Skip to main content

Some new sequences that converge to the Ioachimescu constant

Abstract

The purpose of this paper is to give some sequences that converge quickly to the Ioachimescu constant by a multiple-correction method.

1 Introduction

In 1895, Ioachimescu (see [1]) introduced a constant â„“, which today bears his name, as the limit of the sequence defined by

$$I_{n}=1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt {n}}-2(\sqrt {n}-1),\quad n\in\mathbb{N}. $$

The sequence \(I(n)_{n\geq1}\) has attracted much attention lately and several generalizations have been given (see, e.g., [2, 3]). Recently, Chen, Li and Xu [4] have obtained the complete asymptotic expansion of the Ioachimescu sequence,

$$I_{n}\sim\ell+\frac{1}{2\sqrt {n}}-\sum_{k=1}^{\infty} \frac{\mathbf{b}_{2k}}{(2k)!}\frac{(4k-3)!!}{2^{2k-1}n^{2k-1/2}},\quad n\in\mathbb{N}, $$

where \(\mathbf{b}_{n}\) denotes the nth Bernoulli number.

One easily obtains the following representations of the Ioachimescu constant:

$$\ell= \int_{0}^{\infty}\frac{1-x+\lfloor x \rfloor}{2(1+x)^{3/2}}\,dx $$

and

$$\ell=2-\sum_{k=1}^{\infty}\frac{1}{(\sqrt {k}+\sqrt{k-1})^{2}\sqrt {k}}. $$

A representation of the Ioachimescu constant has also been given by Ramanujan (1915) [5],

$$\ell=2-(\sqrt{2}+1)\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt {k}}. $$

From it one easily obtains a representation of the Ioachimescu constant in terms of the extended ζ function

$$\ell=\zeta \biggl(\frac{1}{2} \biggr)+2. $$

As a result of [2], we have \(\ell=0.539645491\ldots\) .

Let \(a\in(0,+\infty)\) and \(s\in(0,1)\), the sequence

$$y_{n}(a,s)=\frac{1}{a^{s}}+\frac{1}{(a+1)^{s}}+\cdots+ \frac{1}{(a+n-1)^{s}}-\frac{1}{1-s} \bigl[(a+n-1)^{1-s}-a^{1-s} \bigr],\quad n\in\mathbb{N}, $$

is convergent [3] and its limit is a generalized Euler constant denoted by \(\ell(a,s)\). Clearly, \(\ell(1,1/2)=\ell\). Furthermore, Sîntămărian has proved that

$$\lim_{n\rightarrow\infty} n^{s} \bigl(y_{n}(a,s)- \ell(a,s) \bigr)=\frac{1}{2}. $$

Also in [3], considering the sequence

$$u_{n}(a,s)=y_{n}(a,s)-\frac{1}{2(a+n-1)^{s}}, $$

she has proved that

$$\lim_{n\rightarrow\infty} n^{s+1} \bigl(\ell(a,s)-u_{n}(a,s) \bigr)=\frac{s}{12} $$

and, for the sequence

$$\alpha_{n}(a,s)=\frac{1}{a^{s}}+\frac{1}{(a+1)^{s}}+\cdots+ \frac{1}{ (a+n-1)^{s}}-\frac{1}{1-s} \biggl( \biggl(a+n-\frac{1}{2} \biggr)^{1-s}-a^{1-s} \biggr),\quad n\in\mathbb{N}, $$

she has proved that

$$\lim_{n\rightarrow\infty} n^{s+1} \bigl(\alpha_{n}(a,s)- \ell(a,s) \bigr)=\frac{s}{24}. $$

In [6, 7], Sîntămărian has obtained some new sequences that convergence to \(\ell(a,s)\) with the rate of convergence \(n^{-s-15}\). Other results regarding \(\ell(a,s)\) can be found in [8–10] and some of the references therein.

In our paper, we will give some sequences that converge quickly to the Ioachimescu constant ℓ by a multiple-correction method [11–13], based on the sequence

$$I(n)=1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt {n}}-2(\sqrt {n}-1),\quad n\in \mathbb{N}. $$

2 Sequences convergent to the Ioachimescu constant â„“

The following lemma gives a method for measuring the rate of convergence; for its proof see Mortici [14, 15].

