Skip to main content

Some computational formulas related the Riemann zeta-function tails

Abstract

In this paper we present two computational formulae for one kind of reciprocal sums related to the Riemann zeta-function at integer points \(s=4,5\), which answers an open problem proposed by Lin (J. Inequal. Appl. 2016:32, 2016).

Introduction and main results

Let \((a_{k} )_{k\ge1}\) be a strictly increasing positive sequence such that

$$ \sum_{k=1}^{\infty} \frac{1}{a_{k}}< +\infty. $$
(1.1)

Many authors study the computational formula for infinite sums of reciprocal \(a_{k}\),

$$ \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{a_{k}} \Biggr)^{-1} \Biggr\rfloor ,\quad n\in\mathbb{N}, $$
(1.2)

where \(\lfloor x \rfloor\) denotes the integer part of x.

For example, let \((F_{k})\) be the famous Fibonacci sequence: \(F_{k+1}=F_{k}+F_{k-1}\) with the initial values \(F_{0}=0\) and \(F_{1}=1\). Ohtsuka and Nakamura [2] showed that

$$\begin{aligned}& \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{F_{k}} \Biggr)^{-1} \Biggr\rfloor = \textstyle\begin{cases} F_{n-2} &\mbox{if } n\ge2 \mbox{ is even}, \\ F_{n-2}-1 &\mbox{if } n\ge1 \mbox{ is odd}, \end{cases}\displaystyle \\& \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{F_{k}^{2}} \Biggr)^{-1} \Biggr\rfloor = \textstyle\begin{cases} F_{n-1}F_{n}-1 &\mbox{if } n\ge2 \mbox{ is even}, \\ F_{n}F_{n-1} &\mbox{if } n\ge1 \mbox{ is odd}. \end{cases}\displaystyle \end{aligned}$$

Xu and Wang [3] obtained a complex computational formula for \(a_{k}=F_{k}^{3}\).

Zhang and Wang [4] studied this problem for the Pell numbers \(P_{k}\) and showed that

$$\Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{P_{k}} \Biggr)^{-1} \Biggr\rfloor = \textstyle\begin{cases} P_{n-1}+P_{n-2} &\mbox{if } n\ge2 \mbox{ is even}, \\ P_{n-1}+P_{n-2}-1 &\mbox{if } n\ge1 \mbox{ is odd}, \end{cases} $$

where the Pell numbers \(P_{k}\) are defined by \(P_{0}=0\), \(P_{1}=1\), and the recurrence relation \(P_{k+1}=2P_{k}+P_{k-1}\).

For some other results related to recursive sequences, recursive polynomials, and their promotion forms, see [513] and references therein.

Very recently, Lin [1] investigated the related problem for the sequence \(a_{k}=k^{s}\) with integer \(s\ge2\) and showed the following two interesting identities:

$$\begin{aligned} & \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{k^{2}} \Biggr)^{-1} \Biggr\rfloor =n-1, \end{aligned}$$
(1.3)
$$\begin{aligned} & \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{k^{3}} \Biggr)^{-1} \Biggr\rfloor =2n(n-1). \end{aligned}$$
(1.4)

This is an important problem, which has a close relationship with the Riemann zeta-function \(\zeta(s)\). Lin noted that there does not exist an integer-coefficient polynomial \(q(x)\) of degree 3 such that the following identity holds:

$$ \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{k^{4}} \Biggr)^{-1} \Biggr\rfloor =q(n). $$
(1.5)

In [1], Lin declared that giving a precise calculation formula for \((\sum_{k=n}^{\infty}\frac{1}{k^{s}} )^{-1}\) with \(s=4\) is a very complicated problem. In this paper, we tackle this open problem.

Theorem 1

For all integer \(n\ge2\), we have the identity

$$ \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{k^{4}} \Biggr)^{-1} \Biggr\rfloor =-1+4n-5n^{2}+3n^{3} + \biggl\lfloor \frac{(2n+1)(n-1)}{4} \biggr\rfloor . $$
(1.6)

Furthermore, for \(a_{k}=k^{5}\), we also have an analogous computational formula.

