Open Access

Proofs to two inequality conjectures for a point on the plane of a triangle

Journal of Inequalities and Applications20162016:76

https://doi.org/10.1186/s13660-016-1017-0

Received: 17 December 2015

Accepted: 11 February 2016

Published: 29 February 2016

Abstract

We prove two conjectures for a point on the plane of a triangle presented in (Liu in J. Math. Inequal. 8(3):597-611, 2014, doi:10.1007/s11590-013-0708-4) by using the successive difference substitution algorithm NEWTSDS. Compared with the original proof, the new one is simpler and more easily understood. Similar problems can be treated with the same procedure.

Keywords

geometry inequalitysuccessive difference substitutionautomated reasoning

MSC

51M1612-04

1 Introduction

Liu [1] put forward four conjectures for a point on the plane of a triangle. For Conjectures 3 and 4 in its last part, we conclude that they are correct. We prove them with the help of a successive difference substitution algorithm called NEWTSDS [2].

As showed in Figure 1, P is a point on the plane of a triangle \(ABC\), which means that P is not limited only inside the triangle. Let \((x,y,z)\) be the barycentric coordinates of P with respect to the triangle \(ABC\). Let D, E, F be the foots of the perpendicular to the three sides BC, CA, AB of \(\triangle ABC\) from P, respectively. As in [1], let a, b, c, \(R_{1}\), \(R_{2}\), \(R_{3}\), \(r_{1}\), \(r_{2}\), \(r_{3}\) indicate the lengths of BC, CA, AB, PA, PB, PC, PD, PE, PF, respectively.
Figure 1

Triangle \(\pmb{ABC}\) and point P . Point P and triangle \(ABC\) are on the same plane. The point may be inside or outside the triangle.

Conjectures 3 and 4 in [1] state that
$$ \frac{2R_{1}^{2}-r_{2}^{2}-r_{3}^{2}}{(b+c)^{2}}+\frac {2R_{2}^{2}-r_{3}^{2}-r_{1}^{2}}{(c+a)^{2}}+\frac{2R_{3}^{2}-r_{1}^{2}-r_{2}^{2}}{(a+b)^{2}}\geq \frac{ 3}{ 8} $$
(1)
and
$$ \frac{R_{2}^{2}+R_{3}^{2}-r_{2}^{2}-r_{3}^{2}}{(b+c)^{2}}+\frac {R_{3}^{2}+R_{1}^{2}-r_{3}^{2}-r_{1}^{2}}{(c+a)^{2}}+\frac {R_{1}^{2}+R_{2}^{2}-r_{1}^{2}-r_{2}^{2}}{(a+b)^{2}}\geq\frac{ 3}{ 8}. $$
(2)

These two inequalities can be considered as some kind of promotion of the famous Erdös-Mordell inequality [3], which states some relationship between a point and a triangle on the same plane. Mathematicians have presented different proofs, such as [46], to the original Erdös-Mordell inequality and some generalizations [7, 8].

The rest of this paper is arranged as follows. In Section 2, a well-known equivalent condition of the nonnegativity of quadratics is recalled, and a computer aided reasoning tool, the algorithm called NEWTSDS based on the successive difference substitution method, is introduced. The proofs to the two conjectures are discoursed in Section 3. The proofs also show that the algorithm NEWTSDS saves us a lot of effort to avoid tedious calculation, so that we can concentrate on the mainline of the process.

2 Proving tools

In this section, the symbols are not specified, which means that they do not denote anything as in the first section. For any quadratic \(f(x)=ax^{2}+bx+c\) with \(a,b,c,x\in\mathcal{R}\) (real field), we have
$$ \forall x \in\mathcal{R},\quad f(x)\geq0\quad \Leftrightarrow \quad a\geq0 \wedge c\geq0 \wedge 4ac-b^{2}\geq0. $$
(3)
Based on the original successive difference substitution method [9] and its sequels [10], in [2] the algorithm called NEWTSDS is presented, which uses the barycentric matrices obtained by performing elementary row interchanges on the matrix
$$ T_{n}=\left [ \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} 1 & \frac{1}{2} &\cdots&\frac{1}{n}\\ 0 & \frac{1}{2} &\ddots&\vdots\\ \vdots& \ddots& \ddots& \frac{1}{n}\\ 0 & \cdots& 0 & \frac{1}{n} \end{array}\displaystyle \right ]_{n\times n} $$
as the substitution matrices. It is a complete tool for the decision of the nonnegativity of polynomials. We use it during the proving process. This is a practical and most efficient method we can perform till now.

3 Main result: proofs to the two conjectures

In this section, all the symbols have the same meanings as in Section 1. Since the barycentric coordinates are a form of homogeneous coordinates, without loss of generality, we can restrict \((x,y,z)\) with the condition
$$ x+y+z=1. $$
(4)
There are some other needed substitution equations, which are well known and just listed here without proofs:
$$\begin{aligned}& R_{1}=\sqrt{\bigl(b^{2}z+c^{2}y \bigr)-a^{2}yz-b^{2}xz-c^{2}xy}, \end{aligned}$$
(5)
$$\begin{aligned}& R_{2}=\sqrt{\bigl(a^{2}z+c^{2}x \bigr)-a^{2}yz-b^{2}xz-c^{2}xy}, \end{aligned}$$
(6)
$$\begin{aligned}& R_{3}=\sqrt{\bigl(ya^{2}+xb^{2} \bigr)-a^{2}yz-b^{2}xz-c^{2}xy}, \end{aligned}$$
(7)
$$\begin{aligned}& r_{1}= \biggl\lvert \frac{2xS}{a} \biggr\lvert ,\qquad r_{2}= \biggl\lvert \frac{2yS}{b} \biggr\lvert ,\qquad r_{3}= \biggl\lvert \frac{2zS}{c} \biggr\lvert , \end{aligned}$$
(8)
$$\begin{aligned}& S=\sqrt{s (s-a ) (s-b ) (s-c )}, \end{aligned}$$
(9)
$$\begin{aligned}& a=u+v,\qquad b=v+w,\qquad c=w+u. \end{aligned}$$
(10)
In (9), S and s denote the area and the half of the perimeter of \(\triangle ABC\), respectively. In (10), u, v, w are general nonnegative real numbers.
Let \(f_{1}\) and \(f_{2}\) denote the differences between the left and right sides of (1) and (2), respectively:
$$\begin{aligned}& f_{1}=\frac{2R_{1}^{2}-r_{2}^{2}-r_{3}^{2}}{(b+c)^{2}}+\frac {2R_{2}^{2}-r_{3}^{2}-r_{1}^{2}}{(c+a)^{2}}+\frac{2R_{3}^{2}-r_{1}^{2}-r_{2}^{2}}{(a+b)^{2}}- \frac {3}{8}, \end{aligned}$$
(11)
$$\begin{aligned}& f_{2}=\frac{R_{2}^{2}+R_{3}^{2}-r_{2}^{2}-r_{3}^{2}}{(b+c)^{2}}+\frac {R_{3}^{2}+R_{1}^{2}-r_{3}^{2}-r_{1}^{2}}{(c+a)^{2}} +\frac{R_{1}^{2}+R_{2}^{2}-r_{1}^{2}-r_{2}^{2}}{(a+b)^{2}}- \frac{3}{8}. \end{aligned}$$
(12)

Obviously, the correctness of (1) and (2) is equivalent to the positive semi-definiteness of (11) and (12), respectively.

Substituting (4)-(10) into (11) and (12) and removing the nonnegative denominator, we get the equivalent polynomials \(f_{1n}\) and \(f_{2n}\) of u, v, w, x, y:
$$ f_{1n}=g_{1} x^{2}+g_{2} x+g_{3}, \qquad f_{2n}=h_{1} x^{2}+h_{2} x+h_{3}, $$
where \(g_{1}\), \(h_{1}\) are polynomials of u, v, w, and \(g_{i}\), \(h_{i}\) (\(i=2,3\)) are polynomials of u, v, w, y. This means the positive semi-definiteness of \(f_{1}\) and \(f_{2}\) is equivalent to the positive semi-definiteness of \(f_{1n}\) and \(f_{2n}\), respectively, when \(u,v,w\geq0\). For better performance, we write all the long equations in Section 5.

Remark 1

The barycentric coordinate system is a widely used tool, which transforms geometric problems to algebraic ones for which lots of computer-aided solvers are available. As shown in the following steps, we can focus ourselves on the main line of proofs and employ some automated reasoning package to deal with the less important branches.

According to condition (3), when \(x,y\in\mathcal{R}\) and \(u,v,w\geq0\), \(f_{1n}\), \(f_{2n}\) are both nonnegative if and only if \(g_{1}\), \(h_{1}\), \(g_{3}\), \(h_{3}\), \(\Delta_{1}=4g_{1}g_{3}-g_{2}^{2}\) and \(\Delta_{2}=4h_{1}h_{3}-h_{2}^{2}\) are all nonnegative.