Lemma 1

If the sequence \((x_{n})_{n\in\mathbb{N}}\) is convergent to zero and there exists the limit

$$ \lim_{n\rightarrow+\infty}n^{s}(x_{n}-x_{n+1})=l \in[-\infty,+\infty], $$
(2.1)

with \(s>1\), then

$$ \lim_{n\rightarrow+\infty}n^{s-1}x_{n}= \frac{l}{s-1}. $$
(2.2)

Now we apply multiple-correction method to study faster convergence sequences for the Ioachimescu constant, and this method could be used to solve other problems, such as the Euler-Mascheroni constant, Glaisher-Kinkelin’s and Bendersky-Adamchik’s constants, Somos’ quadratic recurrence constant, and so on [16–19].

Theorem 1

For the Ioachimescu constant, we have the following convergent sequence:

$$ I_{i}^{(1)}(n)=\sum_{k=1}^{n}{ \frac{1}{\sqrt {k}}} -2 (\sqrt {n} -1 )+\eta_{0}^{(1)}(n)+ \eta_{1}^{(1)}(n)+\cdots+\eta_{i}^{(1)}(n), $$
(2.3)

where

$$\begin{aligned}& \eta_{0}^{(1)}(n) = 0,\qquad\eta_{1}^{(1)}(n)= \frac{-\frac{1}{2}}{\sqrt{n+\frac{1}{6}}}, \end{aligned}$$
(2.4)
$$\begin{aligned}& \eta_{2}^{(1)}(n) = \frac{\frac{1}{192}}{\sqrt{n^{5}+\frac {23}{18}n^{4}+\frac {341}{288}n^{3}+\frac{27{,}833}{46{,}656}n^{2}+\frac{726{,}647}{26{,}873{,}856}n-\frac {9{,}196{,}141}{806{,}215{,}680}}},\ldots. \end{aligned}$$
(2.5)

Proof

(Step 1) The initial correction. We choose \(\eta_{0}^{(1)}(n)=0\), and let

$$ I_{0}^{(1)}(n):=I(n)+\eta_{0}^{(1)}(n)= \sum_{k=1}^{n}{\frac{1}{\sqrt {k}}}-2 (\sqrt {n} -1 )+\eta_{0}^{(1)}(n). $$
(2.6)

Developing equation (2.6) into a power series expansion in \(1/n\), we have

$$ I_{0}^{(1)}(n)-I_{0}^{(1)}(n+1)= \frac{1}{4}\frac{1}{n^{\frac{3}{2}}}+O \biggl(\frac{1}{n^{\frac{5}{2}}} \biggr). $$
(2.7)

By Lemma 1, the rate of convergence of \((I_{0}^{(1)}(n)-\ell )_{n\in\mathbb{N}}\) is \(n^{-\frac{1}{2}}\), since

$$\lim_{n\rightarrow\infty}n^{\frac{1}{2}} \bigl(I_{0}^{(1)}(n)- \ell \bigr)=\frac{1}{2}. $$

(Step 2) The first correction. Let

$$ \eta_{1}^{(1)}(n)=\frac{a_{1}}{\sqrt{n+b_{0}}} $$
(2.8)

and define

$$ I_{1}^{(1)}(n):=\sum_{k=1}^{n}{ \frac{1}{\sqrt {k}}} -2 (\sqrt {n} -1 )+\eta_{0}^{(1)}(n)+ \eta_{1}^{(1)}(n). $$
(2.9)

Developing (2.9) into power series expansion in \(1/n\), we obtain

$$\begin{aligned} I_{1}^{(1)}(n)-I_{1}^{(1)}(n+1) =& \frac{2a_{1}+1}{4}\frac{1}{n^{\frac{3}{2}}}+\frac{-2-3a_{1}(1+2b_{0})}{8}\frac{1}{n^{\frac{5}{2}}} \\ &{}+\frac{5}{64} \bigl(3+4a_{1} \bigl(1+3b_{0}+3b_{0}^{2} \bigr) \bigr)\frac{1}{n^{\frac{7}{2}}}+O \biggl(\frac {1}{n^{\frac{9}{2}}} \biggr). \end{aligned}$$
(2.10)
  1. (i)

    If \(a_{1}\neq-\frac{1}{2}\), the rate of convergence of the \((I_{1}^{(1)}(n)-\ell)_{n\in\mathbb{N}}\) is \(n^{-\frac{1}{2}}\), since

    $$\lim_{n\rightarrow\infty}n^{\frac{1}{2}} \bigl(I_{1}^{(1)}(n)- \ell \bigr)=\frac{2a_{1}+1}{4}\neq0. $$
  2. (ii)