Theorem 2

For all integer \(n\ge4\), we have

$$ \Biggl\lfloor \Biggl(\sum_{k=n}^{\infty} \frac{1}{k^{5}} \Biggr)^{-1} \Biggr\rfloor =-5 n + 9 n^{2} - 8 n^{3} + 4 n^{4} + \biggl\lfloor \frac{(n+1)(n-2)}{3} \biggr\rfloor . $$
(1.7)

Proof of Theorem 1

Assume that

$$g(n)-g(n+1)< \frac{1}{n^{4}}< f(n)-f(n+1), $$

and \(f(\infty)=g(\infty)=0\). Summing the inequalities from n to ∞, we have

$$ g(n)< \sum_{k=n}^{\infty} \frac{1}{k^{4}}< f(n). $$
(2.1)

These inequalities allow us to study the computational formulas of Theorem 1. The problem of finding the functions \(f(n)\), \(g(n)\) (or \(F(n)\), \(G(n)\) in Section 3) is transformed into solving the finite continued fraction approximation solution of difference equation for ‘large’ n:

$$ y(n)-y(n+1)=\frac{1}{n^{4}}. $$
(2.2)

We will apply the multiple-correction method (see [1416]) and solve it as follows.

Step 1

(The initial correction)

Choosing \(\eta_{0}(n)=\frac{b}{n^{3} + a_{2} n^{2} + a_{1} n + a_{0}}\) and developing the expression \(\eta_{0}(n)-\eta_{0}(n+1)-\frac{1}{n^{4}}\) into power series expansion in \(1/n\), we easily obtain

$$\begin{aligned} &\eta_{0}(n)-\eta_{0}(n+1)- \frac{1}{n^{4}} \\ &\quad=(3b-1)\frac{1}{n^{4}}+(-6 b - 4 a_{2} b) \frac{1}{n^{5}}+\bigl(10 b - 5 a_{1} b + 10 a_{2} b + 5 a_{2}^{2} b\bigr)\frac{1}{n^{6}} \\ &\qquad{}+\bigl(-15 b - 6 a_{0} b + 15 a_{1} b - 20 a_{2} b + 12 a_{1} a_{2} b - 15 a_{2}^{2} b - 6 a_{2}^{3} b\bigr) \frac{1}{n^{7}}+O \biggl(\frac{1}{n^{8}} \biggr). \end{aligned}$$
(2.3)

If \(b=\frac{1}{3}\), \(a_{2}=-\frac{3}{2}\), \(a_{1}=\frac{5}{4}\), \(a_{0}=-\frac{3}{8}\), then we can get the approximation solution

$$g(n)=\frac{b}{n^{3} + a_{2} n^{2} + a_{1} n + a_{0}} $$

of difference equation (2.2), which is the best possible rational approximation solution of such structure as n tends to infinity.

Step 2

(The first correction)

Choose \(\eta_{1}(n)=\frac{b}{n^{3} + a_{2} n^{2} + a_{1} n + a_{0}+\frac{u}{x+v}}\) and developing the expression \(\eta_{1}(n)-\eta_{1}(n+1)-\frac{1}{n^{4}}\) into power series expansion in \(1/n\), we easily obtain

$$ \eta_{1}(n)-\eta_{1}(n+1)- \frac{1}{n^{4}}= \biggl(-\frac{7}{16}-\frac{7}{3} u \biggr) \frac{1}{n^{8}}+\frac{4}{3} (u+2uv)\frac{1}{n^{9}}+O \biggl( \frac{1}{n^{10}} \biggr). $$
(2.4)

If \(u=-\frac{3}{16}\), \(v=-\frac{1}{2}\), then we can get the approximation solution

$$f(n)=\frac{b}{n^{3} + a_{2} n^{2} + a_{1} n + a_{0}+\frac{u}{x+v}} $$

of difference equation (2.2), which has a better approximation rate than \(g(n)\) for ‘large’ n.

So we can get following inequalities necessary in the proofs of our theorems.

Lemma 1

Let

$$ f(n)=\frac{ \frac{8}{3} }{ -1 + 10 n - 12 n^{2} + 8 n^{3}-\frac{3}{2n-1}}. $$
(2.5)

Then, for \(n\ge2\),

$$ f(n)-f(n+1)>\frac{1}{n^{4}}. $$
(2.6)

Proof

We easily check that

$$f(n)-f(n+1)-\frac{1}{n^{4}}=\frac{1}{n^{4} (1 + n) (1 + n + n^{2}) (-1 + 2 n - 2 n^{2} + n^{3}) }. $$