From the expressions it is easy to find that \(g_{1}=h_{1}\) and they are both nonnegative. In the following two subsections, we discourse the nonnegativity of \(g_{3}\), \(h_{3}\), \(\Delta_{1}\), and \(\Delta_{2}\) when \(y\in\mathcal{R}\), \(u,v,w \geq0\).

3.1 Nonnegativity of \(g_{3}\) and \(h_{3}\)

Since \(g_{3}\) and \(h_{3}\) are both quadratics of y, we can rewrite them as follows:
$$\begin{aligned}& g_{3}=(u+v)^{2} \bigl(g_{31}y^{2}+g_{32}y+g_{33} \bigr), \end{aligned}$$
(13)
$$\begin{aligned}& h_{3}=(u+v)^{2} \bigl(h_{31}y^{2}+h_{32}y+h_{33} \bigr). \end{aligned}$$
(14)
From the expressions we find that \(h_{31}=g_{31}\), \(g_{33}\), and \(h_{33}\) are all nonnegative. Denote
$$\begin{aligned}& \delta _{g}=4g_{31}g_{33}-g_{32}^{2}=64(w+u)^{2}(v+w)^{2}(v+2u+w)^{2}(u+w+2v)^{2} \delta _{g3}, \\& \delta_{h}=4h_{31}h_{33}-h_{32}^{2}=64(w+u)^{2}(v+w)^{2} \delta_{h3}. \end{aligned}$$
Following the NEWTSDS algorithm, we can get the positive semi-definiteness of \(\delta_{g3}\) and \(\delta_{h3}\) by iterating four loops and five loops, respectively. Hence, we get the nonnegativity of \(g_{3}\) and \(h_{3}\) according to (3).

Remark 2

We can perform the substitution procedure based on the successive difference substitution method by computer. For ternary forms, in every loop, the number of substitutions is at most \(3!=6\) to the power of the ordinal of the current loop, which means at most \(6^{n}\) substitution steps are needed for the nth loop. Actually, many examples show that fewer substitutions are needed. Bounds on the number of steps of substitutions for algorithms based on the successive difference substitution method are presented in [11, 12]. The TSDS5 package for the Maple platform developed by L Yang and Y Yao is available at http://staff.uestc.edu.cn/huangfangjian/?page_id=27. We can use it to check the nonnegativity of polynomials or get a counterpoint when it does not hold.

3.2 Nonnegativity of \(\Delta_{1}\) and \(\Delta_{2}\)

Since \(\Delta_{1}\) and \(\Delta_{2}\) are quadratics of y too, we can perform similar operations as before. First, factor and rewrite \(\Delta _{1}\) and \(\Delta_{2}\) as follows:
$$\begin{aligned}& \Delta_{1}=64(v+u)^{2}(w+u)^{2}(v+w)^{2} \bigl(\varphi_{1}y^{2}+\varphi_{2}y+\varphi _{3} \bigr), \\& \Delta_{2}=64(v+u)^{2}(w+u)^{2}(v+w)^{2} \bigl(\psi_{1}y^{2}+\psi_{2}y+\psi_{3} \bigr). \end{aligned}$$
Then by simple calculation we have
$$\begin{aligned}& \varphi_{1}=64u^{2}v^{2}w^{2}(w+v+u)^{2} \varphi_{11}, \\& \varphi_{2}=128wvu(v+w)^{2}(v+w+u) (v+u+2w)^{2}(u+w+2v)^{2} \varphi_{21}, \\& \varphi_{3}=(v+w)^{2}(v+u+2w)^{2}(u+w+2v)^{2} \varphi_{31}, \\& \psi_{1}=\varphi_{1}, \\& \psi_{2}=32wvu(v+w)^{2}(v+w+u)\psi_{21}, \\& \psi_{3}=(v+w)^{2}\psi_{31}. \end{aligned}$$
From the expression of \(\varphi_{11}\) we find that all the coefficients are positive. Then we have the nonnegativity of \(\varphi_{1}\) and \(\psi _{1}\). Using NEWTSDS, we can obtain the positive semi-definiteness of \(\varphi_{31}\) and \(\psi_{31}\) by iterating four and five loops, respectively. Following this, we acquire the nonnegativity of \(\varphi _{3}\) and \(\psi_{3}\). Denote
$$\begin{aligned}& \delta_{\varphi} =4\varphi_{1}\varphi_{3}- \varphi_{2}^{2}, \\& \delta_{\psi } =4 \psi_{1}\psi_{3}-\psi_{2}^{2}. \end{aligned}$$
Computation shows that
$$\begin{aligned} \begin{aligned} \delta_{\varphi} ={}&\delta_{\psi} \\ ={}&256v^{2}u^{2}w^{2}(v+w)^{2}(u+w+2v)^{2}(u+v+w)^{2} \\ &{}\cdot(u+v+2w)^{2}(2u+w+v)^{2}\delta_{\varphi1}\delta _{\varphi 2}. \end{aligned} \end{aligned}$$
Only one loop of NEWTSDS is needed for \(\delta_{\varphi1}\) to check its nonnegativity. From the expression it is easy to find that \(\delta _{\varphi2}\) is positive semi-definite because all the coefficients of \(\delta_{\varphi2}\) with respect to u are positive semi-definite. So we have the nonnegativity of \(\delta_{\varphi}\) and \(\delta_{\psi}\). According to condition (3), \(\Delta_{1}\) and \(\Delta_{2}\) are both nonnegative because \(\varphi_{1}\), \(\varphi_{3}\), \(\delta_{\varphi}\), \(\psi _{1}\), \(\psi_{3}\), \(\delta_{\psi}\) are all nonnegative.

So, the nonnegativity of all \(g_{1}\), \(g_{3}\), \(h_{1}\), \(h_{3}\), \(\Delta_{1}\), and \(\Delta_{2}\) is achieved. This, we obtain the positive semi-definiteness of \(f_{1n}\) and \(f_{2n}\) based on the equivalence (3). Equivalently, we acquire the nonnegativity of \(f_{1}\) and \(f_{2}\). Furthermore, we finish the proofs of conjectures (1) and (2).

4 Conclusions

In this paper, two interesting conjectures are proved. These two inequalities are about a point and a triangle on the same plane. They describe some relationships between the lengths of three sides of the triangle, the distances from the point to the three vertices and to the three sides of the triangle. The whole procedure is achieved by using the traditional analytical method and some computer-aided tool. First, we transform these two geometric problems into algebraic ones by using the barycentric coordinate system. After analyzing \(f_{1n}\) and \(f_{2n}\) as general polynomials of x, we find their equivalent problems, the nonnegativity of \(g_{1}\), \(g_{3}\), \(h_{1}\), \(h_{3}\), \(\Delta_{1}\), and \(\Delta _{2}\). Actually, this is a process of reducing indeterminate. Repeating this process to eliminate y, we get some polynomials of three variables u, v, w. After that, NEWTSDS is employed to check their positive semi-definiteness, and then we finish the proofs of the conjectures. We can solve some other problems in a similar way just using an analytical method to control the main line and leave branches to the computer. It is easy to read and easy to reproduce.

