Skip to content

Advertisement

Open Access

Boundedness of homogeneous fractional integral operator on Morrey space

Journal of Inequalities and Applications20162016:61

https://doi.org/10.1186/s13660-016-0999-y

Received: 27 October 2015

Accepted: 1 February 2016

Published: 13 February 2016

Abstract

For \(0<\alpha<n\), the homogeneous fractional integral operator \(T_{\Omega,\alpha}\) is defined by
$$T_{\Omega,\alpha}f(x)= \int_{{\Bbb {R}}^{n}}\frac{\Omega (x-y)}{\vert x-y\vert ^{n-\alpha}}f(y)\,dy. $$
In this paper we prove that if Ω satisfies some smoothness conditions on \(S^{n-1}\), then \(T_{\Omega,\alpha}\) is bounded from \(L^{\frac{\lambda}{\alpha },\lambda}({\Bbb {R}}^{n})\) to \(\operatorname {BMO}({\Bbb {R}}^{n})\), and from \(L^{p,\lambda}({\Bbb {R}}^{n})\) (\(\frac{\lambda}{\alpha}< p<\infty\)) to a class of the Campanato spaces \(\mathcal{L}_{l,\lambda }({\Bbb {R}}^{n})\), respectively.

Keywords

Morrey spaceCampanato spaceBMO spacehomogeneous fractional integral operator

MSC

42B2042B2547B35

1 Introduction

Before going into the next sections addressing details, let us agree to some conventions. The n-dimensional Euclidean space \({\Bbb {R}}^{n}\), \(Q=Q(x_{0},d)\) is a cube with its sides parallel to the coordinate axes and center at \(x_{0}\), diameter \(d>0\).

For \(1\leq l\leq\infty\), \(-\frac{n}{l}\leq\lambda\leq1\), we denote
$$\Vert f\Vert _{\mathcal{L}_{l,\lambda}}=\sup_{Q}\frac{1}{\vert Q\vert ^{\lambda /n}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert f(x)-f_{Q}\bigr\vert ^{l}\,dx \biggr)^{1/l}, $$
where \(f_{Q}=\frac{1}{\vert Q\vert }\int_{Q}f(y)\,dy\). Then the Campanato space \(\mathcal{L}_{l,\lambda}({\Bbb{R}}^{n})\) is defined by
$$\mathcal{L}_{l,\lambda}\bigl({\Bbb{R}}^{n}\bigr)=\bigl\{ f\in L_{\mathrm{loc}}^{l}\bigl({\Bbb {R}}^{n}\bigr):\Vert f \Vert _{\mathcal{L}_{l,\lambda}}< \infty\bigr\} . $$
If we identify functions that differ by a constant, then \(\mathcal {L}_{l,\lambda}\) becomes a Banach space with the norm \(\Vert \cdot \Vert _{\mathcal{L}_{l,\lambda}}\). It is well known that
$$\begin{aligned} & \operatorname {Lip}_{\lambda}\bigl({\Bbb{R}}^{n}\bigr), \quad \mbox{for } 0< \lambda< 1, \\ \mathcal{L}_{l,\lambda}\bigl({\Bbb{R}}^{n}\bigr)\quad \sim\quad & \operatorname {BMO}\bigl({ \Bbb{R}}^{n}\bigr), \quad \mbox{for } \lambda=0, \\ & \mbox{Morrey space }L^{p,n+l\lambda}\bigl({\Bbb{R}}^{n}\bigr), \quad \mbox{for } -\!n/l\leq \lambda< 0. \end{aligned}$$
On the other properties of the spaces \(\mathcal{L}_{l,\lambda}({\Bbb {R}}^{n})\), we refer the reader to [1].

The Morrey space, which was introduced by Morrey in 1938, connects with certain problems in elliptic PDE [2, 3]. Later, there were many applications of Morrey space to the Navier-Stokes equations (see [4]), the Schrödinger equations (see [5] and [6]) and the elliptic problems with discontinuous coefficients (see [79] and [10]).

For \(1\leq p<\infty\) and \(0<\lambda\leq n\), the Morrey space is defined by
$$L^{p,\lambda}\bigl({\Bbb {R}}^{n}\bigr)= \biggl\{ f\in L_{\mathrm{loc}}^{p}:\Vert f\Vert _{L^{p,\lambda }}= \biggl[\sup_{x\in{\Bbb {R}}^{n},\,d>0}d^{\lambda-n} \int_{Q(x,d)}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr]^{\frac {1}{p}}< \infty \biggr\} , $$
where \(Q(x,d)\) denotes the cube centered at x and with diameter \(d>0\). The space \(L^{p,\lambda}({\Bbb {R}}^{n})\) becomes a Banach space with norm \(\Vert \cdot \Vert _{L^{p,\lambda}}\). Moreover, for \(\lambda=0\) and \(\lambda=n\), the Morrey spaces \(L^{p,0}({\Bbb {R}}^{n})\) and \(L^{p,n}({\Bbb {R}}^{n})\) coincide (with equality of norms) with the space \(L^{\infty}({\Bbb {R}}^{n})\) and \(L^{p}({\Bbb {R}}^{n})\), respectively.

The boundedness of the Hardy-Littlewood maximal operator, the fractional integral operator, and the Calderón-Zygmund singular integral operator on Morrey space can be found in [1115]. It is well known that further properties and applications of the classical Morrey space have been widely studied by many authors. (For example, see [8, 1619].)