Note that \(-1 + 2 n - 2 n^{2} + n^{3}=(-2 + n)(2 + n^{2})+ 3\), so the above polynomial is positive for \(n\ge2\). Then, for \(n\in\mathbb{N}\),

$$f(n)-f(n+1)-\frac{1}{n^{4}}>0. $$

 □

Lemma 2

Let

$$ g(n)=\frac{8}{3 (-3 + 10 n - 12 n^{2} + 8 n^{3})}. $$
(2.7)

Then, for \(n\in\mathbb{N}\),

$$ g(n)-g(n+1)< \frac{1}{n^{4}}. $$
(2.8)

Proof

We have

$$g(n)-g(n+1)-\frac{1}{n^{4}}=\frac{- 28 n^{2}+9}{n^{4} (-3 + 10 n - 12 n^{2} + 8 n^{3}) (3 + 10 n + 12 n^{2} + 8 n^{3})}, $$

where \(h(n):=-3 + 10 n - 12 n^{2} + 8 n^{3}=(-2 + n)(18 + 4 n + 8 n^{2})+ 33>0\) for \(n\ge2\), and \(h(1)=3>0\). So \(h(n)>0\) for \(n\in\mathbb{N}\). This completes the proof of Lemma 2. □

Proof of Theorem 1

Summing the inequalities of the form

$$g(n)-g(n+1)< \frac{1}{n^{4}}< f(n)-f(n+1) $$

from n to ∞ and noting that \(f(\infty)=g(\infty)=0\), we have

$$ g(n)< \sum_{k=n}^{\infty}\frac{1}{k^{4}}< f(n), \quad n\ge2. $$
(2.9)

Then, for \(n\ge2\),

$$ \frac{3}{8} \biggl(\frac{-3}{2n-1}-3 + 10 n - 12 n^{2} + 8 n^{3} \biggr)< \Biggl(\sum _{k=n}^{\infty}\frac{1}{k^{4}} \Biggr)^{-1} < \frac{3}{8}\bigl(-3 + 10 n - 12 n^{2} + 8 n^{3}\bigr). $$
(2.10)

Note that

$$\frac{3}{8}\bigl(-3 + 10 n - 12 n^{2} + 8 n^{3} \bigr)=3n^{3}-5n^{2}+4n-1 + \biggl(\frac {n(2n-1)}{4}- \frac{1}{8} \biggr) $$

and

$$\frac{3}{8} \biggl(\frac{-3}{2n-1} -3+ 10 n - 12 n^{2} + 8 n^{3} \biggr)=3n^{3}-5n^{2}+4n-1 + \biggl( \frac{n(2n-1)}{4}-\frac{9}{8(2n-1)}-\frac{1}{8} \biggr). $$

For \(n\ge5\), we have \(\frac{9}{8(2n-1)}\le\frac{1}{8}\). Then

$$\begin{aligned} \biggl\lfloor \frac{n(2n-1)}{4}-\frac{1}{8} \biggr\rfloor &\ge \biggl\lfloor \frac{n(2n-1)}{4}-\frac{9}{8(2n-1)}-\frac{1}{8} \biggr\rfloor \ge \biggl\lfloor \frac{n(2n-1)}{4}-\frac{1}{4} \biggr\rfloor \\ &= \biggl\lfloor \frac{(2n+1)(n-1)}{4} \biggr\rfloor \end{aligned}$$

and, for \(n\in\mathbb{N}\),

$$\biggl\lfloor \frac{n(2n-1)}{4}-\frac{1}{8} \biggr\rfloor = \biggl\lfloor \frac{(2n+1)(n-1)}{4} \biggr\rfloor . $$

It follows that, for \(n\ge5\),

$$ \biggl\lfloor \frac{n(2n-1)}{4}-\frac{1}{8} \biggr\rfloor = \biggl\lfloor \frac{n(2n-1)}{4}-\frac{9}{8(2n-1)}-\frac{1}{8} \biggr\rfloor = \biggl\lfloor \frac{(2n+1)(n-1)}{4} \biggr\rfloor . $$
(2.11)

Finally, we note that the above identities hold for \(n=2,3,4\). Combining (2.10) and (2.11), we prove Theorem 1. □

Proof of Theorem 2

Similarly to Section 2, by the multiple-correction method we can solve the finite continued fraction approximation solution \(F(n)\), \(G(n)\) of the differential equation

$$ y(n)-y(n+1)=\frac{1}{n^{5}}. $$
(3.1)

So we have the following inequalities.