5 Summarization of long expressions

We summarize all the explicit expressions that are too long to be listed in the main body:
$$\begin{aligned}& g_{1}=16(v+w)^{2}\bigl(\bigl(8v^{2}+8w^{2}+(v-w)^{2} \bigr)u^{8}+\bigl(56v^{3}+40v^{2}w+40vw^{2} \\& \hphantom{g_{1}={}}{}+56w^{3}\bigr)u^{7}+\bigl(144v^{4}+222v^{3}w+248v^{2}w^{2}+222vw^{3}+144w^{4} \bigr)u^{6} \\& \hphantom{g_{1}={}}{}+\bigl(456v^{4}w+194v^{5}+456vw^{4}+770v^{3}w^{2}+194w^{5}+770v^{2}w^{3} \bigr)u^{5} \\& \hphantom{g_{1}={}}{}+\bigl(144v^{6}+468v^{5}w+1174v^{4}w^{2}+1 \text{,}688v^{3}w^{3}+1\text{,}174v^{2}w^{4}+468vw^{5} \\& \hphantom{g_{1}={}}{}+144w^{6}\bigr)u^{4}+ \bigl(56v^{7}+246v^{6}w+954v^{5}w^{2}+2 \text{,}016v^{4}w^{3}+2\text{,}016v^{3}w^{4} \\& \hphantom{g_{1}={}}{}+954v^{2}w^{5}+246vw^{6}+56w^{7} \bigr)u^{3}+ \bigl(9v^{8}+56v^{7}w+412v^{6}w^{2}+1 \text{,}298v^{5}w^{3} \\& \hphantom{g_{1}={}}{}+1\text{,}870v^{4}w^{4}+1 \text{,}298v^{3}w^{5}+412v^{2}w^{6}+56vw^{7}+9w^{8} \bigr)u^{2}+ \bigl(2v^{8}w+88v^{7}w^{2} \\& \hphantom{g_{1}={}}{}+422v^{6}w^{3}+844v^{5}w^{4}+844v^{4}w^{5}+422v^{3}w^{6}+88v^{2}w^{7}+2vw^{8} \bigr)u+9v^{8}w^{2} \\& \hphantom{g_{1}={}}{}+56v^{7}w^{3}+194v^{5}w^{5}+144v^{4}w^{6}+56v^{3}w^{7}+144v^{6}w^{4}+9v^{2}w^{8} \bigr), \end{aligned}$$
(15)
$$\begin{aligned}& g_{2}=32(v+w)^{2}(v+u)^{2}\bigl(\bigl( (9v-9w)u^{7}+\bigl(47v^{2}-56w^{2}+17vw \bigr)u^{6}+\bigl(97v^{3} \\& \hphantom{g_{2}={}}{}+161v^{2}w-144w^{3}-34vw^{2} \bigr)u^{5}+\bigl(295wv^{3}+248w^{2}v^{2}-194w^{4}-124w^{3}v \\& \hphantom{g_{2}={}}{}+97v^{4}\bigr)u^{4}+\bigl(432v^{3}w^{2}-144w^{5}-124vw^{4}+268v^{2}w^{3}+217v^{4}w+47v^{5} \bigr)u^{3} \\& \hphantom{g_{2}={}}{}+\bigl(248w^{4}v^{2}-56w^{6}+9v^{6}+432w^{3}v^{3}+61v^{5}w-34vw^{5}+256w^{2}v^{4} \bigr)u^{2} \\& \hphantom{g_{2}={}}{}+\bigl(295v^{3}w^{4}-9w^{7}+161v^{2}w^{5}+17vw^{6}+2v^{6}w+61v^{5}w^{2}+217v^{4}w^{3} \bigr)u \\& \hphantom{g_{2}={}}{}+47v^{5}w^{3}+97v^{3}w^{5}+9v^{6}w^{2}+97v^{4}w^{4}+47v^{2}w^{6}+9vw^{7} \bigr)y-\bigl(23u^{2}v^{2}w^{2} \\& \hphantom{g_{2}={}}{}-u^{5}w+2uw^{5}-2u^{4}w^{2}-u^{3}w^{3}+u^{2}w^{4}+8vw^{5}+w^{6}+25u^{2}w^{3}v+22uw^{4}v \\& \hphantom{g_{2}={}}{}+13u^{3}wv^{2}+2w^{2}v^{4}+14w^{4}v^{2}+7u^{3}v^{3}+7u^{4}v^{2}+2u^{2}v^{4}+9w^{3}v^{3}+7u^{2}wv^{3} \\& \hphantom{g_{2}={}}{}+vu^{5}+3u^{4}wv+9uw^{2}v^{3}+13u^{3}w^{2}v+27uw^{3}v^{2} \bigr) (u+w+2v)^{2}\bigr), \end{aligned}$$
(16)
$$\begin{aligned}& g_{3}=(v+u)^{2} \bigl(g_{31}y^{2}+g_{32}y+g_{33} \bigr), \end{aligned}$$
(17)
$$\begin{aligned}& g_{31}=16 \bigl(8\bigl(u^{2}+v^{2} \bigr)+(u-v)^{2} \bigr)w^{8}+128(u+v) \bigl(6 \bigl(u^{2}+v^{2}\bigr)+(u-v)^{2} \bigr)w^{7} \\& \hphantom{g_{31}={}}{}+\bigl(2\text{,}304u^{4}+3\text{,}968v^{2}u^{2}+3 \text{,}552v^{3}u+3\text{,}552vu^{3}+2\text{,}304v^{4} \bigr)w^{6} \\& \hphantom{g_{31}={}}{}+32(u+v) \bigl(97u^{4}+131vu^{3}+254v^{2}u^{2}+131v^{3}u+97v^{4} \bigr)w^{5}+\bigl(2\text{,}304u^{6} \\& \hphantom{g_{31}={}}{}+18\text{,}784v^{2}u^{4}+27 \text{,}008v^{3}u^{3}+18\text{,}784v^{4}u^{2}+7 \text{,}488v^{5}u+7\text{,}488vu^{5}+2\text{,}304v^{6} \bigr)w^{4} \\& \hphantom{g_{31}={}}{}+32(u+v) \bigl(28u^{6}+95vu^{5}+382v^{2}u^{4}+626v^{3}u^{3}+382v^{4}u^{2}+95v^{5}u \\& \hphantom{g_{31}={}}{}+28v^{6}\bigr)w^{3}+\bigl(144u^{8}+6 \text{,}592v^{2}u^{6}+20\text{,}768v^{3}u^{5}+29 \text{,}920v^{4}u^{4}+6\text{,}592v^{6}u^{2} \\& \hphantom{g_{31}={}}{}+20\text{,}768v^{5}u^{3}+896v^{7}u+896vu^{7}+144v^{8} \bigr)w^{2} \\& \hphantom{g_{31}={}}{}+32vu(u+v) \bigl(u^{6}+43vu^{5}+168v^{2}u^{4}+254v^{3}u^{3}+168v^{4}u^{2}+43v^{5}u+v^{6} \bigr)w \\& \hphantom{g_{31}={}}{}+16v^{2}u^{2}\bigl(9v^{4}+38v^{3}u+59v^{2}u^{2}+38vu^{3}+9u^{4} \bigr) (u+v)^{2}, \end{aligned}$$
(18)
$$\begin{aligned}& g_{32}=-32(v+w)^{2}(u+w+2v)^{2} \bigl( \bigl(2w^{2}+2u^{2}\bigr)v^{4}+(w+u) \bigl(7w^{2}+9u^{2}\bigr)v^{3} \\& \hphantom{g_{32}={}}{}+\bigl(23u^{2}w^{2}+7w^{4}+14u^{4}+27u^{3}w+13uw^{3} \bigr)v^{2}+(w+u) \bigl(w^{4}+2uw^{3} \\& \hphantom{g_{32}={}}{}+11u^{2}w^{2}+14u^{3}w+8u^{4} \bigr)v+u(u-w) \bigl(u^{2}+uw+w^{2}\bigr) (w+u)^{2} \bigr), \end{aligned}$$
(19)
$$\begin{aligned}& g_{33}=(v+w)^{2}(u+w+2v)^{2}\bigl( \bigl(26w^{2}+26u^{2}+3(u-w)^{2}\bigr) v^{4}+2\bigl( 46\bigl(w^{2} \\& \hphantom{g_{33}={}}{}+u^{2}\bigr)+9(u-w)^{2}\bigr) (w+u)v^{3}+\bigl(121w^{4}+121u^{4}+202u^{2}w^{2}+190u^{3}w \\& \hphantom{g_{33}={}}{}+190uw^{3}\bigr)v^{2}+2(w+u) \bigl(14w^{4}+31uw^{3}+66u^{2}w^{2}+31u^{3}w+14u^{4} \bigr)v \\& \hphantom{g_{33}={}}{}+\bigl(4u^{4}+4u^{3}w+29u^{2}w^{2}+4uw^{3}+4w^{4} \bigr) (w+u)^{2}\bigr), \end{aligned}$$
(20)
$$\begin{aligned}& h_{1}=g_{1}, \\& h_{2}=16(v+w)^{2}(u+v)^{2}\bigl( \bigl((18v-18w)u^{7}+\bigl(-112w^{2}+94v^{2}+34wv \bigr)u^{6} \\& \hphantom{h_{2}={}}{}+\bigl(-68vw^{2}-288w^{3}+322v^{2}w+194v^{3} \bigr)u^{5}+\bigl(590v^{3}w+496v^{2}w^{2} \\& \hphantom{h_{2}={}}{}-248vw^{3}+194v^{4}-388w^{4} \bigr)u^{4}+\bigl(536v^{2}w^{3}+434v^{4}w-248vw^{4}+94v^{5} \\& \hphantom{h_{2}={}}{}-288w^{5}+864v^{3}w^{2} \bigr)u^{3}+\bigl(122v^{5}w+512v^{4}w^{2}-112w^{6}-68vw^{5}+864v^{3}w^{3} \\& \hphantom{h_{2}={}}{}+18v^{6}+496v^{2}w^{4} \bigr)u^{2}+\bigl(434v^{4}w^{3}+590v^{3}w^{4}+122v^{5}w^{2}+34vw^{6}+4v^{6}w \\& \hphantom{h_{2}={}}{}-18w^{7}+322v^{2}w^{5} \bigr)u+94v^{2}w^{6}+18vw^{7}+94v^{5}w^{3}+194v^{4}w^{4}+194v^{3}w^{5} \\& \hphantom{h_{2}={}}{}+18v^{6}w^{2}\bigr)y+8(w-v)u^{7}+ \bigl(43w^{2}-45v^{2}-14wv\bigr)u^{6}+ \bigl(82w^{3}-16vw^{2} \\& \hphantom{h_{2}={}}{}-96v^{3}-130v^{2}w\bigr)u^{5}+ \bigl(-134vw^{3}+47w^{4}-200v^{3}w-259v^{2}w^{2}-98v^{4} \bigr)u^{4} \\& \hphantom{h_{2}={}}{}-\bigl(542v^{2}w^{3}+377vw^{4}+49v^{5}+99v^{4}w+278v^{3}w^{2}+47w^{5} \bigr)u^{3} \\& \hphantom{h_{2}={}}{}+\bigl(3v^{5}w-10v^{6}-83v^{4}w^{2}-447vw^{5}-470v^{3}w^{3}-82w^{6}-743v^{2}w^{4} \bigr)u^{2} \\& \hphantom{h_{2}={}}{}+w(w+v) \bigl(-43w^{5}-204vw^{4}-312v^{2}w^{3}-178v^{3}w^{2}-19v^{4}w+12v^{5} \bigr)u \\& \hphantom{h_{2}={}}{}-w^{2}(w+2v) \bigl(8w^{3}+21vw^{2}+17v^{2}w+5v^{3} \bigr) (w+v)^{2}\bigr), \end{aligned}$$