A function \(g\in \operatorname {BMO}({\Bbb {R}}^{n})\) (see [20]), if there is a constant \(C>0\) such that for any cube \(Q\in{\Bbb {R}}^{n}\),
$$\Vert g\Vert _{\operatorname {BMO}}=\sup_{x\in{\Bbb {R}}^{n},\,r>0} \biggl( \frac{1}{\vert Q\vert }\int _{Q}\bigl\vert g(x)-g_{Q}\bigr\vert \,dx\biggr)< \infty, $$
where \(g_{Q}=\frac{1}{\vert Q\vert }\int_{Q}g(y)\,dy\).
The Hardy-Littlewood-Sobolev theorem showed that the Riesz potential operator \(I_{\alpha}\) is bounded from \(L^{p}( {\Bbb {R}}^{n})\) to \(L^{q}( {\Bbb {R}}^{n})\) for \(0<\alpha<n\), \(1< p<\frac{n}{\alpha}\), and \(\frac{1}{q}= \frac{1}{p}-\frac{\alpha}{n}\). Here
$$I_{\alpha}f(x)=\frac{1}{\gamma(\alpha)} \int_{ {\Bbb {R}}^{n}}\frac {f(y)}{\vert x-y\vert ^{n-\alpha}}\,dy,\quad \mbox{and} \quad \gamma(\alpha)= \frac{\pi^{\frac{n}{2}}2^{\alpha}\Gamma (\alpha/2)}{ \Gamma(\frac{n-\alpha}{2})}. $$

In 1974, Muckenhoupt and Wheeden [21] gave the weighted boundedness of \(I_{\alpha}\) from \(L^{\frac{n}{\alpha}}(w, {\Bbb {R}}^{n})\) to \(\operatorname {BMO}_{v}( {\Bbb {R}}^{n})\).

In 1975, Adams proved the following theorem in [11].

Theorem A

(Adams) ([11])

Let \(\alpha\in(0,n)\) and \(\lambda\in(0,n]\), there is a constant \(C>0\), such that, if \(1< p=\frac{\lambda}{\alpha}\), then
$$\Vert I_{\alpha}f \Vert _{\operatorname {BMO}}\leq C\Vert f\Vert _{L^{p,\lambda}}. $$
On the other hand, many scholars have investigated the various map properties of the homogeneous fractional integral operator \(T_{\Omega ,\alpha}\), which is defined by
$$T_{\Omega,\alpha}f(x)= \int_{ {\Bbb {R}}^{n}}\frac{\Omega (x-y)}{\vert x-y\vert ^{n-\alpha}}f(y)\,dy, $$
where \(0<\alpha<n\), Ω is homogeneous of degree zero on \({\Bbb {R}}^{n}\) with \(\Omega\in L^{s}(S^{n-1})\) (\(s\geq1\)) and \(S^{n-1}\) denotes the unit sphere of \({\Bbb {R}}^{n}\). For instance, the weighted \((L^{p}, L^{q})\)-boundedness of \(T_{\Omega,\alpha}\) for \(1< p<\frac{n}{\alpha}\) had been studied in [22] (for power weights) and in [23] (for \(A(p,q)\) weights). The weak boundedness of \(T_{\Omega,\alpha}\) when \(p=1\) can be found in [24] (unweighed) and in [25] (with power weights). In 2002, Ding [26] proved that \(T_{\Omega,\alpha}\) is bounded from \(L ^{\frac{n}{\alpha}}( {\Bbb {R}}^{n})\) to \(\operatorname {BMO}( {\Bbb {R}}^{n})\) when Ω satisfies some smoothness conditions on \(S^{n-1}\).

Inspired by the \((L^{p,\lambda}({\Bbb {R}}^{n}), \operatorname {BMO}({\Bbb {R}}^{n}))\)-boundedness of Riesz potential integral operator \(I_{\alpha}\) for \(p=\frac{\lambda}{\alpha}\). We will prove the \((L^{p,\lambda }({\Bbb {R}}^{n}), \operatorname {BMO}({\Bbb {R}}^{n}))\)-boundedness of homogeneous fractional integral operator \(T_{\Omega,\alpha}\) for \(p=\frac{\lambda}{\alpha}\). Then we find that \(T_{\Omega,\alpha}\) is also bounded from \(L^{p,\lambda}({\Bbb {R}}^{n})\) (\(\frac{\lambda }{\alpha }< p<\infty\)) to a class of the Campanato spaces \(\mathcal {L}_{l,\lambda }({\Bbb {R}}^{n})\).

We say that Ω satisfies the \(L^{s}\)-Dini condition if Ω is homogeneous of degree zero on \({\Bbb {R}}^{n}\) with \(\Omega\in L^{s}(S^{n-1})\) (\(s\geq1\)), and
$$\int_{0}^{1}\omega_{s}(\delta) \frac{d \delta}{\delta}< \infty, $$
where \(\omega_{s}(\delta)\) denotes the integral modulus of continuity of order s of Ω defined by
$$\omega_{s}(\delta)=\sup_{\vert \rho \vert < \delta} \biggl( \int _{S^{n-1}}\bigl\vert \Omega\bigl(\rho x' \bigr)-\Omega\bigl(x'\bigr)\bigr\vert ^{s} \,dx' \biggr)^{\frac{1}{s}}, $$
and ρ is a rotation in \({\Bbb {R}}^{n}\) and \(\vert \rho \vert =\Vert \rho-I\Vert \).

Now, let us formulate our result as follows.

Theorem 1.1

Let \(0<\alpha\), \(\lambda< n\), if Ω satisfies the \(L^{s}\)-Dini condition (\(s>1\)), then there is a constant \(C>0\) such that
$$ \Vert T_{\Omega,\alpha}f \Vert _{\operatorname {BMO}}\leq C\Vert f\Vert _{L^{\frac{\lambda}{\alpha},\lambda}}. $$
(1.1)

Remark 1.2

If \(\Omega\equiv1\), \(s=\infty\), and \(\lambda=0\), then \(T_{\Omega,\alpha}\) is a Riesz potential \(I_{\alpha}\), and Theorem 1.1 becomes Theorem A (Adams) [3].

The following theorem shows that \(T_{\Omega,\alpha}\) is a bounded map from \(L^{p,\lambda}({\Bbb {R}}^{n})\) (\(\frac{\lambda}{\alpha}< p<\infty\)) to the Campanato spaces \(\mathcal{L}_{l,\lambda}({\Bbb {R}}^{n})\) for appropriate indices \(\lambda>0\) and \(l\geq1\).