Lemma 3

Let

$$ F(n)=\frac{9}{-2 - 48 n + 84 n^{2} - 72 n^{3} + 36 n^{4}}. $$
(3.2)

Then, for \(n\ge2\),

$$ F(n)-F(n+1)>\frac{1}{n^{5}}. $$
(3.3)

Proof

$$\begin{aligned} &F(n)-F(n+1)-\frac{1}{n^{5}} \\ &\quad=\frac{-1 + 660 n^{2}}{n^{5} (-1 - 24 n + 42 n^{2} - 36 n^{3} + 18 n^{4}) (-1 +24 n + 42 n^{2} + 36 n^{3} + 18 n^{4})}. \end{aligned}$$
(3.4)

Note that

$$ -1 - 24 n + 42 n^{2} - 36 n^{3} + 18 n^{4}=(n-2) \bigl(60 + 42 n + 18 n^{3}\bigr)+119. $$
(3.5)

Then, for \(n\ge2\), we have

$$F(n)-F(n+1)-\frac{1}{n^{5}}>0. $$

 □

Lemma 4

Let

$$ G(n)=\frac{9}{-1/4 - 48 n + 84 n^{2} - 72 n^{3} + 36 n^{4}}. $$
(3.6)

Then, for \(n\ge5\),

$$ G(n)-G(n+1)< \frac{1}{n^{5}}. $$
(3.7)

Proof

Similarly to the proof of Lemma 3, we have

$$\begin{aligned} &G(n)-G(n+1)-\frac{1}{n^{5}} \\ &\quad=-\frac{1-37\text{,}536 n^{2} +2\text{,}016 n^{4}}{n^{5} (-1 - 192 n + 336 n^{2} - 288 n^{3} + 144 n^{4}) (-1 + 192 n +336 n^{2} + 288 n^{3} + 144 n^{4})}. \end{aligned}$$

Note that

$$1-37\text{,}536 n^{2} +2\text{,}016 n^{4}=(-5 + n) \bigl(64\text{,}320 + 12\text{,}864 n + 10\text{,}080 n^{2} + 2\text{,}016 n^{3}\bigr)+ 321\text{,}601 $$

and

$$-1 - 192 n + 336 n^{2} - 288 n^{3} + 144 n^{4}=(-4 + n) \bigl(5\text{,}760 + 1\text{,}488 n + 288 n^{2} + 144 n^{3}\bigr)+ 23\text{,}039. $$

Then, for \(n\ge5\), the inequality \(G(n)-G(n+1)-\frac{1}{n^{5}}<0\) holds. □

Proof of Theorem 2

We assume that \(n\ge5\) in the following proof. Summing the inequalities of the form

$$G(n)-G(n+1)< \frac{1}{n^{4}}< F(n)-F(n+1) $$

from n to ∞ and noting that \(F(\infty)=G(\infty)=0\), we have

$$\begin{aligned} &{-} 5 n + 9 n^{2} - 8 n^{3} + 4n^{4}+ \biggl(-\frac{2}{9} -\frac{n}{3} + \frac {n^{2}}{3} \biggr) \\ &\quad< \Biggl(\sum_{k=n}^{\infty}\frac{1}{k^{5}} \Biggr)^{-1} \\ &\quad< - 5 n + 9 n^{2} - 8 n^{3} + 4n^{4}+ \biggl(- \frac{1}{36} -\frac{n}{3} + \frac {n^{2}}{3} \biggr). \end{aligned}$$
(3.8)

Next, for \(n\ge3\), we will prove the following identities:

$$ \biggl\lfloor -\frac{2}{9} -\frac{n}{3} + \frac{n^{2}}{3} \biggr\rfloor = \biggl\lfloor -\frac{1}{36} - \frac{n}{3} + \frac{n^{2}}{3} \biggr\rfloor = \biggl\lfloor \frac{(n+1)(n-2)}{3} \biggr\rfloor . $$
(3.9)

Since

$$\frac{(n+1)(n-2)}{3}< -\frac{2}{9} -\frac{n}{3} + \frac{n^{2}}{3}< -\frac {1}{36} -\frac{n}{3} + \frac{n^{2}}{3}, $$

it suffices to prove that

$$ \biggl\lfloor -\frac{1}{36} -\frac{n}{3} + \frac{n^{2}}{3} \biggr\rfloor = \biggl\lfloor \frac{(n+1)(n-2)}{3} \biggr\rfloor . $$
(3.10)

We will consider three cases.