(21)
$$\begin{aligned}& h_{3}=(u+v)^{2} \bigl(h_{31}y^{2}+h_{32}y+h_{33} \bigr), \end{aligned}$$
(22)
$$\begin{aligned}& h_{31}=g_{31}, \\& h_{32}=-16(v+w)^{2}\bigl(\bigl(10u^{2}+10w^{2}-12uw \bigr)v^{6}+(w+u) \bigl(49w^{2}-52uw \\& \hphantom{h_{32}={}}{}+59u^{2}\bigr)v^{5}+\bigl(98w^{4}+147u^{4}+83u^{2}w^{2}+99uw^{3}+197u^{3}w \bigr)v^{4} \\& \hphantom{h_{32}={}}{}+2\bigl(48w^{4}+52uw^{3}+87u^{2}w^{2}+148u^{3}w+97u^{4} \bigr) (w+u)v^{3}+\bigl(141u^{4} \\& \hphantom{h_{32}={}}{}+234u^{3}w+134u^{2}w^{2}+40uw^{3}+45w^{4} \bigr) (w+u)^{2}v^{2}+\bigl(53u^{5}+141u^{4}w \\& \hphantom{h_{32}={}}{}+112u^{3}w^{2}+12u^{2}w^{3}-2uw^{4}+8w^{5} \bigr) (w+u)^{2}v+u(-w+u) \bigl(8w^{4} \\& \hphantom{h_{32}={}}{}+35uw^{3}+55u^{2}w^{2}+35u^{3}w+8u^{4} \bigr) (w+u)^{2}\bigr), \end{aligned}$$
(23)
$$\begin{aligned}& h_{33}=(v+w)^{2}(\bigl(8\bigl(w^{2}+u^{2} \bigr)+60(u-w)^{2}\bigr)v^{6} \\& \hphantom{h_{33}={}}{}+4(w+u) \bigl(14\bigl(w^{2}+u^{2} \bigr)+73(u-w)^{2}\bigr)v^{5} \\& \hphantom{h_{33}={}}{}+\bigl(444\bigl(w^{4}+u^{4}\bigr)+357 \bigl(u^{2}-w^{2}\bigr)^{2}+316uw \bigl(u^{2}+w^{2}\bigr)\bigr)v^{4} \\& \hphantom{h_{33}={}}{}+2(w+u) \bigl(420\bigl(w^{4}+u^{4}\bigr)+93 \bigl(u^{2}-w^{2}\bigr)^{2}+292uw \bigl(u^{2}+w^{2}\bigr)\bigr)v^{3} \\& \hphantom{h_{33}={}}{}+\bigl(753u^{4}+614u^{3}w+78u^{2}w^{2}+614uw^{3}+753w^{4} \bigr) (w+u)^{2}v^{2} \\& \hphantom{h_{33}={}}{}+6\bigl(50u^{4}+53u^{3}w+12u^{2}w^{2}+53uw^{3}+50w^{4} \bigr) (w+u)^{3}v+\bigl(52u^{6}+172u^{5}w \\& \hphantom{h_{33}={}}{}+177u^{4}w^{2}+98u^{3}w^{3}+177u^{2}w^{4}+172uw^{5}+52w^{6} \bigr) (w+u)^{2}), \end{aligned}$$
(24)
$$\begin{aligned}& \delta_{g3}=\bigl(5w^{2}+5v^{2}-6vw \bigr)u^{10}+\bigl(34v^{3}+44w^{3}+10w^{2}v-64v^{2}w \bigr)u^{9} \\& \hphantom{\delta_{g3}={}}{}+\bigl(133v^{4}+196w^{4}-372v^{3}w-67v^{2}w^{2}+330vw^{3} \bigr)u^{8}+\bigl(306v^{5} \\& \hphantom{\delta_{g3}={}}{}+538w^{5}-686v^{3}w^{2}+1 \text{,}398v^{2}w^{3}+1\text{,}596vw^{4}-976v^{4}w \bigr)u^{7} \\& \hphantom{\delta_{g3}={}}{}+\bigl(404v^{6}+888w^{6}+2 \text{,}834v^{3}w^{3}-1\text{,}462v^{5}w+5 \text{,}830v^{2}w^{4}+3\text{,}780vw^{5} \\& \hphantom{\delta_{g3}={}}{}-1\text{,}666v^{4}w^{2}\bigr)u^{6}+ \bigl(306v^{7}+832w^{7}+4\text{,}926vw^{6}+10 \text{,}740v^{2}w^{5} \\& \hphantom{\delta_{g3}={}}{}+11\text{,}016v^{3}w^{4}+3 \text{,}970v^{4}w^{3}-1\text{,}462v^{6}w-2 \text{,}104v^{5}w^{2}\bigr)u^{5}+ \bigl(133v^{8} \\& \hphantom{\delta_{g3}={}}{}+421w^{8}+16\text{,}686v^{3}w^{5}-1 \text{,}666v^{6}w^{2}+3\text{,}970v^{5}w^{3} \\& \hphantom{\delta_{g3}={}}{}+10\text{,}996v^{2}w^{6}-976v^{7}w+3 \text{,}568vw^{7}+13\text{,}444v^{4}w^{4} \bigr)u^{4}+\bigl(116w^{9} \\& \hphantom{\delta_{g3}={}}{}+13\text{,}932v^{3}w^{6}+2 \text{,}834v^{6}w^{3}-372v^{8}w+34v^{9}+6 \text{,}608v^{2}w^{7}+16\text{,}686v^{4}w^{5} \\& \hphantom{\delta_{g3}={}}{}+11\text{,}016v^{5}w^{4}-686v^{7}w^{2}+1 \text{,}448vw^{8}\bigr)u^{3}+\bigl(20w^{10}+5v^{10}+332w^{9}v \\& \hphantom{\delta_{g3}={}}{}-64v^{9}w+5\text{,}830v^{6}w^{4}+10 \text{,}740v^{5}w^{5}+6\text{,}608v^{3}w^{7}-67v^{8}w^{2}+2 \text{,}294v^{2}w^{8} \\& \hphantom{\delta_{g3}={}}{}+10\text{,}996v^{4}w^{6}+1 \text{,}398v^{7}w^{3}\bigr)u^{2}-2vw(2w+v) (w+v) \bigl(-6w^{7}-74vw^{6} \\& \hphantom{\delta_{g3}={}}{}-248v^{2}w^{5}-483v^{3}w^{4}-383v^{4}w^{3}-129v^{5}w^{2}-14v^{6}w+3v^{7} \bigr)u \\& \hphantom{\delta_{g3}={}}{}+v^{2}w^{2}\bigl(5w^{4}+14vw^{3}+47v^{2}w^{2}+14v^{3}w+5v^{4} \bigr) (2w+v)^{2}(w+v)^{2}, \end{aligned}$$
(25)
$$\begin{aligned}& \delta_{h3}=\bigl(212w^{2}+212u^{2}-408wu \bigr)v^{14}+\bigl(2\text{,}220w^{3}+2\text{,}220u^{3}-1 \text{,}916w^{2}u-2\text{,}300wu^{2}\bigr)v^{13} \\& \hphantom{\delta_{h3}={}}{}+\bigl(10\text{,}805w^{4}+10\text{,}805u^{4}-19 \text{,}714w^{2}u^{2}-2\text{,}732wu^{3}+2 \text{,}068w^{3}u\bigr)v^{12}+\bigl(32\text{,}490w^{5} \\& \hphantom{\delta_{h3}={}}{}+32\text{,}490u^{5}-69\text{,}996w^{2}u^{3}+13 \text{,}570wu^{4}+41\text{,}314w^{4}u-45\text{,}964w^{3}u^{2} \bigr)v^{11} \\& \hphantom{\delta_{h3}={}}{}+\bigl(67\text{,}597w^{6}+67\text{,}597u^{6}+162\text{,}758w^{5}u-144 \text{,}081w^{2}u^{4}+66\text{,}038wu^{5} \\& \hphantom{\delta_{h3}={}}{}+18 \text{,}191w^{4}u^{2}-221\text{,}412w^{3}u^{3} \bigr)v^{10}+\bigl(102\text{,}990u^{7}+102 \text{,}990w^{7}-206\text{,}730w^{2}u^{5} \\& \hphantom{\delta_{h3}={}}{}-211 \text{,}210w^{4}u^{3}+147\text{,}758wu^{6}-546\text{,}970w^{3}u^{4}+374 \text{,}070w^{6}u+351\text{,}630w^{5}u^{2} \bigr)v^{9} \\& \hphantom{\delta_{h3}={}}{}+\bigl(118\text{,}172u^{8}+118\text{,}172w^{8}+417\text{,}882w^{5}u^{3}-236 \text{,}233w^{2}u^{6}-691\text{,}326w^{4}u^{4} \\& \hphantom{\delta_{h3}={}}{}+588 \text{,}982w^{7}u+212\text{,}666wu^{7}-923\text{,}410w^{3}u^{5}+988 \text{,}871w^{6}u^{2}\bigr)v^{8}+\bigl(102 \text{,}990u^{9} \\& \hphantom{\delta_{h3}={}}{}+102\text{,}990w^{9}+268\text{,}456w^{5}u^{4}-242 \text{,}348w^{2}u^{7}+212\text{,}666wu^{8}-1 \text{,}213\text{,}872w^{4}u^{5} \\& \hphantom{\delta_{h3}={}}{}+671\text{,}426w^{8}u+1\text{,}623\text{,}572w^{7}u^{2}-1 \text{,}177\text{,}156w^{3}u^{6}+1\text{,}712 \text{,}716w^{6}u^{3}\bigr)v^{7} \\& \hphantom{\delta_{h3}={}}{}+\bigl(67 \text{,}597u^{10}+67\text{,}597w^{10}+562\text{,}874w^{9}u+1\text{,}809 \text{,}843w^{8}u^{2}-236\text{,}233w^{2}u^{8} \\& \hphantom{\delta_{h3}={}}{}+147 \text{,}758wu^{9}-1\text{,}442\text{,}604w^{4}u^{6}+2\text{,}908\text{,}276w^{7}u^{3}-1 \text{,}177\text{,}156w^{3}u^{7} \\& \hphantom{\delta_{h3}={}}{}+2\text{,}249 \text{,}152w^{6}u^{4}+72\text{,}256w^{5}u^{5} \bigr)v^{6}+2(w+u) \bigl(16\text{,}245w^{10}+155 \text{,}512w^{9}u \\& \hphantom{\delta_{h3}={}}{}+554\text{,}255w^{8}u^{2}+984 \text{,}618w^{7}u^{3}+917\text{,}616w^{6}u^{4}+301\text{,}498w^{5}u^{5}-265 \text{,}370w^{4}u^{6} \\& \hphantom{\delta_{h3}={}}{}-341\text{,}566w^{3}u^{7}-120 \text{,}139w^{2}u^{8}+16\text{,}774wu^{9}+16\text{,}245u^{10}\bigr)v^{5} \\& \hphantom{\delta_{h3}={}}{}+(w+u)^{2} v^{4}\bigl(10\text{,}805u^{10}-8\text{,}040wu^{9}-138 \text{,}806w^{2}u^{8}-261\text{,}318w^{3}u^{7} \\& \hphantom{\delta_{h3}={}}{}-29\text{,}884w^{4}u^{6}+589 \text{,}542w^{5}u^{5}+1\text{,}099\text{,}952w^{6}u^{4}+1 \text{,}015\text{,}022w^{7}u^{3} \\& \hphantom{\delta_{h3}={}}{}+512\text{,}862w^{8}u^{2}+125\text{,}664w^{9}u+10\text{,}805w^{10} \bigr)+2(w+u)^{2}v^{3}\bigl(1\text{,}110u^{11}-3 \text{,}586wu^{10} \\& \hphantom{\delta_{h3}={}}{}-28\text{,}936w^{2}u^{9}-49\text{,}248w^{3}u^{8}+21 \text{,}827w^{4}u^{7}+214\text{,}535w^{5}u^{6}+405 \text{,}461w^{6}u^{5} \\& \hphantom{\delta_{h3}={}}{}+428\text{,}681w^{7}u^{4}+276\text{,}050w^{8}u^{3}+102 \text{,}424w^{9}u^{2}+18\text{,}420w^{10}u+1 \text{,}110w^{11}\bigr) \\& \hphantom{\delta_{h3}={}}{}+\bigl(212w^{12}+212u^{12}+177\text{,}228w^{9}u^{3}+371 \text{,}841w^{8}u^{4}+498\text{,}624w^{7}u^{5} \\& \hphantom{\delta_{h3}={}}{}-14 \text{,}284w^{3}u^{9}+61\text{,}237w^{4}u^{8}+48\text{,}698w^{10}u^{2}+6 \text{,}124w^{11}u+440\text{,}754w^{6}u^{6} \\& \hphantom{\delta_{h3}={}}{}-14 \text{,}478w^{2}u^{10}-2\text{,}724wu^{11}+243\text{,}440w^{5}u^{7}\bigr) (w+u)^{2}v^{2} \\& \hphantom{\delta_{h3}={}}{}-2wuv(w+u)^{3}\bigl(204u^{10}+346wu^{9}-2 \text{,}684w^{2}u^{8}-13\text{,}847w^{3}u^{7}-32 \text{,}132w^{4}u^{6} \\& \hphantom{\delta_{h3}={}}{}-46\text{,}414w^{5}u^{5}-45 \text{,}006w^{6}u^{4}-29\text{,}321w^{7}u^{3}-12 \text{,}042w^{8}u^{2} \\& \hphantom{\delta_{h3}={}}{}-2\text{,}662w^{9}u-204w^{10} \bigr)+w^{2}u^{2}\bigl(212u^{8}+1 \text{,}372wu^{7}+4\text{,}045w^{2}u^{6}+7 \text{,}230w^{3}u^{5} \\& \hphantom{\delta_{h3}={}}{}+8\text{,}707w^{4}u^{4}+7 \text{,}230w^{5}u^{3}+4\text{,}045w^{6}u^{2}+1 \text{,}372w^{7}u+212w^{8}\bigr) (w+u)^{4}, \end{aligned}$$
(26)
$$\begin{aligned}& \varphi_{11}=80v^{10}+(752w+752u)v^{9}+\bigl(6 \text{,}042uw+3\text{,}245w^{2}+3\text{,}245u^{2} \bigr)v^{8} \\& \hphantom{\varphi_{11}={}}{}+4(u+w) \bigl(2\text{,}109u^{2}+3\text{,}442uw+2 \text{,}109w^{2}\bigr)v^{7}+\bigl(69\text{,}240u^{2}w^{2}+48 \text{,}988u^{3}w \\& \hphantom{\varphi_{11}={}}{}+48\text{,}988uw^{3}+14\text{,}576w^{4}+14 \text{,}576u^{4}\bigr)v^{6}+2(u+w) \bigl(8 \text{,}713u^{4}+27\text{,}030u^{3}w \\& \hphantom{\varphi_{11}={}}{}+37\text{,}466u^{2}w^{2}+27 \text{,}030uw^{3}+8\text{,}713w^{4}\bigr)v^{5}+ \bigl(14\text{,}576w^{6}+14\text{,}576u^{6}+71 \text{,}486uw^{5} \\& \hphantom{\varphi_{11}={}}{}+71\text{,}486u^{5}w+200\text{,}992u^{3}w^{3}+157 \text{,}438u^{4}w^{2}+157\text{,}438u^{2}w^{4} \bigr)v^{4} \\& \hphantom{\varphi_{11}={}}{}+4(u+w) \bigl(2\text{,}109u^{6}+10\text{,}138u^{5}w+22\text{,}110u^{4}w^{2}+28 \text{,}138u^{3}w^{3}+22\text{,}110u^{2}w^{4} \\& \hphantom{\varphi_{11}={}}{}+10 \text{,}138uw^{5}+2\text{,}109w^{6}\bigr)v^{3}+\bigl(69\text{,}240u^{2}w^{6}+22 \text{,}204u^{7}w+69\text{,}240u^{6}w^{2} \\& \hphantom{\varphi_{11}={}}{}+22 \text{,}204uw^{7}+128\text{,}992u^{3}w^{5}+128\text{,}992u^{5}w^{3}+157 \text{,}438u^{4}w^{4}+3\text{,}245u^{8} \\& \hphantom{\varphi_{11}={}}{}+3 \text{,}245w^{8}\bigr)v^{2}+2(u+w) \bigl(376u^{8}+2\text{,}645u^{7}w+8\text{,}457u^{6}w^{2}+16 \text{,}037u^{5}w^{3} \\& \hphantom{\varphi_{11}={}}{}+19\text{,}706u^{4}w^{4}+16 \text{,}037u^{3}w^{5}+8\text{,}457u^{2}w^{6}+2 \text{,}645uw^{7}+376w^{8}\bigr)v \\& \hphantom{\varphi_{11}={}}{}+\bigl(80w^{8}+592uw^{7}+1 \text{,}981u^{2}w^{6}+3\text{,}882u^{3}w^{5}+4\text{,}831u^{4}w^{4} \\& \hphantom{\varphi_{11}={}}{}+3 \text{,}882u^{5}w^{3}+1\text{,}981u^{6}w^{2}+592u^{7}w+80u^{8} \bigr) (u+w)^{2}, \end{aligned}$$
(27)
$$\begin{aligned}& \varphi_{21}=(w-u)v^{7}+\bigl(6w^{2}-9u^{2}-5uw \bigr)v^{6}+\bigl(16w^{3}-35u^{3}-10uw^{2}-51u^{2}w \bigr)v^{5} \\& \hphantom{\varphi_{21}={}}{}+\bigl(22w^{4}-75u^{4}-9uw^{3}-110u^{2}w^{2}-150u^{3}w \bigr)v^{4}+\bigl(-93u^{5}-226u^{4}w \\& \hphantom{\varphi_{21}={}}{}-9uw^{4}-133u^{2}w^{3}-251u^{3}w^{2}+16w^{5} \bigr)v^{3}+\bigl(6w^{6}-65u^{6}-110u^{2}w^{4} \\& \hphantom{\varphi_{21}={}}{}-292u^{4}w^{2}-194u^{5}w-251u^{3}w^{3}-10uw^{5} \bigr)v^{2}+\bigl(w^{7}-24u^{7}-95u^{6}w \\& \hphantom{\varphi_{21}={}}{}-226u^{4}w^{3} -150u^{3}w^{4}-51u^{2}w^{5}-5uw-194u^{5}w^{2} \bigr)v \\& \hphantom{\varphi_{21}={}}{}-u(w+u) \bigl(w^{4}+4uw^{3}+7u^{2}w^{2}+4u^{3}w+u^{4} \bigr) (w+2u)^{2}, \end{aligned}$$
(28)