Theorem 1.3

Let \(0<\alpha<1\), \(0<\lambda<n\), \(\lambda /\alpha< p<\infty\), and \(s>\lambda/(\lambda-\alpha)\). If for some \(\beta>\alpha-\lambda/p\), the integral modulus of continuity \(\omega_{s}(\delta)\) of order s of Ω satisfies
$$\int_{0}^{1}\omega_{s}(\delta) \frac{d\delta}{\delta^{1+\beta }}< \infty, $$
then there is a \(C>0\) such that for \(1\leq l\leq\lambda/(\lambda -\alpha)\),
$$ \Vert T_{\Omega,\alpha}f \Vert _{\mathcal{L}_{l,n(\frac{\alpha}{n}-\frac {1}{p}\frac{\lambda}{n})}}\leq C\Vert f\Vert _{L^{p,\lambda}}. $$
(1.2)

Remark 1.4

If we take \(\Omega\equiv1\), then \(T_{\Omega ,\alpha }\) is the Riesz potential \(I_{\alpha}\), and Theorem 1.3 is even new for the Riesz potential \(I_{\alpha}\).

Below the letter ‘C’ will denote a constant not necessarily the same at each occurrence.

2 Proof of Theorem 1.1

In this section we will give the proof of Theorem 1.1. Let us recall the following conclusion.

Lemma 2.1

([26])

Suppose that \(0<\alpha<n\), \(s>1\), Ω satisfies the \(L^{s}\)-Dini condition. There is a constant \(0< a_{0}<\frac{1}{2}\) such that if \(\vert x\vert < a_{0}R\), then
$$\begin{aligned} &\biggl( \int_{R< \vert y\vert < 2R}\biggl\vert \frac{\Omega(y-x)}{|y-x|^{n-\alpha }}-\frac {\Omega(y)}{ |y|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac{1}{s}}\\ &\quad \leq CR^{n/s-(n-\alpha )} \biggl\{ \frac{\vert x\vert }{R}+ \int_{\vert x\vert /2R< \delta< \vert x\vert /R}\omega_{s}(\delta)\frac{d \delta }{\delta} \biggr\} . \end{aligned} $$

