of (18) and the Lebesgue term by term integration theorem, we find

$$\begin{aligned} J_{1} \geq &\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty } \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \frac{U^{(1-\delta \sigma )(p-1)}(x)\nu _{n}}{(V_{n}-\tau _{n})^{1-\sigma }\mu ^{p-1}(x)}f^{p}(x)\,dx \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{q}} \biggl[ \int_{0}^{\infty }\omega _{\delta }(\sigma ,x) \frac{U^{p(1-\delta \sigma )-1}(x)}{\mu ^{p-1}(x)}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$

Then by (19), we have (48).

By the reverse Hölder inequality (cf. [41]), we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty } \biggl[ \frac{\nu _{n}^{1/p}}{(V_{n}-\tau _{n})^{\frac{1}{p}-\sigma }} \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] \biggl[ \frac{(V_{n}-\tau _{n})^{\frac{1}{p}-\sigma }a_{n}}{\nu _{n}^{1/p}} \biggr] \\ \geq &J_{1}\Vert a\Vert _{q,\widehat{\Psi }}. \end{aligned}$$
(50)

Then by (48), we have (47). On the other hand, assuming that (47) is valid, we set \(a_{n}\) as in Theorem 1. Then we find \(J_{1}^{p}=\Vert a\Vert _{q,\widehat{\Psi }}^{q}\). If \(J_{1}=\infty \), then (48) is trivially valid; if \(J_{1}=0\), then (48) remains impossible. Suppose that \(0< J_{1}<\infty \). By (47), it follows that

$$ \Vert a\Vert _{q,\widehat{\Psi }}^{q}=J_{1}^{p}=I>k( \sigma )\Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},\qquad \Vert a\Vert _{q,\widehat{\Psi }}^{q-1}=J_{1}>k(\sigma )\Vert f \Vert _{p,\widetilde{\Phi }_{\delta }}, $$

and then (48) follows, which is equivalent to (47).

Still by the reverse Hölder inequality with weight (cf. [41]), since \(q<0\), we have

$$\begin{aligned} &{ \Biggl[ \sum_{n=1}^{\infty } \frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q} }\\ &{\quad\leq \frac{(\omega _{\delta }(\sigma ,x))^{q-1}}{U^{q\delta \sigma -1}(x)\mu (x)}\sum_{n=1}^{\infty } \frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}. } \end{aligned}$$

Then by (19) and the Lebesgue term by term integration theorem, it follows that

$$\begin{aligned} J >&\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \int_{0}^{\infty }\sum_{n=1}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{(1-\sigma )(q-1)}\mu (x)}{U^{1-\delta \sigma }(x)\nu _{n}^{q-1}}a_{n}^{q}\,dx \Biggr] ^{\frac{1}{q}} \\ =&\bigl(k(\sigma )\bigr)^{\frac{1}{p}} \Biggl[ \sum _{n=1}^{\infty }\varpi _{\delta }(\sigma ,n) \frac{(V_{n}-\tau _{n})^{q(1-\sigma )-1}}{\nu _{n}^{q-1}}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$

Then by (18), we have (49).

By the reverse Hölder inequality (cf. [41]), we have

$$\begin{aligned} I =& \int_{0}^{\infty } \biggl[ \bigl(1-\theta _{\delta }(\sigma ,x)\bigr)^{\frac{1}{p}}\frac{U^{\frac{1}{q}-\delta \sigma }(x)}{\mu ^{\frac{1}{q}}(x)}f(x) \biggr] \\ &{}\times \Biggl[ \frac{(1-\theta _{\delta }(\sigma ,x))^{\frac{-1}{p}}\mu ^{\frac{1}{q}}(x)}{U^{\frac{1}{q}-\delta \sigma }(x)}\sum_{n=1}^{\infty } \frac{a_{n}}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] \,dx \\ \geq& \Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}J. \end{aligned}$$
(51)

Then by (49), we have (47). On the other hand, assuming that (47) is valid, we set \(f(x)\) as in Theorem 1. Then we find \(J^{q}=\Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}^{p}\). If \(J=\infty \), then (49) is trivially valid; if \(J=0\), then (49) keeps impossible. Suppose that \(0< J<\infty \). By (47), it follows that

$$ \Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}^{p}=J^{q}=I>k(\sigma ) \Vert f\Vert _{p,\widetilde{\Phi }_{\delta }}\Vert a\Vert _{q,\widehat{\Psi }},\qquad \Vert f \Vert _{p,\widetilde{\Phi }_{\delta }}^{p-1}=J>k(\sigma )\Vert a\Vert _{q,\widehat{\Psi }}, $$

and then (49) follows, which is equivalent to (47).

Therefore, inequalities (47), (48), and (49) are equivalent.