Case 1. If \(n=3m\), \(m\in\mathbb{N}\), then we have

$$\biggl\lfloor -\frac{1}{36} -\frac{n}{3} + \frac{n^{2}}{3} \biggr\rfloor = \biggl\lfloor \frac{(n+1)(n-2)}{3} \biggr\rfloor =-1-m+3m^{2}. $$

Case 2. If \(n=3m+1\), \(m\in\mathbb{N}\), then we have

$$\biggl\lfloor -\frac{1}{36} -\frac{n}{3} + \frac{n^{2}}{3} \biggr\rfloor = \biggl\lfloor \frac{(n+1)(n-2)}{3} \biggr\rfloor =-1+m + 3 m^{2}. $$

Case 3. If \(n=3m+2\), \(m\in\mathbb{N}\), then we have

$$\biggl\lfloor -\frac{1}{36} -\frac{n}{3} + \frac{n^{2}}{3} \biggr\rfloor = \biggl\lfloor \frac{(n+1)(n-2)}{3} \biggr\rfloor =3m + 3 m^{2}. $$

This proves that (3.10) holds. Finally, combining (3.8) and (3.9), we prove Theorem 2. □

References

  1. Lin, X: Some identities related to Riemann zeta-function. J. Inequal. Appl. 2016, 32 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  2. Ohtsuka, H, Nakamura, S: On the sum of reciprocal Fibonacci numbers. Fibonacci Q. 46/47, 153-159 (2008/2009)

  3. Xu, Z, Wang, T: The infinite sum of the cubes of reciprocal Fibonacci numbers. Adv. Differ. Equ. 2013, 184 (2013)

    Article  Google Scholar 

  4. Zhang, W, Wang, T: The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 218, 6164-6167 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Zhang, H, Wu, Z: On the reciprocal sums of the generalized Fibonacci sequences. Adv. Differ. Equ. 2013, 377 (2013)

    MathSciNet  Article  Google Scholar 

  6. Kilic, E, Arikan, T: More on the infinite sum of reciprocal usual Fibonacci, Pell and higher order recurrences. Appl. Math. Comput. 219, 7783-7788 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Komatsu, T, Laohakosol, V: On the sum of reciprocals of numbers satisfying a recurrence relation of orders. J. Integer Seq. 13, Article ID 10.5.8 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Komatsu, T: On the nearest integer of the sum of reciprocal Fibonacci numbers. In: Proceedings of the Fourteenth International Conference on Fibonacci Numbers and Their Applications. Aportaciones Matematicas Investigacion, vol. 20, pp. 171-184 (2011)

    Google Scholar 

  9. Mansour, T, Shattuck, M: Restricted partitions and q-Pell numbers. Cent. Eur. J. Math. 9, 346-355 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. Wu, Z, Zhang, H: On the reciprocal sums of higher-order sequences. Adv. Differ. Equ. 2013, 189 (2013)

    MathSciNet  Article  Google Scholar 

  11. Wu, Z, Zhang, W: The sums of the reciprocals of Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 2012, 134 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  12. Wu, Z, Zhang, W: Several identities involving the Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 2013, 205 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  13. Anantakitpaisal, P, Kuhapatanakul, K: Reciprocal sums of the tribonacci numbers. J. Integer Seq. 19, Article ID 16.2.1 (2016)

    MATH  Google Scholar 

  14. Cao, X, Xu, H, You, X: Multiple-correction and faster approximation. J. Number Theory 149, 327-350 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  15. Cao, X, You, X: Multiple-correction and continued fraction approximation (II). Appl. Math. Comput. 261, 192-205 (2015)

    MathSciNet  Google Scholar 

  16. Cao, X, Mortici, C: Multiple-correction and summation of the rational series. Available online at arXiv:1511.00198v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmin Xu.

Additional information

Competing interests

The author declares that she has no competing interests.

Author’s contributions

The author read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H. Some computational formulas related the Riemann zeta-function tails. J Inequal Appl 2016, 132 (2016). https://doi.org/10.1186/s13660-016-1068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-016-1068-2

MSC

  • 11B83
  • 11M06
  • 11J70

Keywords

  • Riemann zeta-function
  • inequality
  • continued fraction
  • telescoping method
  • multiple-correction method