Proof of Theorem 1.1

Fix a cube \(Q\subset{\Bbb {R}}^{n}\), we denote the center and the diameter of Q by \(x_{0}\) and d, respectively. We write
$$\begin{aligned} T_{\Omega,\alpha}f & = \int_{B}\frac{\Omega(x-y)}{\vert x-y\vert ^{n-\alpha }}f(y)\,dy+ \int_{R^{n}\backslash B}\frac{\Omega(x-y)}{\vert x-y\vert ^{n-\alpha}}f(y)\,dy \\ & :=T_{1}f(x)+T_{2}f(x), \end{aligned}$$
where \(B=\{y\in{\Bbb {R}}^{n};\vert y-x_{0}\vert < d\}\). It is sufficient to prove (1.1) for \(T_{1}f(x)\) and \(T_{2}f(x)\), respectively.
First let us consider \(T_{1}f(x)\). We have
$$ \begin{aligned}[b] \frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(x)-(T_{1}f)_{Q} \bigr\vert \,dx \leq{}&\frac {1}{\vert Q\vert } \int _{Q} \int_{B}\frac{\vert \Omega(x-y)\vert }{\vert x-y\vert ^{n-\alpha}}\bigl\vert f(y)\bigr\vert \,dy \,dx \\ &{}+ \frac{1}{\vert Q\vert } \int_{Q} \biggl(\frac{1}{\vert Q\vert } \int_{Q} \int_{B}\frac {\vert \Omega(z-y)\vert }{\vert z-y\vert ^{n-\alpha}}\bigl\vert f(y)\bigr\vert \,dy \,dz \biggr)\,dx \\ \leq{}&\frac{2}{\vert Q\vert } \int_{B}\bigl\vert f(y)\bigr\vert \int_{Q}\frac{\vert \Omega (x-y)\vert }{\vert x-y\vert ^{n-\alpha}}\,dx\,dy \\ \leq{}&\frac{2}{\vert Q\vert } \int_{B}\bigl\vert f(y)\bigr\vert \int_{\vert x-y\vert < 2d}\frac{\vert \Omega (x-y)\vert }{\vert x-y\vert ^{n-\alpha}}\,dx\,dy. \end{aligned} $$
(2.1)
Note that \(\Omega(x')\in L^{s}(S^{n-1})\), \(\Vert \Omega \Vert _{L^{s}(S^{n-1})}=(\int_{S^{n-1}}\vert \Omega(y')\vert ^{s}\,d\sigma(y'))^{\frac {1}{s}}\), we get
$$ \begin{aligned}[b] \int_{\vert x-y\vert < 2d}\frac{\vert \Omega(x-y)\vert }{\vert x-y\vert ^{n-\alpha}}\,dx & \leq Cd^{\alpha} \Vert \Omega \Vert _{L^{s}(S^{n-1})} \\ & \leq C\vert Q\vert ^{\frac{\alpha}{n}} \Vert \Omega \Vert _{L^{s}(S^{n-1})}. \end{aligned} $$
(2.2)
On the other hand, since \(p'<\frac{1}{\frac{1}{p}(\frac{\lambda }{n}-1)-\frac{\alpha}{n}}\), by using the Hölder inequality, we get
$$\begin{aligned} \int_{B}\bigl\vert f(y)\bigr\vert \,dy & \leq \biggl( \int_{B}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac {1}{p}} \biggl( \int_{B}1^{p'}\,dy \biggr)^{\frac{1}{p'}} \\ &\leq \biggl( \int_{B}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac{1}{p}} \biggl( \int _{B}1^{\frac{1}{\frac{1}{p}(\frac{\lambda}{n}-1) -\frac{\alpha}{n}}}\,dy \biggr)^{{\frac{1}{p}(\frac{\lambda}{n}-1)-\frac{\alpha}{n}}} \\ & =\vert B\vert ^{{\frac{1}{p}(\frac{\lambda}{n}-1)-\frac{\alpha}{n}}} \biggl( \int _{B}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac{1}{p}} \\ & =\vert B\vert ^{{\frac{1}{p}(\frac{\lambda}{n}-1)-\frac{\alpha }{n}}}\vert B\vert ^{{\frac {1}{p}(1-\frac{\lambda}{n})}} \biggl(d^{\lambda-n} \int _{B}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr) ^{\frac{1}{p}} \\ & = \vert B\vert ^{-\frac{\alpha}{n}} \Vert f\Vert _{L^{p,\lambda}}. \end{aligned}$$
(2.3)
Here and below we denote \(p=\frac{\lambda}{\alpha}\) in the proof of Theorem 1.1. Plugging (2.2) and (2.3) into (2.1), we obtain
$$ \begin{aligned}[b] \frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(x)-(T_{1}f)_{Q} \bigr\vert \,dx &\leq C\vert Q\vert ^{\frac{\alpha}{n}} \vert B\vert ^{-\frac{\alpha}{n}} \Vert f \Vert _{L^{p,\lambda }} \\ &\leq C\Vert f\Vert _{L^{p,\lambda}}. \end{aligned} $$
(2.4)
Now, let us turn to the estimate for \(T_{2}f(x)\). In this case we have
$$\begin{aligned} &\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{2}f(x)-(T_{2}f)_{Q} \bigr\vert \,dx \\ &\quad =\frac{1}{|Q|} \int _{Q}\biggl\vert \frac{1}{|Q|} \int_{Q} \biggl\{ \int_{|y-x_{0}|\geq d}f(y) \biggl[\frac{\Omega(x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \biggr]\,dy \biggr\} \,dz\biggr\vert \,dx \\ &\quad \leq\frac{1}{\vert Q\vert } \int_{Q}\frac{1}{\vert Q\vert } \int_{Q} \Biggl\{ \sum_{j=0}^{\infty} \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert \biggl\vert \frac{\Omega(x-y)}{|x-y|^{n-\alpha }} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\biggr\vert \,dy \Biggr\} \,dz\,dx. \end{aligned}$$
(2.5)
By Hölder’s inequality, we get
$$ \begin{aligned}[b] & \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert \biggl\vert \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\biggr\vert \,dy \\ &\quad \leq \biggl( \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac{1}{s'}} \\ & \qquad {}\times \biggl( \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\biggl\vert \frac {\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac{1}{s}}. \end{aligned} $$
(2.6)
Since
$$\begin{aligned} \biggl\vert \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\biggr\vert & =\biggl\vert \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(y-x_{0})}{|y-x_{o}|^{n-\alpha}}+\frac{\Omega (y-x_{0})}{|y-x_{o}|^{n-\alpha}} - \frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\biggr\vert \\ & \leq\biggl\vert \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(y-x_{0})}{|y-x_{o}|^{n-\alpha}}\biggr\vert +\biggl\vert \frac{\Omega(y-x_{0})}{|y-x_{o}|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\biggr\vert , \end{aligned}$$
we have
$$\begin{aligned} & \biggl( \int_{ 2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\biggl\vert \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac {1}{s}} \\ &\quad \leq \biggl( \int_{ 2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\biggl\vert \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(y-x_{0})}{|y-x_{0}|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac {1}{s}} \\ & \qquad {}+ \biggl( \int_{ 2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\biggl\vert \frac{\Omega (z-y)}{|z-y|^{n-\alpha}} -\frac{\Omega(y-x_{0})}{|y-x_{0}|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac {1}{s}} \\ & \quad :=J_{1}+J_{2}. \end{aligned}$$
(2.7)
Let us give the estimates of \(J_{1}\) and \(J_{2}\), respectively. We write \(J_{1}\) as