For \(\varepsilon \in (0,p\sigma )\), we set \(\widetilde{\sigma }=\sigma +\frac{\varepsilon }{p}\) and \(\widetilde{f}=\widetilde{f}(x)\), \(x\in \mathbf{R}_{+}\), \(\widetilde{a}=\{\widetilde{a}_{n}\}_{n=1}^{\infty }\),

$$\begin{aligned} &{\widetilde{f}(x) =\left \{ \textstyle\begin{array}{l@{\quad}l} U^{\delta \widetilde{\sigma }-1}(x)\mu (x),&0< x^{\delta }\leq 1, \\ 0,&x^{\delta }>0,\end{array}\displaystyle \right .} \\ &{\widetilde{a}_{n} =(V_{n}-\tau _{n})^{\widetilde{\sigma }-\varepsilon -1} \nu _{n}=(V_{n}-\tau _{n})^{\sigma -\frac{\varepsilon }{q}-1}\nu _{n},\quad n\in \mathbf{N}.} \end{aligned}$$

By (19), (20), and (32), we obtain

$$\begin{aligned} &{\Vert \widetilde{f}\Vert _{p,\widetilde{\Phi }_{\delta }}\Vert \widetilde{a}\Vert _{q,\widehat{\Psi }} }\\ &{\quad= \biggl[ \int_{\{x>0;0< x^{\delta }\leq 1\}}\bigl(1-O\bigl(\bigl(U(x)\bigr)^{\delta \sigma }\bigr) \bigr)\frac{\mu (x)\,dx}{U^{1-\delta \varepsilon }(x)} \biggr] ^{\frac{1}{p}} \Biggl[ \sum _{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+\varepsilon }} \Biggr] ^{\frac{1}{q}} }\\ &{\quad=\frac{1}{\varepsilon } \bigl( U^{\delta \varepsilon }(1)-\varepsilon O_{1}(1) \bigr) ^{\frac{1}{p}} \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+ \varepsilon O(1) \biggr) ^{\frac{1}{q}}, }\\ &{\widetilde{I} =\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\widetilde{a}_{n}\widetilde{f}(x)\,dx }\\ &{\phantom{\widetilde{I}}=\sum_{n=1}^{\infty } \biggl[ \int_{\{x>0;0< x^{\delta }\leq 1\}}\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{\widetilde{\sigma }}\mu (x)}{U^{1-\delta \widetilde{\sigma }}(x)}\,dx \biggr] \frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+\varepsilon }}} \\ &{\phantom{\widetilde{I}}\leq \sum_{n=1}^{\infty } \biggl[ \int_{0}^{\infty }\frac{1}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\frac{(V_{n}-\tau _{n})^{\widetilde{\sigma }}\mu (x)}{U^{1-\delta \widetilde{\sigma }}(x)}\,dx \biggr] \frac{\nu _{n}}{(V_{n}-\beta )^{1+\varepsilon }}} \\ &{\phantom{\widetilde{I}}=\sum_{n=1}^{\infty }\varpi _{\delta }( \widetilde{\sigma },n)\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+\varepsilon }}=k(\widetilde{\sigma })\sum _{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1+\varepsilon }}} \\ &{\phantom{\widetilde{I}}=\frac{1}{\varepsilon }k\biggl(\sigma +\frac{\varepsilon }{p}\biggr) \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+\varepsilon O(1) \biggr) . } \end{aligned}$$

If there exists a positive constant \(K\geq k(\sigma )\), such that (42) is valid when replacing \(k(\sigma )\) to K, then, in particular, we have \(\varepsilon \widetilde{I}>\varepsilon K\Vert \widetilde{f}\Vert _{p,\widetilde{\Phi }_{\delta }}\Vert \widetilde{a}\Vert _{q,\widehat{\Psi }}\), namely,

$$\begin{aligned} &{k\biggl(\sigma +\frac{\varepsilon }{p}\biggr) \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+ \varepsilon O(1) \biggr) }\\ &{\quad>K \bigl( U^{\delta \varepsilon }(1)-\varepsilon O_{1}(1) \bigr) ^{\frac{1}{p}} \biggl( \frac{1}{\nu _{1}^{\varepsilon }}+\varepsilon O(1) \biggr) ^{\frac{1}{q}}. } \end{aligned}$$

It follows that \(k(\sigma )\geq K\) (\(\varepsilon \rightarrow 0^{+}\)). Hence, \(K=k(\sigma )\) is the best possible constant factor of (47).

The constant factor \(k(\sigma )\) in (48) ((49)) is still the best possible. Otherwise, we would reach the contradiction by (50) ((51)) that the constant factor in (47) is not the best possible. □

5 Some corollaries and a remark

For \(\delta =1\) in Theorems 2-4, we have the following inequalities with the non-homogeneous kernel.