    If \(a_{1}=-\frac{1}{2}\) and \(b_{0}=\frac{1}{6}\), from (2.10) we obtain

    $$I_{1}^{(1)}(n)-I_{1}^{(1)}(n+1)=- \frac{5}{384}\frac{1}{n^{\frac{7}{2}}}+O \biggl(\frac{1}{n^{\frac{9}{2}}} \biggr). $$

    Then the rate of convergence of the \((I_{1}^{(1)}(n)-\ell)_{n\in\mathbb{N}}\) is \(n^{-\frac{5}{2}}\), since

    $$\lim_{n\rightarrow\infty}n^{\frac{5}{2}} \bigl(I_{1}^{(1)}(n)- \ell \bigr)=-\frac{1}{192}. $$

(Step 3) The second correction. Similarly, set the second-correction function

$$ \eta_{2}^{(1)}(n)=\frac{a_{2}}{\sqrt{n^{5}+b_{4} n^{4}+b_{3} n^{3}+b_{2} n^{2}+b_{1} n+b_{0}}} $$
(2.11)

and define

$$ I_{2}^{(1)}(n):=\sum_{k=1}^{n}{ \frac{1}{\sqrt {k}}} -2 (\sqrt {n} -1 )+\eta_{0}^{(1)}(n)+ \eta_{1}^{(1)}(n)+\eta_{2}^{(1)}(n). $$
(2.12)

By the same method as above, we get \(a_{2}=\frac{1}{192}\), \(b_{4}=\frac {23}{18}\), \(b_{3}=\frac{341}{288}\), \(b_{2}=\frac{27{,}833}{46{,}656}\), \(b_{1}=\frac {726{,}647}{26{,}873{,}856}\), \(b_{0}=-\frac{9{,}196{,}141}{806{,}215{,}680}\).

Applying Lemma 1 again, one has

$$\begin{aligned}& \lim_{n\rightarrow\infty} n^{\frac{19}{2}} \bigl(I_{2}^{(1)}(n)-I_{2}^{(1)}(n+1) \bigr)= \frac {1{,}287{,}793{,}943{,}249}{267{,}483{,}013{,}447{,}680}, \end{aligned}$$
(2.13)
$$\begin{aligned}& \lim_{n\rightarrow\infty} n^{\frac{17}{2}} \bigl(I_{2}^{(1)}(n)- \ell \bigr)=\frac{75{,}752{,}584{,}897}{133{,}741{,}506{,}723{,}840}. \end{aligned}$$
(2.14)

Repeating the above approach for the Ioachimescu constant, we can prove Theorem 1. □

3 Other sequences convergent to the Ioachimescu constant â„“

In this section, we provide some other approximation for the Ioachimescu constants by a multiple-correction method. The initial correction is the same as above, we change the correction function from step 2.

(Step 2) The first-correction. Let the second-correction function be

$$ \eta_{1}^{(2)}(n)=\frac{a}{\sqrt {n}\sqrt{1+\frac{u_{1}}{n+v_{1}}}} $$
(3.1)

and define

$$ I_{1}^{(2)}(n):=\sum_{k=1}^{n}{ \frac{1}{\sqrt {k}}} -2 (\sqrt {n} -1 )+\frac{a}{\sqrt {n}\sqrt{1+\frac {u_{1}}{n+v_{1}}}}. $$
(3.2)

By the same method as above, we find \(a=-\frac{1}{2}\), \(u_{1}=\frac{1}{6}\), \(v_{1}=-\frac{1}{8}\).

Applying Lemma 1, one has

$$\begin{aligned}& \lim_{n\rightarrow\infty} n^{\frac{9}{2}} \bigl(I_{1}^{(2)}(n)-I_{1}^{(2)}(n+1) \bigr)=\frac{259}{27{,}648}, \end{aligned}$$
(3.3)
$$\begin{aligned}& \lim_{n\rightarrow\infty} n^{\frac{7}{2}} \bigl(I_{1}^{(2)}(n)- \ell \bigr) = \frac{37}{13{,}824}. \end{aligned}$$
(3.4)

Repeating the above approach for the Ioachimescu constant, we can prove the following theorem.