$$\begin{aligned}& \varphi_{31}=\bigl(5u^{2}-6uw+5w^{2} \bigr)v^{10}+\bigl(10u^{2}w-64uw^{2}+34w^{3}+44u^{3} \bigr)v^{9} \\& \hphantom{\varphi_{31}={}}{}+\bigl(330u^{3}w-67u^{2}w^{2}+196u^{4}+133w^{4}-372uw^{3} \bigr)v^{8}+\bigl(-686u^{2}w^{3}+1 \text{,}596u^{4}w \\& \hphantom{\varphi_{31}={}}{}+1\text{,}398u^{3}w^{2}-976uw^{4}+306w^{5}+538u^{5} \bigr)v^{7}+\bigl(3\text{,}780u^{5}w-1\text{,}462uw^{5} \\& \hphantom{\varphi_{31}={}}{}-1 \text{,}666u^{2}w^{4}+5\text{,}830u^{4}w^{2}+2 \text{,}834u^{3}w^{3}+404w^{6}+888u^{6} \bigr)v^{6} \\& \hphantom{\varphi_{31}={}}{}+\bigl(10\text{,}740u^{5}w^{2}+4 \text{,}926u^{6}w+11\text{,}016u^{4}w^{3}+3 \text{,}970u^{3}w^{4}-1\text{,}462uw^{6} \\& \hphantom{\varphi_{31}={}}{}-2 \text{,}104u^{2}w^{5}+306w^{7}+832u^{7} \bigr)v^{5}+\bigl(16\text{,}686u^{5}w^{3}+13 \text{,}444u^{4}w^{4} \\& \hphantom{\varphi_{31}={}}{}+10\text{,}996u^{6}w^{2}+3 \text{,}568u^{7}w-1\text{,}666u^{2}w^{6}-976uw^{7} \\& \hphantom{\varphi_{31}={}}{}+3\text{,}970u^{3}w^{5}+421u^{8}+133w^{8} \bigr)v^{4}+\bigl(34w^{9}+16\text{,}686u^{5}w^{4}+13 \text{,}932u^{6}w^{3} \\& \hphantom{\varphi_{31}={}}{}+6\text{,}608u^{7}w^{2}+1 \text{,}448u^{8}w+11\text{,}016u^{4}w^{5}-372uw^{8}+2 \text{,}834u^{3}w^{6} \\& \hphantom{\varphi_{31}={}}{}-686u^{2}w^{7}+116u^{9} \bigr)v^{3}+\bigl(5w^{10}+10\text{,}996u^{6}w^{4}+6 \text{,}608u^{7}w^{3}+2\text{,}294u^{8}w^{2} \\& \hphantom{\varphi_{31}={}}{}+10 \text{,}740u^{5}w^{5}+5\text{,}830u^{4}w^{6}+332u^{9}w+1\text{,}398u^{3}w^{7}-67u^{2}w^{8} \\& \hphantom{\varphi_{31}={}}{}+20u^{10}-64w^{9}u \bigr)v^{2}+2uw(w+2u) (w+u) \bigl(-3w^{7}+14uw^{6}+129u^{2}w^{5} \\& \hphantom{\varphi_{31}={}}{}+383u^{3}w^{4}+483u^{4}w^{3}+248u^{5}w^{2}+74u^{6}w+6u^{7} \bigr)v \\& \hphantom{\varphi_{31}={}}{}+u^{2}w^{2}\bigl(5w^{4}+14uw^{3}+47u^{2}w^{2}+14u^{3}w+5u^{4} \bigr) (w+u)^{2}(w+2u)^{2}, \end{aligned}$$
(29)
$$\begin{aligned}& \psi_{21}=(64w-64u)v^{11}+\bigl(-640u^{2}+576w^{2}+32uw \bigr)v^{10}+\bigl(2\text{,}377w^{3}-2\text{,}953u^{3} \\& \hphantom{\psi_{21}={}}{}-2\text{,}409u^{2}w+2\text{,}281uw^{2} \bigr)v^{9}+\bigl(10\text{,}263uw^{3}-8\text{,}309u^{4}+5 \text{,}932w^{4}-13\text{,}547u^{3}w \\& \hphantom{\psi_{21}={}}{}-1\text{,}195u^{2}w^{2}\bigr)v^{8}+ \bigl(9\text{,}952w^{5}+9\text{,}436u^{2}w^{3}-38 \text{,}556u^{4}w-27\text{,}700u^{3}w^{2} \\& \hphantom{\psi_{21}={}}{}+2 3\text{,}776uw^{4}-15\text{,}884u^{5}\bigr)v^{7}+\bigl(11 \text{,}770w^{6}-21\text{,}722u^{6}+25\text{,}702u^{2}w^{4} \\& \hphantom{\psi_{21}={}}{}-87 \text{,}718u^{4}w^{2}-36\text{,}348u^{3}w^{3}-70\text{,}452u^{5}w+34\text{,}992uw^{5} \bigr)v^{6} \\& \hphantom{\psi_{21}={}}{}+\bigl(9\text{,}952w^{7}-21\text{,}722u^{7}+33 \text{,}684u^{2}w^{5}-135\text{,}354u^{4}w^{3} \\& \hphantom{\psi_{21}={}}{}-39\text{,}116u^{3}w^{4}-155 \text{,}370u^{5}w^{2}-89\text{,}370u^{6}w+34 \text{,}992uw^{6}\bigr)v^{5} \\& \hphantom{\psi_{21}={}}{}+\bigl(-15\text{,}884u^{8}+5 \text{,}932w^{8}-39\text{,}116u^{3}w^{5}+25 \text{,}702u^{2}w^{6} \\& \hphantom{\psi_{21}={}}{}-224\text{,}070u^{5}w^{3}-155 \text{,}910u^{4}w^{4}-179\text{,}720u^{6}w^{2} \\& \hphantom{\psi_{21}={}}{}-80\text{,}502u^{7}w+23\text{,}776uw^{7} \bigr)v^{4}-(w+u) \bigl(-2\text{,}377w^{8}-7 \text{,}886uw^{7}-1\text{,}550u^{2}w^{6} \\& \hphantom{\psi_{21}={}}{}+37\text{,}898u^{3}w^{5}+97 \text{,}456u^{4}w^{4}+126\text{,}614u^{5}w^{3}+97 \text{,}282u^{6}w^{2} \\& \hphantom{\psi_{21}={}}{}+42\text{,}558u^{7}w+8 \text{,}309u^{8}\bigr)v^{3}-\bigl(2\text{,}953u^{8}+15\text{,}609u^{7}w+36 \text{,}963u^{6}w^{2} \\& \hphantom{\psi_{21}={}}{}+50\text{,}305u^{5}w^{3}+42 \text{,}147u^{4}w^{4}+20\text{,}771u^{3}w^{5}+4\text{,}029u^{2}w^{6} \\& \hphantom{\psi_{21}={}}{}-1 \text{,}129uw^{7}-576w^{8}\bigr) (w+u)^{2}v^{2}- \bigl(640u^{9}+4\text{,}206u^{8}w+12\text{,}463u^{7}w^{2} \\& \hphantom{\psi_{21}={}}{}+21 \text{,}735u^{6}w^{3}+24\text{,}569u^{5}w^{4}+18 \text{,}497u^{4}w^{5}+8\text{,}889u^{3}w^{6} \\& \hphantom{\psi_{21}={}}{}+2\text{,}281u^{2}w^{7}+96uw^{8}-64w^{9} \bigr) (w+u)^{2}v-u\bigl(w^{2}+uw+u^{2}\bigr) \bigl(64w^{6}+384uw^{5} \\& \hphantom{\psi_{21}={}}{}+969u^{2}w^{4}+1\text{,}297u^{3}w^{3}+969u^{4}w^{2}+384u^{5}w+64u^{6} \bigr) (w+u)^{3}, \end{aligned}$$
(30)
$$\begin{aligned}& \psi_{31}=\bigl(-408wu+212w^{2}+212u^{2} \bigr)v^{14}+\bigl(2\text{,}220w^{3}+2\text{,}220u^{3}-2 \text{,}300w^{2}u \\& \hphantom{\psi_{31}={}}{}-1\text{,}916wu^{2}\bigr)v^{13}+\bigl(10 \text{,}805w^{4}-2\text{,}732w^{3}u+10\text{,}805u^{4}-19 \text{,}714w^{2}u^{2} \\& \hphantom{\psi_{31}={}}{}+2\text{,}068wu^{3} \bigr)v^{12}+\bigl(32\text{,}490w^{5}+13\text{,}570w^{4}u-69 \text{,}996w^{3}u^{2}-45\text{,}964w^{2}u^{3} \\& \hphantom{\psi_{31}={}}{}+41 \text{,}314wu^{4}+32\text{,}490u^{5}\bigr)v^{11}+\bigl(67\text{,}597w^{6}+66\text{,}038w^{5}u-144 \text{,}081w^{4}u^{2} \\& \hphantom{\psi_{31}={}}{}-221\text{,}412w^{3}u^{3}+18 \text{,}191w^{2}u^{4}+162\text{,}758wu^{5}+67\text{,}597u^{6}\bigr)v^{10} \\& \hphantom{\psi_{31}={}}{}+\bigl(102 \text{,}990u^{7}+102\text{,}990w^{7}-546\text{,}970w^{4}u^{3}+374 \text{,}070wu^{6} \\& \hphantom{\psi_{31}={}}{}-211\text{,}210w^{3}u^{4}+147 \text{,}758w^{6}u-206\text{,}730w^{5}u^{2}+351 \text{,}630w^{2}u^{5}\bigr)v^{9}+\bigl(118 \text{,}172u^{8} \\& \hphantom{\psi_{31}={}}{}-691\text{,}326w^{4}u^{4}+212 \text{,}666w^{7}u+588\text{,}982wu^{7}+417 \text{,}882w^{3}u^{5}-236\text{,}233w^{6}u^{2} \\& \hphantom{\psi_{31}={}}{}-923\text{,}410w^{5}u^{3}+118 \text{,}172w^{8}+988\text{,}871w^{2}u^{6} \bigr)v^{8}+\bigl(102\text{,}990u^{9} \\& \hphantom{\psi_{31}={}}{}+268\text{,}456w^{4}u^{5}+212\text{,}666w^{8}u-242\text{,}348w^{7}u^{2}+1 \text{,}712\text{,}716w^{3}u^{6} \\& \hphantom{\psi_{31}={}}{}-1\text{,}177 \text{,}156w^{6}u^{3}-1\text{,}213\text{,}872w^{5}u^{4}+102\text{,}990w^{9}+1\text{,}623\text{,}572w^{2}u^{7} \\& \hphantom{\psi_{31}={}}{}+671 \text{,}426wu^{8}\bigr)v^{7}+\bigl(2\text{,}249 \text{,}152w^{4}u^{6}-1\text{,}177\text{,}156w^{7}u^{3}+2\text{,}908\text{,}276w^{3}u^{7} \\& \hphantom{\psi_{31}={}}{}-1 \text{,}442\text{,}604w^{6}u^{4}+72\text{,}256w^{5}u^{5}+147 \text{,}758w^{9}u+67\text{,}597u^{10}+67\text{,}597w^{10} \\& \hphantom{\psi_{31}={}}{}-236\text{,}233w^{8}u^{2}+1\text{,}809 \text{,}843w^{2}u^{8}+562\text{,}874wu^{9} \bigr)v^{6} \\& \hphantom{\psi_{31}={}}{}+2(w+u) \bigl(16\text{,}245w^{10}+16 \text{,}774w^{9}u-120\text{,}139w^{8}u^{2}-341 \text{,}566w^{7}u^{3} \\& \hphantom{\psi_{31}={}}{}-265\text{,}370w^{6}u^{4}+301 \text{,}498w^{5}u^{5}+917\text{,}616w^{4}u^{6}+984\text{,}618w^{3}u^{7} \\& \hphantom{\psi_{31}={}}{}+554 \text{,}255w^{2}u^{8}+155\text{,}512wu^{9}+16 \text{,}245u^{10}\bigr)v^{5}+\bigl(10\text{,}805u^{10}+125\text{,}664wu^{9} \\& \hphantom{\psi_{31}={}}{}+512\text{,}862w^{2}u^{8}+1 \text{,}015\text{,}022w^{3}u^{7}+1\text{,}099 \text{,}952w^{4}u^{6}+589\text{,}542w^{5}u^{5} \\& \hphantom{\psi_{31}={}}{}-29\text{,}884w^{6}u^{4}-261 \text{,}318w^{7}u^{3}-138\text{,}806w^{8}u^{2}-8 \text{,}040w^{9}u \\& \hphantom{\psi_{31}={}}{}+10\text{,}805w^{10}\bigr) (w+u)^{2}v^{4}+2\bigl(1\text{,}110u^{11}+18\text{,}420wu^{10}+102 \text{,}424w^{2}u^{9} \\& \hphantom{\psi_{31}={}}{}+276\text{,}050w^{3}u^{8}+428 \text{,}681w^{4}u^{7}+405\text{,}461w^{5}u^{6}+214 \text{,}535w^{6}u^{5} \\& \hphantom{\psi_{31}={}}{}+21\text{,}827w^{7}u^{4}-49 \text{,}248w^{8}u^{3}-28\text{,}936w^{9}u^{2}-3\text{,}586w^{10}u+1\text{,}110w^{11} \bigr) (w+u)^{2}v^{3} \\& \hphantom{\psi_{31}={}}{}+\bigl(48\text{,}698w^{2}u^{10}+212w^{12}+212u^{12}-2\text{,}724w^{11}u+440\text{,}754w^{6}u^{6}+371 \text{,}841w^{4}u^{8} \\& \hphantom{\psi_{31}={}}{}-14\text{,}478w^{10}u^{2}+6 \text{,}124wu^{11}+61\text{,}237w^{8}u^{4}-14\text{,}284w^{9}u^{3} \\& \hphantom{\psi_{31}={}}{}+498 \text{,}624w^{5}u^{7}+243\text{,}440w^{7}u^{5}+177 \text{,}228w^{3}u^{9}\bigr) (w+u)^{2}v^{2} \\& \hphantom{\psi_{31}={}}{}+2(w+u)^{3}vwu\bigl(204u^{10}+2 \text{,}662wu^{9}+12\text{,}042w^{2}u^{8}+29 \text{,}321w^{3}u^{7}+45\text{,}006w^{4}u^{6} \\& \hphantom{\psi_{31}={}}{}+46\text{,}414w^{5}u^{5}+32 \text{,}132w^{6}u^{4}+13\text{,}847w^{7}u^{3}+2 \text{,}684w^{8}u^{2}-346w^{9}u-204w^{10} \bigr) \\& \hphantom{\psi_{31}={}}{}+w^{2}u^{2}\bigl(212u^{8}+1 \text{,}372wu^{7}+4\text{,}045w^{2}u^{6}+7 \text{,}230w^{3}u^{5}+8\text{,}707w^{4}u^{4}+7 \text{,}230w^{5}u^{3} \\& \hphantom{\psi_{31}={}}{}+4\text{,}045w^{6}u^{2}+1 \text{,}372w^{7}u+212w^{8}\bigr) (w+u)^{4}, \end{aligned}$$
(31)
$$\begin{aligned}& \delta_{\varphi1}=16w^{10}+(48u+48v)w^{9}+ \bigl(89u^{2}+89v^{2}-78vu\bigr)w^{8} \\& \hphantom{\delta_{\varphi1}={}}{}+4(u+v) \bigl(25u^{2}-86vu+25v^{2} \bigr)w^{7}+\bigl(48u^{4}-232v^{2}u^{2}-180v^{3}u \\& \hphantom{\delta_{\varphi1}={}}{}-180vu^{3}+48v^{4} \bigr)w^{6}+2(u+v) \bigl(5u^{4}-18vu^{3}+50v^{2}u^{2}-18v^{3}u+5v^{4} \bigr)w^{5} \\& \hphantom{\delta_{\varphi1}={}}{}+\bigl(48u^{6}+198v^{2}u^{4}+288v^{3}u^{3}+198v^{4}u^{2}-26v^{5}u-26vu^{5}+48v^{6} \bigr)w^{4} \\& \hphantom{\delta_{\varphi1}={}}{}+4(u+v) \bigl(25u^{6}-70vu^{5}+86v^{2}u^{4}-14v^{3}u^{3}+86v^{4}u^{2}-70v^{5}u+25v^{6} \bigr)w^{3} \\& \hphantom{\delta_{\varphi1}={}}{}+\bigl(-232v^{2}u^{6}+64v^{3}u^{5}+198v^{4}u^{4}-232v^{6}u^{2}+64v^{5}u^{3}-244v^{7}u \\& \hphantom{\delta_{\varphi1}={}}{}-244vu^{7}+89u^{8}+89v^{8} \bigr)w^{2}+2(u+v) \bigl(24u^{8}-63vu^{7}-59v^{2}u^{6}-31v^{3}u^{5} \\& \hphantom{\delta_{\varphi1}={}}{}+18v^{4}u^{4}-31v^{5}u^{3}-59v^{6}u^{2}-63v^{7}u+24v^{8} \bigr)w+\bigl(16v^{8}+16v^{7}u+41v^{6}u^{2}+2v^{5}u^{3} \\& \hphantom{\delta_{\varphi1}={}}{}+3v^{4}u^{4}+2v^{3}u^{5}+41v^{2}u^{6}+16vu^{7}+16u^{8} \bigr) (u+v)^{2}, \end{aligned}$$
(32)
$$\begin{aligned}& \delta_{\varphi2}=\bigl(8\bigl(v^{2}+w^{2} \bigr)+(w-v)^{2}\bigr)u^{8}+8(w+v) \bigl(6 \bigl(v^{2}+w^{2}\bigr)+(w-v)^{2} \bigr)u^{7} \\& \hphantom{\delta_{\varphi2}={}}{}+\bigl(144w^{4}+144v^{4}+248v^{2}w^{2}+222v^{3}w+222vw^{3} \bigr)u^{6} \\& \hphantom{\delta_{\varphi2}={}}{}+2(w+v) \bigl(97w^{4}+131vw^{3}+254v^{2}w^{2}+131v^{3}w+97v^{4} \bigr)u^{5} \\& \hphantom{\delta_{\varphi2}={}}{}+\bigl(144w^{6}+144v^{6}+1 \text{,}174v^{2}w^{4}+1\text{,}688v^{3}w^{3}+1 \text{,}174v^{4}w^{2}+468v^{5}w+468vw^{5} \bigr)u^{4} \\& \hphantom{\delta_{\varphi2}={}}{}+2(w+v) \bigl(28w^{6}+95vw^{5}+382v^{2}w^{4}+626v^{3}w^{3}+382v^{4}w^{2}+95v^{5}w+28v^{6} \bigr)u^{3} \\& \hphantom{\delta_{\varphi2}={}}{}+\bigl(9v^{8}+9w^{8}+56v^{7}w+412v^{2}w^{6}+1 \text{,}298v^{3}w^{5}+1\text{,}870v^{4}w^{4}+1 \text{,}298v^{5}w^{3} \\& \hphantom{\delta_{\varphi2}={}}{}+412v^{6}w^{2}+56vw^{7}\bigr)u^{2}+2vw(w+v) \bigl(w^{6}+43vw^{5}+168v^{2}w^{4}+254v^{3}w^{3} \\& \hphantom{\delta_{\varphi2}={}}{}+168v^{4}w^{2}+43v^{5}w+v^{6}\bigr)u +v^{2}w^{2} \bigl(9v^{4}+38v^{3}w+59v^{2}w^{2} \\& \hphantom{\delta_{\varphi2}={}}{}+38vw^{3}+9w^{4} \bigr) (w+v)^{2}. \end{aligned}$$
(33)

