- Research
- Open access
- Published:
Hamilton’s gradient estimates and Liouville theorems for porous medium equations
Journal of Inequalities and Applications volume 2016, Article number: 37 (2016)
Abstract
Let \((M^{n}, g)\) be an n-dimensional Riemannian manifold. In this paper, we derive a local gradient estimate for positive solutions of the porous medium equation
posed on \((M^{n}, g)\) with the Ricci curvature bounded from below. Moreover, we also obtain a Liouville type theorem. In particular, the results obtained in this paper generalize those in (Zhu in J. Math. Anal. Appl. 402:201-206, 2013).
1 Introduction
In this paper we study the porous medium equation
with \(p>1\), which is a nonlinear extension of the classical heat equation. As is typical of nonlinear problems, the mathematical theory of the porous medium equation is based on a priori estimates. In 1979, Aronson and Bénilan obtained a celebrated second-order differential inequality of the form [2]
which applies to all positive smooth solutions of (1.1) defined on the whole Euclidean space on the condition that \(p>1-\frac{2}{n}\). For various values of \(p>1\), it has appeared in different applications to model diffusive phenomena; see [2–4] and the references therein.
In [5], Hamilton proved the following results.
Theorem A
(Hamilton [5])
Let \((M^{n}, g)\) be an n-dimensional compact Riemannian manifold with \(\operatorname{Ric}(M^{n})\geq-K\), where K is a non-negative constant. Suppose that u is a positive solution to the heat equation
with \(u< M\) for all \((x,t)\in M^{n}\times(0,\infty)\). Then
Hamilton’s estimate tells us that when the temperature is bounded we can compare the temperature of two different points at the same time. For the study of gradient estimates of the equation (1.1), see [6–10] and the references therein. In [1], Zhu applied similar techniques that were used for the heat equation, he derived the following Hamilton type estimate for equation (1.1).
Theorem B
(Zhu [1])
Let \((M^{n}, g)\) be an n-dimensional Riemannian manifold with \(\operatorname{ Ric}(M^{n})\geq-K\), where K is a non-negative constant. Suppose that u is a positive solution to the porous medium equation (1.1) in \(Q_{R,T}:=B_{x_{0}}(R)\times[t_{0}-T, t_{0}]\subset M^{n}\times(-\infty, \infty)\). Let \(v=\frac{p}{p-1}u^{p-1}\). Then for \(1< p<1+\frac{1}{\sqrt{2n}+1}\) and \(v\leq M\),
in \(Q_{R,T}\), where \(C=C(p,n)\) is a constant depending only on p and n.
In this paper, by introducing a new parameter and using a lemma in [11], we generalize Theorem B as follows.
Theorem 1.1
Let \((M^{n}, g)\) be an n-dimensional Riemannian manifold with \(\operatorname{Ric}(M^{n})\geq-K\), where K is a non-negative constant. Suppose that u is a positive solution to the porous medium equation (1.1) in \(Q_{R,T}:=B_{x_{0}}(R)\times[t_{0}-T, t_{0}]\subset M^{n}\times(-\infty, \infty)\). Let \(v=\frac{p}{p-1}u^{p-1}\). Then for \(1< p<1+\frac{1}{\sqrt{n-1}}\) and \(v\leq M\),
in \(Q_{R,T}\), where \(C=C(p,n)\) is a constant depending only on p and n.
As an application, we get the following Liouville type theorem.
Corollary 1.2
Let \((M^{n}, g)\) be an n-dimensional complete noncompact Riemannian manifold with non-negative Ricci curvature. Let u be a positive ancient solution to the porous medium equation (1.1) with \(1< p<1+\frac{1}{\sqrt{n-1}}\) such that \(u(x, t)=o ([d(x)+\sqrt{|t|}]^{\frac{2}{2p-1}} )\) near infinity. Then u must be a constant.
Remark 1.3
Note that \(\frac{1}{\sqrt{2n}+1}<\frac{1}{\sqrt{n-1}}\). Therefore, the results obtained in this paper generalize those of Zhu in [1].
2 Proof of Theorem 1.1
Let \(v=\frac{p}{p-1}u^{p-1}\). From (1.1), by simple calculations, it is easy to see that
We define
where β is a constant to be determined. Then we have
and hence
where, in the second equality, we use the Ricci formula: \(v_{ijj}-v_{jji}=R_{ij}v_{j}\).
In order to prove Theorem 1.1, we need the following lemma (cf. Lemma A.1 in [11]).
Lemma 2.1
Let \(A=(a_{ij})\) be a nonzero \(n\times n\) symmetric matrix. Then for \(a, b\in\mathbb{R}\),
where \(I_{n}\) is an identity matrix.
Notice that
It follows from (2.5) that, for any constant ε,
where \(A_{ij}=(v_{ij})\) and \(e=\nabla v/|\nabla v|\). By virtue of Lemma 2.1, we have
where
For the purpose of showing that the coefficient of \(v^{\beta-1}w^{2}\) is positive, we minimize the function \(f(\beta,\varepsilon)\) by letting
and
such that
Then (2.9) becomes
where \(\alpha=\frac{1-(n-1)(p-1)^{2}}{2(p-1)}\).