Theorem 2

For the Ioachimescu constant, we have the following convergent sequence:

$$ I_{i}(n)=\sum_{k=1}^{n}{ \frac{1}{\sqrt {k}}} -2 (\sqrt {n} -1 )+\frac {a}{\sqrt {n}\sqrt{1+\frac{u_{1}}{n+v_{1}+\frac{u_{2}}{n+v_{2}+\frac {u_{3}}{n+v_{3}+\ddots+\frac{u_{i}}{n+v_{i}}}}}}}, $$
(3.5)

where

$$\begin{aligned}& a = -\frac{1}{2},\qquad u_{1}=\frac{1}{6}, \qquad v_{1}=-\frac{1}{8};\qquad u_{2}=\frac{37}{576}, \qquad v_{2}=-\frac{1}{888}; \end{aligned}$$
(3.6)
$$\begin{aligned}& u_{3} = \frac{837}{2{,}738},\qquad v_{3}=\frac{33}{18{,}352}; \end{aligned}$$
(3.7)
$$\begin{aligned}& u_{4} = \frac{2{,}311{,}279}{3{,}690{,}240},\qquad v_{4}=- \frac{162{,}349}{92{,}950{,}896};\qquad u_{5}=\frac {393{,}826{,}357{,}519}{351{,}191{,}348{,}010}, \end{aligned}$$
(3.8)
$$\begin{aligned}& v_{5} = \frac {5{,}022{,}056{,}744{,}279}{2{,}720{,}864{,}635{,}038{,}456};\qquad\cdots. \end{aligned}$$
(3.9)

Remark 1

Theorem 2 provides some quasi-continued fraction sequences with a faster rate of convergence for the Ioachimescu constant.

References

  1. Ioachimescu, AG: Problem 16. Gaz. Math. 1(2), 39 (1895)

    Google Scholar 

  2. Sîntămărian, A: Some inequalities regarding a generalization of Ioachimescu’s constant. J. Math. Inequal. 4(3), (2010)

  3. Sîntămărian, A: Regarding a generalisation of Ioachimescu’s constant. Math. Gaz. 94(530), 270-283 (2010)

    MATH  Google Scholar 

  4. Chen, CP, Li, L, Xu, YQ: Ioachimescu’s constant. Proc. Jangjeon Math. Soc. 13, 299-304 (2010)

    MATH  Google Scholar 

  5. Ramanujan, S: On the sum of the square roots of the first n natural numbers. J. Indian Math. Soc. 7, 173-175 (1915)

    Google Scholar 

  6. Sîntămărian, A: Sequences that converge quickly to a generalized Euler constant. Math. Comput. Model. 53, 624-630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sîntămărian, A: Some new sequences that converge to a generalized Euler constant. Appl. Math. Lett. 25, 941-945 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sîntămărian, A: A generalisation of Ioachimescu’s constant. Math. Gaz. 93(528), 456-467 (2009)

    MATH  Google Scholar 

  9. Sîntămărian, A: Some sequences that converge to a generalization of ioachimescu’s constant. Autom. Comput. Appl. Math. 18(1), 177-185 (2009)

    Google Scholar 

  10. Sîntămărian, A: Sequences that converge to a generalization of Ioachimescu’s constant. Sci. Stud. Res. Ser. Math. Inform. 20(2), 89-96 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cao, XD, Xu, HM, You, X: Multiple-correction and faster approximation. J. Number Theory 149, 327-350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, XD: Multiple-correction and continued fraction approximation. J. Math. Anal. Appl. 424, 1425-1446 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, XD, You, X: Multiple-correction and continued fraction approximation (II). Appl. Math. Comput. 261, 192-205 (2015)

    MathSciNet  Google Scholar 

  14. Mortici, C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59(8), 2610-2614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mortici, C: Product approximations via asymptotic integration. Am. Math. Mon. 117(5), 434-441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, HM, You, X: Continued fraction inequalities for the Euler-Mashcheroni constant. J. Inequal. Appl. 2014, 343 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. You, X: Some new quicker convergences to Glaisher-Kinkelin’s and Bendersky-Adamchik’s constants. Appl. Math. Comput. 271, 123-130 (2015)

    MathSciNet  Google Scholar 

  18. You, X, Chen, D-R: Improved continued fraction sequence convergent to the Somos’ quadratic recurrence constant. J. Math. Anal. Appl. 436, 513-520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. You, X, Huang, SY, Chen, D-R: Some new continued fraction sequence convergent to the Somos’ quadratic recurrence constant. J. Inequal. Appl. 2016, 91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and anonymous reviewers for their valuable comments and corrections that helped improve the original version of this paper. The research was supported by the National Natural Science Foundation of China under grant no. 61403034, 11571267, and 91538112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu You.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, X., Chen, DR. & Shi, H. Some new sequences that converge to the Ioachimescu constant. J Inequal Appl 2016, 148 (2016). https://doi.org/10.1186/s13660-016-1089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-016-1089-x

MSC

Keywords