- Research
- Open Access
- Published:
Duality for nonsmooth mathematical programming problems with equilibrium constraints
Journal of Inequalities and Applications volume 2016, Article number: 28 (2016)
Abstract
In this paper, we consider the mathematical programs with equilibrium constraints (MPECs) in Banach space. The objective function and functions in the constraint part are assumed to be lower semicontinuous. We study the Wolfe-type dual problem for the MPEC under the convexity assumption. A Mond-Weir-type dual problem is also formulated and studied for the MPEC under convexity and generalized convexity assumptions. Conditions for weak duality theorems are given to relate the MPEC and two dual programs in Banach space, respectively. Also conditions for strong duality theorems are established in an Asplund space.
1 Introduction
Luo et al. [1] presented a comprehensive study of MPEC. Flegel and Kanzow [2] obtained short and elementary proof of the optimality conditions for MPEC using the standard Fritz-John conditions. Further, Flegel and Kanzow [3] introduced a new Abadie-type constraint qualification and a new Slater-type constraint qualification for the MPEC and proved that new Slater-type CQ implies new Abadie-type CQ. Ye [4] considered MPEC and introduced various stationary conditions and established that it is sufficient for being globally or locally optimal under some generalized convexity assumption and obtained new constraint qualifications.
Outrata et al. [5] derived necessary optimality conditions for those MPECs which can be treated by the implicit programming approach and proposed a solution method based on the bundle technique of nonsmooth optimization. Flegel et al. [6] considered optimization problems with a disjunctive structure of the feasible set and obtained optimality conditions for disjunctive programs with application to MPEC using Guignard-type constraint qualifications. Movahedian and Nobakhtian [7] introduced nonsmooth strong stationarity, M-stationarity and generalized the Abadie and Guignard-type constraint qualifications for nonsmooth MPEC. Movahedian and Nobakhtian [8] introduced a nonsmooth type of the M-stationary condition based on the Michel-Penot subdifferential and established the Fritz-John-type, Kuhn-Tucker-type M-stationary necessary conditions for the nonsmooth MPEC. Further, Movahedian and Nobakhtian [9] established necessary optimality conditions for Lipschitz MPEC on Asplund space and sufficient optimality conditions for nonsmooth MPEC in Banach space. We refer to the recent results of Ardali et al. [10], Chieu and Lee [11], Guo and Lin [12], Guo et al. [13, 14] and Ye and Zhang [15], and the references therein for more details related to the MPEC.
Following Luo et al. [1] and Movahedian and Nobakhtian [9], we consider the following mathematical programming problem with equilibrium constraints (MPEC):
where X is a Banach space, \(f:X \rightarrow\mathbb{R}\) is a lower semi-continuous (lsc) function, \(g:X \rightarrow\mathbb{R}^{k}\), \(h:X \rightarrow\mathbb{R}^{p}\), \(G:X \rightarrow\mathbb{R}^{l}\) and \(H: X \rightarrow\mathbb{R}^{l}\) are functions with lsc components.
The use of equilibrium constraints in modeling process engineering problems is a relatively new and exciting field of research; see Raghunathan and Biegler [16]. Hydroeconomic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit aggregate optimization problems with a single, aggregate objective function. Britz et al. [17] proposed a new solution format for hydroeconomic river basin models, based on a multiobjective optimization problem with equilibrium constraints, which allowed, inter alia, to express spatial externalities resulting from asymmetric access to water use.
Wolfe [18] formulated a dual program for a nonlinear programming problem. Motivated by a specific problem, namely the mathematical description of the rotating heavy chain, Toland [19, 20] introduced the notion of duality and established the duality theory for non-convex optimization problems. Rockafellar [21, 22] studied fundamental duality theory for convex programs using a conjugate function and established a generalized version of the FenchelÃs duality theorem. In the last four decades there has been an extensive interest in the duality theory of nonlinear programming problems; see Mangasarian [23] and Mishra and Giorgi [24].
To the best of our knowledge, the dual problem to a nonsmooth MPEC has not been given in the literature as yet.
In this paper, we introduce Wolfe-type and Mond-Weir-type dual programs to the nonsmooth MPEC. We have established weak and strong duality theorems relating the nonsmooth MPEC and the two dual programs. The paper is organized as follows: in Section 2, we give some preliminaries, definitions, and results. In Section 3, we derive weak and strong duality theorems relating to the nonsmooth MPEC and the two dual models under convexity and generalized convexity assumptions.
2 Preliminaries
In this section, we give some notations, basic definitions, and preliminary results, which will be used later in the paper.
The Clarke-Rockafellar subdifferential of f is defined by
where
is the Clarke-Rockafellar directional derivative.
Definition 2.1
(Rockafellar [25])
The lsc function \(f:X\rightarrow\mathbb{R}\cup\{+\infty\}\) is directionally Lipschitzian at x̄ if for some \(y\in X\),
The function \(f:X\rightarrow\mathbb{R}\cup\{+\infty\}\) is said to be radially nonconstant (rnc) if \(\forall x,y\in X\), \(\exists z\in (x,y)\), with \(f(z) \neq f(x)\), i.e., one cannot find any line segment on which f is constant.
Definition 2.2
(Avriel et al. [26])
The lsc function \(f:X\rightarrow\mathbb{R} \cup\{+\infty\}\) is said to be a quasiconvex function, if for any \(x,y \in X\), one has
where \([x,y]=\{x+t(y-x) : t\in(0,1)\}\).