Corollary 1

As regards the assumptions of Theorem  2, (i) for \(p>1\), \(0<\Vert f\Vert _{p,\Phi _{1}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha U^{\delta \gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{1}}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(52)
$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] ^{p}< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{1}},} \end{aligned}$$
(53)
$$\begin{aligned} &{\Biggl\{ \int_{0}^{\infty }\frac{\mu (x)}{U^{1-q\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }};} \end{aligned}$$
(54)

(ii) for \(p<0\), \(0<\Vert f\Vert _{p,\Phi _{1}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx> \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{1}}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(55)
$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] ^{p}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{1}},} \end{aligned}$$
(56)
$$\begin{aligned} &{\Biggl\{ \int_{0}^{\infty }\frac{\mu (x)}{U^{1-q\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }};} \end{aligned}$$
(57)

(iii) for \(0< p<1\), \(0<\Vert f\Vert _{p,\Phi _{1}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx> \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\widetilde{\Phi }_{1}}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(58)
$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}}\,dx \biggr] ^{p}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\widetilde{\Phi }_{1}}, } \end{aligned}$$
(59)
$$\begin{aligned} &{\Biggl\{ \int_{0}^{\infty }\frac{(1-\theta _{1}(\sigma ,x))^{1-q}\mu (x)}{U^{1-q\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha U^{\gamma }(x)(V_{n}-\tau _{n})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}} \\ &{\quad>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }}.} \end{aligned}$$
(60)

The above inequalities are with the best possible constant factor \(\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\).

For \(\delta =-1\) in Theorems 2-4, we have the following inequalities with the homogeneous kernel of degree 0:

Corollary 2

As regards the assumptions of Theorem  2, (i) for \(p>1\), \(0<\Vert f\Vert _{p,\Phi _{-1}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}}\,dx< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{-1}}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(61)
$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}}\,dx \biggr] ^{p}< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{-1}},} \end{aligned}$$
(62)
$$\begin{aligned} &{\Biggl\{ \int_{0}^{\infty }\frac{\mu (x)}{U^{1+q\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }};} \end{aligned}$$
(63)

(ii) for \(p<0\), \(0<\Vert f\Vert _{p,\Phi _{-1}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}}\,dx> \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{-1}}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(64)
$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}}\,dx \biggr] ^{p}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{-1}}, } \end{aligned}$$
(65)
$$\begin{aligned} &{\Biggl\{ \int_{0}^{\infty }\frac{\mu (x)}{U^{1+q\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }};} \end{aligned}$$
(66)

(iii) for \(0< p<1\), \(0<\Vert f\Vert _{p,\Phi _{-1}}\), \(\Vert a\Vert _{q,\widehat{\Psi }}<\infty \), we have the following equivalent inequalities:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}}\,dx> \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\widetilde{\Phi }_{-1}}\Vert a\Vert _{q,\widehat{\Psi }},} \end{aligned}$$
(67)
$$\begin{aligned} &{\sum_{n=1}^{\infty }\frac{\nu _{n}}{(V_{n}-\tau _{n})^{1-p\sigma }} \biggl[ \int_{0}^{\infty }\frac{f(x)}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}}\,dx \biggr] ^{p}>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\widetilde{\Phi }_{-1}}, } \end{aligned}$$
(68)
$$\begin{aligned} &{ \Biggl\{ \int_{0}^{\infty }\frac{(1-\theta _{-1}(\sigma ,x))^{1-q}\mu (x)}{U^{1+q\sigma }(x)} \Biggl[ \sum _{n=1}^{\infty }\frac{a_{n}}{e^{\alpha (\frac{V_{n}-\tau _{n}}{U(x)})^{\gamma }}} \Biggr] ^{q}\,dx \Biggr\} ^{\frac{1}{q}}} \\ &{\quad>\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert a\Vert _{q,\widehat{\Psi }}.} \end{aligned}$$
(69)

The above inequalities are with the best possible constant factor \(\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\).

Remark 2

(i) For \(\tau _{n}=0\) (\(n\in \mathbf{N}\)) in (21), setting \(\Psi (n):=\frac{V_{n}{}^{q(1-\sigma )-1}}{\nu _{n}^{q-1}}\) (\(n\in \mathbf{N}\)), we have the following inequality:

$$ \sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha (U^{\delta }(x)V_{n})^{\gamma }}}\,dx< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\Vert f\Vert _{p,\Phi _{\delta }}\Vert a\Vert _{q,\Psi }. $$
(70)

Hence, (21) is a more accurate inequality of (70) for \(0<\tau _{n}\leq \frac{\nu _{n}}{2}\).