$$J_{1}= \biggl( \int_{ 2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\biggl\vert \frac{\Omega ((x-x_{0})-y)}{|x-x_{0}-y|^{n-\alpha}} -\frac{\Omega(y)}{|y|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac{1}{s}}. $$
Note that \(x\in Q\), if taking \(R=2^{j}d\), then \(\vert x-x_{0}\vert <\frac{1}{2^{j+1}}R\). Applying Lemma 2.1 to \(J_{1}\), we get
$$ \begin{aligned}[b] J_{1}& \leq C\bigl(2^{j}d \bigr)^{n/s-(n-\alpha)} \biggl\{ \frac{\vert x-x_{0}\vert }{2^{j}d}+ \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta< \vert x-x_{0}\vert /2^{j}d}\omega_{s}(\delta )\frac{d \delta}{\delta} \biggr\} \\ & \leq C\bigl(2^{j}d\bigr)^{n/s-(n-\alpha)} \biggl\{ \frac{1}{2^{j+1}}+ \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta< \vert x-x_{0}\vert /2^{j}d}\omega_{s}(\delta )\frac{d \delta}{\delta} \biggr\} . \end{aligned} $$
(2.8)
By \(z\in Q\) and using a similar method, we have
$$ J_{2}\leq C\bigl(2^{j}d\bigr)^{n/s-(n-\alpha)} \biggl\{ \frac{1}{2^{j+1}}+ \int_{\vert z-x_{0}\vert /2^{j+1}d< \delta< \vert z-x_{0}\vert /2^{j}d}\omega_{s}(\delta )\frac{d \delta}{\delta} \biggr\} . $$
(2.9)
Since \(p=\frac{\lambda}{\alpha}\) and \(\frac{n}{s}-(n-\alpha )<-\frac {n}{s'(p/s')'}\), we get
$$\bigl(2^{j}d\bigr)^{n/s-(n-\alpha)}\leq C\bigl\vert 2^{j+1} \sqrt{n}Q\bigr\vert ^{-\frac{1}{s'(p/s')'}}, $$
where \(2^{j+1}\sqrt{n}Q\) denote the cube with the center at \(x_{0}\) and the diameter \(2^{j+1}\sqrt{n}d\).
Thus, plugging (2.8) and (2.9) into (2.7), we have
$$ \begin{aligned}[b] & \biggl( \int_{ 2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\biggl\vert \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}} \biggr\vert ^{s}\,dy \biggr)^{\frac {1}{s}} \\ &\quad \leq C\bigl\vert 2^{j+1}\sqrt{n}Q\bigr\vert ^{n/s-(n-\alpha)} \biggl\{ \frac{1}{2^{j}} + \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta< \vert x-x_{0}\vert /2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta} \\ & \qquad {}+ \int_{\vert z-x_{0}\vert /2^{j+1}d< \delta< \vert z-x_{0}\vert /2^{j}d}\omega _{s}(\delta) \frac{d\delta}{\delta} \biggr\} \\ &\quad \leq C\bigl\vert 2^{j+1}\sqrt{n}Q\bigr\vert ^{-\frac{1}{s'(p/s')'}} \biggl\{ \frac {1}{2^{j}} + \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta< \vert x-x_{0}\vert /2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta} \\ & \qquad {}+ \int_{\vert z-x_{0}\vert /2^{j+1}d< \delta< \vert z-x_{0}\vert /2^{j}d}\omega _{s}(\delta) \frac{d\delta}{\delta} \biggr\} . \end{aligned} $$
(2.10)
On the other hand, we estimate \((\int_{2^{j}d\leq \vert y-x_{0}\vert <2^{j+1}d}\vert f(y)\vert ^{s'}\,dy )^{\frac{1}{s'}}\), since \(p'< s'(\frac{p}{s'})'\) and \(s'(\frac{p}{s'})'<\frac{1}{\frac {1}{p}(\frac {\lambda}{n}-1)+\frac{1}{(p/s'){'}s'}}\), by using Hölder’s inequality again, we get
$$\begin{aligned} & \biggl( \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac {1}{s'}} \\ & \quad \leq \biggl( \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac {1}{p}} \biggl( \int_{\vert y-x_{0}\vert < 2^{j+1}d}1^{s'(\frac{p}{s'})}{'}\,dy \biggr)^{\frac {1}{(p/s'){'}s'}} \\ &\quad \leq C \biggl( \int_{\vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac {1}{p}} \biggl( \int_{\vert y-x_{0}\vert < 2^{j+1}d}1^{\frac{1}{\frac{1}{p}(\frac{\lambda }{n}-1)+\frac{1}{(p/s'){'}s'}}}\,dy \biggr)^{\frac{1}{p}(\frac{\lambda }{n}-1)+\frac{1}{(p/s'){'}s'}} \\ &\quad \leq C\vert B_{1}\vert ^{\frac{1}{p}(\frac{\lambda}{n}-1)+\frac {1}{(p/s'){'}s'}}\vert B_{1} \vert ^{\frac{1}{p}(1-\frac{\lambda}{n})} \biggl(\bigl(2^{j+1}d\bigr)^{\lambda-n} \int_{\vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac{1}{p}} \\ & \quad \leq C\vert B_{1}\vert ^{\frac{1}{(p/s'){'}s'}}\Vert f\Vert _{L^{p,\lambda}}, \end{aligned}$$
(2.11)
where \(B_{1}=\{y\in{\Bbb {R}}^{n};\vert y-x_{0}\vert <2^{j+1}d\}\).
Plugging (2.10) and (2.11) into (2.6) we obtain
$$\begin{aligned} &\sum_{j=0}^{\infty} \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert \biggl\vert \frac{\Omega(x-y)}{|x-y|^{n-\alpha}}-\frac{\Omega (z-y)}{|z-y|^{n-\alpha }}\biggr\vert \,dy \\ &\quad \leq C \sum_{j=0}^{\infty} \Vert f\Vert _{L^{p,\lambda}} \vert B_{1}\vert ^{\frac {1}{(p/s'){'}s'}}\bigl\vert 2^{j+1}\sqrt{n}Q\bigr\vert ^{n/s-(n-\alpha)} \biggl\{ \frac{1}{2^{j}}+ \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta < \vert x-x_{0}\vert /2^{j}d}\omega _{s}(\delta) \frac{d\delta}{\delta} \\ &\qquad {} + \int_{\vert z-x_{0}\vert /2^{j+1}d< \delta< \vert z-x_{0}\vert /2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta} \biggr\} \\ & \quad \leq C\Vert f\Vert _{L^{p,\lambda}}\sum_{j=0}^{\infty} \vert B_{1}\vert ^{\frac {1}{(p/s'){'}s'}}\vert B_{1}\vert ^{-\frac{1}{(p/s'){'}s'}} \biggl\{ \frac{1}{2^{j}}+ \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta < \vert x-x_{0}\vert /2^{j}d}\omega _{s}(\delta) \frac{d\delta}{\delta} \\ & \qquad {}+ \int_{\vert z-x_{0}\vert /2^{j+1}d< \delta< \vert z-x_{0}\vert /2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta} \biggr\} \\ & \quad \leq C\Vert f\Vert _{L^{p,\lambda}} \biggl\{ 2+2 \int_{0}^{1}\omega_{s}(\delta ) \frac {d\delta}{\delta} \biggr\} \\ & \quad \leq C \Vert f\Vert _{L^{p,\lambda}}. \end{aligned}$$
(2.12)
Therefore, applying (2.12) into (2.5) we obtain
$$ \frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{2}f(x)-(T_{2}f)_{Q} \bigr\vert \,dx\leq C\Vert f\Vert _{L^{p,\lambda}}. $$
(2.13)
Combining (2.4) and (2.13), we get
$$\begin{aligned} \Vert T_{\Omega,\alpha}f \Vert _{\operatorname {BMO}} & =\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{\Omega ,\alpha}f(y) -(T_{\Omega,\alpha}f)_{Q}\bigr\vert \,dy \\ & \leq\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(y) -(T_{1}f)_{Q}\bigr\vert \,dy+\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{2}f(y) -(T_{2}f)_{Q}\bigr\vert \,dy \\ & \leq C\Vert f\Vert _{L^{p,\lambda}}. \end{aligned}$$
Thus, we complete the proof of Theorem 1.1. □