Declarations

Acknowledgements

The research is partially supported by the National Science Foundation of China, China (Grant No. 61374001) and the Fundamental Research Funds for the Central Universities, University of Electronic Science and Technology of China (Grant No. ZYGX2013J116).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China

References

  1. Liu, J: A new inequality for a point in the plane of a triangle. J. Math. Inequal. 8(3), 597-611 (2014). doi:10.7153/jmi-08-44 View ArticleMathSciNetGoogle Scholar
  2. Yao, Y: Infinite product convergence of column stochastic mean matrix and machine decision for positive semi-definite forms. Sci. Sin., Math. 53(3), 251-264 (2010) (in Chinese), also see arXiv:0904.4030v3 for English version Google Scholar
  3. Erdös, P: Problem 3740. Am. Math. Mon. 42(6), 396 (1935). doi:10.2307/2301373 View ArticleGoogle Scholar
  4. Mordell, LJ: Solution to problem 3740. Am. Math. Mon. 44(4), 252-254 (1937). doi:10.2307/2300713 View ArticleMathSciNetGoogle Scholar
  5. Kazarinoff, DK: A simple proof of the Erdös-Mordell inequality for triangles. Mich. Math. J. 4(2), 97-98 (1957). doi:10.1307/mmj/1028988998 View ArticleMathSciNetMATHGoogle Scholar
  6. Dergiades, N: Signed distances and the Erdös-Mordell inequality. Forum Geom. 4, 67-68 (2004) MathSciNetMATHGoogle Scholar
  7. Pambuccian, V: The Erdös-Mordell inequality is equivalent to non-positive curvature. J. Geom. 88(1), 134-139 (2008). doi:10.1007/s00022-007-1961-4 View ArticleMathSciNetMATHGoogle Scholar
  8. Liu, J: Some new inequalities for an interior point of a triangle. J. Math. Inequal. 6(2), 195-204 (2012). doi:10.7153/jmi-06-20 View ArticleMathSciNetMATHGoogle Scholar
  9. Yang, L: Solving harder problems with lesser mathematics. In: The 10th Asian Technology Conference in Mathematics, Blacksburg, pp. 37-46 (2005) Google Scholar
  10. Yang, L, Yao, Y: Difference substitution matrices and decision on nonnegativity of polynomials. J. Syst. Sci. Math. Sci. 29(9), 1169-1177 (2009) (in Chinese) MathSciNetMATHGoogle Scholar
  11. Hou, X, Shao, J: Bounds on the number of steps of WDS required for checking the positivity of integral forms. Appl. Math. Comput. 217(24), 9978-9984 (2011). doi:10.1016/j.amc.2011.04.067 View ArticleMathSciNetMATHGoogle Scholar
  12. Han, J: A complete method based on successive difference substitution method for deciding positive semi-definiteness of polynomials. Acta Sci. Natur. Univ. Pekinensis 49(4), 545-551 (2013) (in Chinese) MATHGoogle Scholar

Copyright

© Huang 2016