(ii) For \(\mu (x)=\nu _{n}=1\) in (21), setting \(0\leq\tau \leq \frac{1}{2}\), we have the following inequality with the best possible constant factor \(\frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }}\):

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha {}[ x^{\delta }(n-\tau )]^{\gamma }}}\,dx} \\ &{\quad< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \biggl[ \int_{0}^{\infty }x^{p(1-\delta \sigma )-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }(n- \tau )^{q(1-\sigma )-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. } \end{aligned}$$
(71)

In particular, for \(\delta =1\), we have the following inequality with the non-homogeneous kernel:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha {}[ x(n-\tau )]^{\gamma }}}\,dx} \\ &{\quad< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \biggl[ \int_{0}^{\infty }x^{p(1-\sigma )-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }(n- \tau )^{q(1-\sigma )-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}; } \end{aligned}$$
(72)

for \(\delta =-1\), we have the following inequality with the homogeneous kernel of degree 0:

$$\begin{aligned} &{\sum_{n=1}^{\infty } \int_{0}^{\infty }\frac{a_{n}f(x)}{e^{\alpha (\frac{n-\tau }{x})^{\gamma }}}\,dx} \\ &{\quad< \frac{\Gamma (\sigma /\gamma )}{\gamma \alpha ^{\sigma /\gamma }} \biggl[ \int_{0}^{\infty }x^{p(1+\sigma )-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }(n- \tau )^{q(1-\sigma )-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}. } \end{aligned}$$
(73)

References

  1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  2. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

    Book  MATH  Google Scholar 

  3. Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science, Sharjah (2009)

    Google Scholar 

  4. Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science, Sharjah (2011)

    Google Scholar 

  5. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  6. Yang, BC: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, BC: An extension of a Hardy-Hilbert-type inequality. J. Guangdong Univ. Educ. 35(3), 1-8 (2015)

    Google Scholar 

  8. Yang, BC, Brnetić, I, Krnić, M: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005)

    MATH  Google Scholar 

  10. Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, 546829 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, 28582 (2006)

    MATH  Google Scholar 

  14. Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, 917392 (2008)

    Article  MATH  Google Scholar 

  16. Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. JIPAM. J. Inequal. Pure Appl. Math. 6(4), Art. 92 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Zhong, WY, Yang, BC: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, Art. ID 27962 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, BC, Krnić, M: On the norm of a mult-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Krnić, M, Pečarić, JE, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Krnić, M, Vuković, P: On a multidimensional version of the Hilbert-type inequality. Anal. Math. 38, 291-303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rassias, MT, Yang, BC: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75-93 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Rassias, MT, Yang, BC: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Rassias, MT, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Rassias, MT, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014)

    MathSciNet  Google Scholar 

  25. Chen, Q, Yang, BC: A survey on the study of Hilbert-type inequalities. J. Inequal. Appl. 2015, 302 (2015)

    Article  MathSciNet  Google Scholar 

  26. Gu, ZH, Yang, BC: A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. J. Inequal. Appl. 2015, 314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, AZ, Huang, QL, Yang, BC: A strengthened Mulholland-type inequality with parameters. J. Inequal. Appl. 2015, 329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, BC, Chen, Q: On a Hardy-Hilbert-type inequality with parameters. J. Inequal. Appl. 2015, 339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rassias, MT, Yang, BC: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286-1308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, BC: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18(2), 429-441 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Yang, BC: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Yang, BC: A half-discrete Hilbert-type inequality. J. Guangdong Univ. Educ. 31(3), 1-7 (2011)

    Google Scholar 

  33. Zhong, WY: A mixed Hilbert-type inequality and its equivalent forms. J. Guangdong Univ. Educ. 31(5), 18-22 (2011)

    MATH  Google Scholar 

  34. Zhong, JH, Yang, BC: On an extension of a more accurate Hilbert-type inequality. J. Zhejiang Univ. Sci. Ed. 35(2), 121-124 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Yang, BC, Chen, Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, BC: A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables. Mediterr. J. Math. 10, 677-692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)

    Google Scholar 

  38. Yang, BC: Topics on Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2013)

    Google Scholar 

  39. Yang, BC, Debnath, L: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  40. Wang, ZQ, Guo, DR: Introduction to Special Functions. Science Press, Beijing (1979)

    Google Scholar 

  41. Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)

    Google Scholar 

  42. Kuang, JC: Real Analysis and Functional Analysis. Higher Education Press, Beijing (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61370186) and the Appropriative Researching Fund for Professors and Doctors, Guangdong University of Education (No. 2015ARF25). We are grateful for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Liao.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. JL participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Yang, B. On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function. J Inequal Appl 2016, 162 (2016). https://doi.org/10.1186/s13660-016-1090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-016-1090-4

MSC

Keywords