3 Proof of Theorem 1.3

Similarly to the proof of Theorem 1.1. We need only to prove (1.2) for \(T_{1}\) and \(T_{2}\), respectively. First let us consider \(T_{1}f(x)\). We have
$$\begin{aligned} &\frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(x)-(T_{1}f)_{Q} \bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}} \\ &\quad \leq\frac{2}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(x)\bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}} \\ &\quad =\frac{2}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q} \biggl\vert \int_{B} \frac{\Omega(x-y)}{\vert x-y\vert ^{n-\alpha}}f(y)\,dy \biggr\vert ^{l}\,dx \biggr)^{\frac {1}{l}} \\ &\quad \leq\frac{2}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}}\frac {1}{\vert Q\vert ^{\frac{1}{l}}} \int_{B}\bigl\vert f(y)\bigr\vert \biggl( \int_{\vert y-x\vert < 2d} \biggl(\frac{\vert \Omega(x-y)\vert }{\vert x-y\vert ^{n-\alpha }} \biggr)^{l}\,dx \biggr)^{\frac{1}{l}}\,dy. \end{aligned}$$
(3.1)
Note that \(\Omega(x')\in L^{s}(S^{n-1})\), \(\Vert \Omega \Vert _{L^{s}(S^{n-1})}=(\int_{S^{n-1}}\vert \Omega(y')\vert ^{s}\,d\sigma(y'))^{\frac {1}{s}}\), and \(s>\frac{\lambda}{\lambda-\alpha}\geq l\), hence
$$ \begin{aligned}[b] \biggl( \int_{\vert y-x\vert < 2d} \biggl(\frac{\vert \Omega(x-y)\vert }{\vert x-y\vert ^{n-\alpha }} \biggr)^{l}\,dx \biggr)^{\frac{1}{l}} & \leq Cd^{\frac{n}{l}-(n-\alpha)}\Vert \Omega \Vert _{L^{s}(S^{n-1})} \\ &\leq C\vert Q\vert ^{\frac{1}{l}-(1-\frac{\alpha}{n})}\Vert \Omega \Vert _{L^{s}(S^{n-1})}. \end{aligned} $$
(3.2)
On the other hand, by Hölder’s inequality,
$$\begin{aligned} \int_{B}\bigl\vert f(y)\bigr\vert \,dy \leq {}&\biggl( \int_{B}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac {1}{p}} \biggl( \int_{B}1^{p'}\,dy \biggr)^{\frac{1}{p'}} \\ ={}&\vert B\vert ^{\frac{1}{p}(1-\frac{\lambda}{n})} \biggl(\vert B\vert ^{\frac{\lambda }{n}-1} \int_{B}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac{1}{p}} \\ &{}\times\biggl( \int_{B}1^{\frac{1}{1-\frac{\lambda}{n}(1-\frac {1}{p'})+\frac {1}{p}(\frac{\lambda}{n}-1)}}\,dy \biggr)^{ 1-\frac{\lambda}{n}(1-\frac{1}{p'})+\frac{1}{p}(\frac{\lambda }{n}-1)} \\ \leq{}&\vert B\vert ^{1-\frac{\lambda}{n}(1-\frac{1}{p'})+\frac{1}{p}(\frac {\lambda }{n}-1)}\vert B\vert ^{\frac{1}{p}(1-\frac{\lambda}{n})} \Vert f \Vert _{L^{p,\lambda}} \\ ={}&\vert B\vert ^{1-\frac{\lambda}{n}(1-\frac{1}{p'})}\Vert f\Vert _{L^{p,\lambda}}. \end{aligned}$$
(3.3)
Plugging (3.2) and (3.3) into (3.1) we get
$$ \begin{aligned}[b] &\frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(x)-(T_{1}f)_{Q} \bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}} \\ &\quad \leq C\vert Q\vert ^{\frac{\lambda}{n}\frac{1}{p}-\frac{\alpha}{n}-\frac {1}{l}+1-\frac{\lambda}{n}(1-\frac{1}{p'})+\frac{1}{l}-(1-\frac {\alpha}{n})} \Vert \Omega \Vert _{L^{s}(S^{n-1})} \Vert f\Vert _{L^{p,\lambda}} \\ &\quad \leq C\Vert f\Vert _{L^{p,\lambda}}. \end{aligned} $$
(3.4)
Now, let us turn to the estimate for \(T_{2}f(x)\). In this case we have
$$ \begin{aligned}[b] &\frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{2}f(x)-(T_{2}f)_{Q} \bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}} \\ &\quad =\frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \Biggl(\frac{1}{\vert Q\vert } \int_{Q} \Biggl\vert \frac{1}{|Q|} \int_{Q} \Biggl\{ \sum_{j=0}^{\infty} \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}f(y)\\ &\qquad {}\times \biggl[\frac{\Omega (x-y)}{\vert x-y\vert ^{n-\alpha }} -\frac{\Omega(z-y)}{\vert z-y\vert ^{n-\alpha}} \biggr]\,dy \Biggr\} \,dz\Biggr\vert ^{l}\,dx \Biggr)^{\frac{1}{l}}. \end{aligned} $$
(3.5)
By Hölder’s inequality and the proof of Theorem 1.1, \(s'<\frac {\lambda}{\alpha}<p\),
$$\begin{aligned} & \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert \biggl\vert \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} -\frac{\Omega(z-y)}{|z-y|^{n-\alpha}}\biggr\vert \,dy \\ &\quad \leq \biggl( \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac {1}{s'}}(J_{1}+J_{2}) \\ &\quad \leq \biggl( \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr)^{\frac {1}{p}} \biggl( \int_{\vert y-x_{0}\vert < 2^{j+1}d} 1^{s'(p/s')'}\,dy \biggr)^{\frac{1}{s'(p/s')'}}(J_{1}+J_{2}) \\ &\quad =\bigl(2^{j+1}d\bigr)^{-\frac{\lambda-n}{p}} \biggl[\bigl(2^{j+1}d \bigr)^{\lambda-n} \int _{\vert y-x_{0}\vert < 2^{j+1}d}\bigl\vert f(y)\bigr\vert ^{p}\,dy \biggr]^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int_{\vert y-x_{0}\vert < 2^{j+1}d} 1^{\frac{1}{\frac{1}{s'(p/s')'}+\frac{\lambda-n}{np}+\frac {1}{p}(1-\frac {\lambda}{n})}}\,dy \biggr)^{\frac{1}{s'(p/s')'} +\frac{\lambda-n}{np}+\frac{1}{p}(1-\frac{\lambda }{n})}(J_{1}+J_{2}) \\ &\quad \leq C\Vert f\Vert _{L^{p,\lambda}} \vert B_{1}\vert ^{-\frac{\lambda -n}{np}}\vert B_{1}\vert ^{\frac{1}{s'(p/s')'} +\frac{\lambda-n}{np}+\frac{1}{p}(1-\frac{\lambda }{n})}(J_{1}+J_{2}) \\ &\quad =C\Vert f\Vert _{L^{p,\lambda}}\bigl(2^{j}d\bigr)^{\frac{n}{s'(p/s')'} +\frac{n}{p}(1-\frac{\lambda}{n})}(J_{1}+J_{2}) \\ &\quad =C\Vert f\Vert _{L^{p,\lambda}}\bigl(2^{j}d\bigr)^{\frac{n}{s'(p/s')'}}2^{j(\frac {n}{p}-\frac{\lambda}{p})} \vert Q\vert ^{\frac{1}{p}-\frac{1}{p} \frac{\lambda}{n}}(J_{1}+J_{2}), \end{aligned}$$
(3.6)
where \(B_{1}=\{y\in{\Bbb {R}}^{n};\vert y-x_{0}\vert <2^{j+1}d\}\).
Since the integral modulus of continuity \(\omega_{s}(\delta)\) of order s of Ω satisfies (1.2) and
$$\int_{o}^{1}\omega_{s}(\delta) \frac{d\delta}{\delta}< \int _{o}^{1}\omega _{s}(\delta) \frac{d\delta}{\delta^{1+\beta}} < \infty, $$
we know that Ω satisfies also the \(L^{s}\)-Dini condition. From Lemma 2.1 and the proof of Theorem 1.1, we get
$$ \begin{aligned}[b] J_{1}+J_{2}\leq{}& C \bigl(2^{j}d\bigr)^{n/s-(n-\alpha)}\times \biggl\{ \frac{1}{2^{j}}+ \int_{\vert x-x_{0}\vert /2^{j+1}d< \delta < \vert x-x_{0}\vert /2^{j}d}\omega _{s}(\delta) \frac{d\delta}{\delta} \\ &{}+ \int_{\vert z-x_{0}\vert /2^{j+1}d< \delta< \vert z-x_{0}\vert /2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta} \biggr\} . \end{aligned} $$
(3.7)
Note that
$$ \begin{aligned}[b] \bigl(2^{j}d\bigr)^{n/[s'(p/s')']+n/s-(n-\alpha)}2^{j(\frac{n}{p}-\frac {\lambda }{p})}&= \bigl(2^{j}d\bigr)^{n(\frac{\alpha}{n}-\frac{1}{p})} 2^{j(\frac{n}{p}-\frac{\lambda}{p})} \\ &\leq C\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}}2^{jn(\frac{\alpha }{n}-\frac {1}{p})+j(\frac{n}{p}-\frac{\lambda}{p})} \\ &=C\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}}2^{jn(\frac{\alpha}{n}-\frac {1}{p}\frac{\lambda}{n})}. \end{aligned} $$
(3.8)
Moreover,
$$\begin{aligned} 2^{jn(\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda}{n})} \int _{\vert x-x_{0}\vert /2^{j+1}d}^{\vert x-x_{0}\vert / 2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta} &\leq2^{jn(\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n})}\bigl(\vert x-x_{0}\vert /2^{j}d \bigr)^{\beta} \int_{\vert x-x_{0}\vert /2^{j+1}d}^{\vert x-x_{0}\vert / 2^{j}d}\omega_{s}(\delta) \frac{d\delta}{\delta^{1+\beta}} \\ &\leq C2^{j[n(\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda}{n})-\beta ]} \int _{0}^{1}\omega_{s}(\delta) \frac{d\delta}{\delta^{1+\beta}}. \end{aligned}$$
(3.9)
By \(0<\alpha<1\) and \(\beta>\alpha-\frac{\lambda}{p}\), we have \(n(\frac {\alpha}{n}-\frac{1}{p}\frac{\lambda}{n})-1<0\) and \(n(\frac{\alpha }{n}-\frac{1}{p}\frac{\lambda}{n})-\beta<0\), respectively. Applying (3.7), (3.8), and (3.9) to (3.6) we obtain
$$\begin{aligned} &\sum_{j=0}^{\infty} \int_{2^{j}d\leq \vert y-x_{0}\vert < 2^{j+1}d}f(y) \biggl[\frac {\Omega(x-y)}{\vert x-y\vert ^{n-\alpha}} -\frac{\Omega(z-y)}{\vert z-y\vert ^{n-\alpha}} \biggr]\,dy \\ &\quad \leq C\Vert f\Vert _{L^{p,\lambda}} \vert Q\vert ^{\frac{1}{p}-\frac{1}{p}\frac {\lambda }{n}}\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}} \sum_{j=0}^{\infty} \biggl\{ 2^{j[n(\frac{\alpha}{n}-\frac {1}{p}\frac {\lambda}{n})-1]} +C2^{j[n(\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda}{n})-\beta ]} \int _{0}^{1}\omega_{s}(\delta) \frac{d\delta}{\delta^{1+\beta}} \biggr\} \\ &\quad \leq C\Vert f\Vert _{L^{p,\lambda}} \vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac {\lambda}{n}}. \end{aligned}$$
(3.10)
Plugging (3.10) into (3.5), we obtain
$$ \frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac {1}{\vert Q\vert } \int_{Q}\bigl\vert T_{2}f(x)-(T_{2}f)_{Q} \bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}}\leq C\Vert f\Vert _{L^{p,\lambda}}. $$
(3.11)
Then by (3.4) and (3.11) we get
$$\begin{aligned} \Vert T_{\Omega,\alpha}f \Vert _{\mathcal{L}_{l,n(\frac{\alpha}{n}-\frac {1}{p}\frac{\lambda}{n})}} \leq{}&\frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{1}f(x)-(T_{1}f)_{Q} \bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}} \\ &{}+\frac{1}{\vert Q\vert ^{\frac{\alpha}{n}-\frac{1}{p}\frac{\lambda }{n}}} \biggl(\frac{1}{\vert Q\vert } \int_{Q}\bigl\vert T_{2}f(x)-(T_{2}f)_{Q} \bigr\vert ^{l}\,dx \biggr)^{\frac{1}{l}} \\ \leq{}& C\Vert f\Vert _{L^{p,\lambda}}. \end{aligned}$$
Thus, we complete the proof of Theorem 1.3.  □