We first recall the well-known smooth cutoff function ψ which originated with Li and Yau [12], satisfying the following:
-
(1)
The cutoff function ψ satisfies \(\psi=\psi(d(x,x_{0}),t)\equiv\psi(r,t)\) and \(\psi(r,t)=1\) in \(Q_{R/2,T/2}\) with \(0\leq\psi\leq1\).
-
(2)
The function ψ is decreasing as a radial function in the spatial variables.
-
(3)
\(|\partial_{r}\psi|/\psi^{a}\leq C_{a}/R\) and \(|\partial_{r}^{2}\psi|/\psi^{a}\leq C_{a}/R^{2}\) for \(a\in(0,1)\).
-
(4)
\(|\partial_{t}\psi|/\psi^{\frac{1}{2}}\leq C/T\).
By virtue of (2.10), we have
Next we will apply the maximum principle to ψw in a closed set. Assume ψw achieves its maximum at the point \((x_{1},t_{1})\) and assume \((\psi w)(x_{1},t_{1})>0\) (otherwise the proof is trivial), which implies \(t_{1}>0\). Then at the point \((x_{1},t_{1})\)
and (2.11) becomes
That is,
where \(\alpha=\frac{2}{\gamma}\) and \(\gamma=\frac{1-(n-1)(p-1)^{2}}{4(p-1)}\).
It have been shown in [1] (see equations (2.6)-(2.10) in [1]) that
where we used the fact that \(0< v\leq M\) and \(\beta\leq2\),
Substituting (2.14)-(2.18) into (2.13), we obtain
which gives at the point \((x_{1},t_{1})\)
Therefore, for all \((x,t)\in Q_{R,T}\),
Notice that \(\psi=1\) in \(Q_{R/2,T/2}\) and \(w=\frac{|\nabla v|^{2}}{v^{\beta}}\). Hence, we have
One concludes the proof of Theorem 1.1 by letting \(\beta=-\frac{1}{p-1}\).
3 Simple proof of Corollary 1.2
Suppose u is a positive ancient solution to the porous medium equation (1.1) such that \(v(x, t)=o ( [d(x_{0},x)+\sqrt{|t|} ]^{\frac{2}{2p-1}} ) \) near infinity, where \(v=\frac{p}{p-1}u^{p-1}\). Fixing \((x_{0},t_{0})\) in space-time and using Theorem 1.1 for u on the cube \(B(x_{0}, R) \times[t_{0} - R^{2} , t_{0}]\), we obtain
Letting \(R\rightarrow\infty\), it follows that \(|\nabla v(x_{0},t_{0})|=0\). Since \((x_{0},t_{0})\) is arbitrary, we see that v is a constant. Hence, u is also constant from \(v=\frac{p}{p-1}u^{p-1}\). Thus ends the proof of Corollary 1.2.
References
Zhu, XB: Hamilton’s gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds. J. Math. Anal. Appl. 402, 201-206 (2013)
Aronson, DG, Bénilan, P: Régularité des solutions de l’équation des milieux poreux dans \({\mathbb {R}}^{n}\). C. R. Acad. Sci. Paris Sér. A-B 288, 103-105 (1979)
Li, S, Li, X-D: Perelman’s entropy formula for the Witten Laplacian on manifolds with time dependent metrics and potentials. arXiv:1303.6019
Lu, P, Ni, L, Vázquez, J, Villani, C: Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 91, 1-19 (2009)
Hamilton, RS: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1, 113-126 (1993)
Huang, G, Huang, Z, Li, H: Gradient estimates for the porous medium equations on Riemannian manifolds. J. Geom. Anal. 23(4), 1851-1875 (2013)
Huang, G, Li, H: Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten Laplacian. Pac. J. Math. 268, 47-78 (2014)
Zhu, XB: Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncompact Riemannian manifolds. Proc. Am. Math. Soc. 139, 1637-1644 (2011)
Wang, YZ, Chen, WY: Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds. Math. Methods Appl. Sci. 37, 2772-2781 (2014)
Souplet, P, Zhang, QS: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38, 1045-1053 (2006)
Xu, XJ: Gradient estimates for \(u_{t}=\Delta F(u)\) on manifolds and some Liouville-type theorems. J. Differ. Equ. 252, 1403-1420 (2012)
Li, P, Yau, ST: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153-201 (1986)
Acknowledgements
The authors’ research was supported by NSFC (No. 11371018, 11171091,11401179) and partially supported by IRTSTHN (14IRTSTHN023) and Henan Provincial Education department (No. 14B110017, 12B110014).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
Huang and Xu participated in gradient estimates in this paper. Zeng carried out the Laplacian operator and the applications of inequalities studies. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Huang, G., Xu, R. & Zeng, F. Hamilton’s gradient estimates and Liouville theorems for porous medium equations. J Inequal Appl 2016, 37 (2016). https://doi.org/10.1186/s13660-016-0986-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-016-0986-3