Declarations

Acknowledgements

The authors would like to express their deep gratitude to the referee for giving many valuable suggestions. The research was supported by NSF of China (Grant: 11471033), NCET of China (Grant: NCET-11-0574), the Fundamental Research Funds for the Central Universities (FRF-TP-12-006B).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China

References

  1. Peeter, J: On the theory of \(\mathcal{L}_{p,\lambda}\) spaces. J. Funct. Anal. 4, 71-87 (1969) View ArticleGoogle Scholar
  2. Morrey, C: On the solutions of quasi linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126-166 (1938) View ArticleMathSciNetGoogle Scholar
  3. Adams, DR, Xiao, J: Morry spaces in harmonic analysis. Arch. Math. 50(2), 201-230 (2012) MathSciNetMATHGoogle Scholar
  4. Mazzucato, A: Besov-Morrey spaces: functions space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297-1364 (2002) View ArticleMathSciNetGoogle Scholar
  5. Ruiz, A, Vega, L: On local regularity of Schrödinger equations. Int. Math. Res. Not. 1, 13-27 (1993) View ArticleMathSciNetGoogle Scholar
  6. Shen, Z: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. Am. J. Math. 125, 1079-1115 (2003) View ArticleMATHGoogle Scholar
  7. Caffarelli, L: Elliptic second order equations. Rend. Semin. Mat. Fis. Milano 58, 253-284 (1990) View ArticleMathSciNetGoogle Scholar
  8. Di Fazio, G, Palagachev, D, Ragusa, M: Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal. 166, 179-196 (1999) View ArticleMathSciNetMATHGoogle Scholar
  9. Huang, Q: Estimates on the generalized Morrey spaces \(L_{\varphi }^{2,\lambda}\) and BMO for linear elliptic systems. Indiana Univ. Math. J. 45, 397-439 (1996) View ArticleMathSciNetMATHGoogle Scholar
  10. Palagachev, D, Softova, L: Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal. 20, 237-263 (2004) View ArticleMathSciNetMATHGoogle Scholar
  11. Adams, DR: A note on Riesz potentials. Duke Math. J. 42, 765-778 (1975) View ArticleMathSciNetMATHGoogle Scholar
  12. Adams, DR: Lectures on L p $L^{p}$ -potential theory, vol. 2. Department of Mathematics, University of Umeå (1981) Google Scholar
  13. Chiarenza, F, Frasca, M: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. 7, 273-279 (1987) MathSciNetMATHGoogle Scholar
  14. Chen, Y, Ding, Y, Li, R: The boundedness for commutator of fractional integral operator with rough variable kernel. Potential Anal. 38(1), 119-142 (2013) View ArticleMathSciNetMATHGoogle Scholar
  15. Chen, Y, Wu, X, Liu, H: Vector-valued inequalities for the commutators of fractional integrals with rough kernels. Stud. Math. 222(2), 97-122 (2014) View ArticleMathSciNetMATHGoogle Scholar
  16. Ding, Y, Lu, S: The \(L^{p_{1}}\times L^{p_{2}}\times\cdots\times L^{p_{k}}\) boundedness for some rough operators. J. Math. Anal. Appl. 203, 166-186 (1996) View ArticleMathSciNetMATHGoogle Scholar
  17. Fan, D, Lu, S, Yang, D: Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients. Georgian Math. J. 5, 425-440 (1998) View ArticleMathSciNetMATHGoogle Scholar
  18. Di Fazio, G, Ragusa, MA: Interior estimates in Morrey spaces for strongly solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112, 241-256 (1993) View ArticleMathSciNetMATHGoogle Scholar
  19. Chen, Y, Ding, Y, Wang, X: Compactness of commutators for singular integrals on Morrey spaces. Can. J. Math. 64(2), 257-281 (2012) View ArticleMathSciNetMATHGoogle Scholar
  20. John, F, Nirenberg, L: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415-426 (1961) View ArticleMathSciNetMATHGoogle Scholar
  21. Muckenhoupt, B, Wheeden, RL: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261-274 (1974) View ArticleMathSciNetMATHGoogle Scholar
  22. Muckenhoupt, B, Wheeden, RL: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 249-258 (1971) View ArticleMathSciNetMATHGoogle Scholar
  23. Ding, Y, Lu, S: Weighted norm inequalities for fractional integral operators with rough kernel. Can. J. Math. 50, 29-39 (1998) View ArticleMathSciNetMATHGoogle Scholar
  24. Chanillo, S, Watson, D, Wheeden, RL: Some integral and maximal operators related to star-like. Stud. Math. 107, 223-255 (1993) MathSciNetMATHGoogle Scholar
  25. Ding, Y: Weak type bounds for a class of rough operators with power weights. Proc. Am. Math. Soc. 125, 2939-2942 (1997) View ArticleMATHGoogle Scholar
  26. Ding, Y, Lu, S: Boundedness of homogeneous fractional integrals on \(L^{p}\) for \(n/\alpha\leq p\leq\infty\). Nagoya Math. J. 167, 17-33 (2002) MathSciNetMATHGoogle Scholar

Copyright

© Meng and Chen 2016

Advertisement