Definition 2.3
(Clarke [27])
The lsc function \(f:X\rightarrow\mathbb{R} \cup\{+\infty\}\) is said to be a convex function at \(\bar{x}\in X\), if, for all \(x\in X\),
Definition 2.4
(Aussel [28])
The lsc function \(f:X\rightarrow\mathbb{R} \cup\{+\infty\}\) is said to be pseudoconvex function at \(\bar{x}\in X\), if, for all \(x\in X\),
Theorem 2.5
(Aussel [28])
Let \(f : X\rightarrow\mathbb{R} \cup\{+\infty\}\) be lsc, quasiconvex and rnc on a convex open set \(U \subset X\). Moreover, assume that f is finite at \(\bar{x}\in U\) and \(f^{\uparrow}(\bar{x}; 0) > -\infty\). Then, for each \(x\in U\),
Given a feasible vector z̄ for the MPEC, we define the following index sets:
The set β is known as a degenerate set. If β is empty, the vector z̄ is said to satisfy the strict complementarity condition. Movahedian and Nobakhtian [8] introduced a nonsmooth type of M-stationary via the Michel-Penot subdifferential for finite-dimensional spaces. Further, Movahedian and Nobakhtian [9] extend the M-stationary notion to nonsmooth MPEC in terms of the Clarke-Rockafellar subdifferential in Banach spaces. The following definition of the M-stationary point for the nonsmooth MPEC is taken from Definition 3.1 in Movahedian and Nobakhtian [9].
Definition 2.6
A feasible point z̄ of MPEC is called the Mordukhovich stationary point if there exists \(\lambda= (\lambda^{g},\lambda^{h}, \lambda^{G}, \lambda^{H})\in\mathbb{R}^{k+p+2l}\), such that the following conditions hold:
The following definition of the no nonzero abnormal multiplier constraint qualification for MPEC is taken from Definition 3.3 in Movahedian and Nobakhtian [9].
Definition 2.7
Let z̄ be a feasible point of MPEC. We say that the No Nonzero Abnormal Multiplier Constraint Qualification (NNAMCQ) is satisfied at z̄ if there is no nonzero vector \(\lambda=(\lambda ^{g}, \lambda^{h}, \lambda^{G}, \lambda^{H}) \in\mathbb{R}^{k+p+2l}\), such that
Definition 2.8
(Mordukhovich [29])
A Banach space X is Asplund, or it has the Asplund property, if every convex continuous function \(\phi: U \rightarrow\mathbb{R}\) defined on an open convex subset U of X is a Frechet differential on a dense subset of U.
In the following theorem, Movahedian and Nobakhtian [9] proved a necessary optimality condition for Lipschitz MPEC on Asplund spaces.
Theorem 2.9
Let z̄ be a local optimal point for the MPEC where X is an Asplund space and all of the functions are locally Lipschitz around z̄. Then z̄ is an M-stationary point provided that the NNAMCQ holds at z̄.
Now, divide the index sets as follows. Let
3 Duality
In this section, we formulate and study a Wolfe-type dual problem for the MPEC under the convexity assumption. A Mond-Weir-type dual problem is also formulated and studied for the MPEC under convexity and generalized convexity assumptions. The Wolfe-type dual problem is formulated as follows:
subject to
where \(\lambda=(\lambda^{g},\lambda^{h},\lambda^{G},\lambda^{H})\in \mathbb{R}^{k+p+2l}\).
Theorem 3.1
(Weak duality)
Let z̄ be feasible for MPEC where X is a Banach space, \((u,\lambda)\) feasible for \(\operatorname{WDMPEC} (\bar{z})\), and index sets \(I_{g}\), α, β, γ defined accordingly. Suppose that f, \(g_{i}\) (\(i\in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(G_{i}\) (\(i \in \alpha^{-}\cup\beta^{-}_{H}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta ^{-}_{G}\)) are convex at u and radially nonconstant. Also, assume that \(-h_{i} \) (\(i \in J^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta ^{+}_{H}\cup\beta^{+}\)), \(-H_{i}\) (\(i \in\gamma^{+}\cup\beta ^{+}_{G}\cup\beta^{+}\)) are directionally Lipschitzian, convex at u, and radially nonconstant. If \(\alpha^{-}\cup\gamma^{-} \cup\beta _{G}^{-}\cup\beta_{H}^{-} = \phi\), then, for any z feasible for the MPEC, we have
Proof
Let z be any feasible point for MPEC. Then we have
Since f is convex at u,
Similarly, we have
If \(\alpha^{-} \cup\gamma^{-}\cup\beta_{G}^{-} \cup\beta_{H}^{-}= \phi\), multiplying (3.3)-(3.7) by \(\lambda_{i}^{g}\geq 0 \) (\(i\in I_{g}\)), \(\lambda_{i}^{h}>0\) (\(i \in J^{+}\)), \(-\lambda_{i}^{h}>0\) (\(i \in J^{-}\)), \(\lambda_{i}^{G}>0\) (\(i \in\alpha^{+} \cup\beta_{H}^{+} \cup\beta^{+}\)), \(\lambda_{i}^{H}>0\) (\(i \in\gamma^{+} \cup\beta _{G}^{+} \cup\beta^{+}\)), respectively, and adding (3.2)-(3.7), we get
From (3.1), there exist \(\bar{\xi}\in \partial_{c} f(u)\), \(\bar{\xi }_{i}^{g}\in\partial_{c} g_{i}(u)\), \(\bar{\xi}_{i}^{h}\in\partial_{c} h_{i}(u)\), \(\bar{\xi }_{i}^{G}\in\partial_{c} G_{i}(u)\), and \(\bar{\xi}_{i}^{H}\in\partial_{c} H_{i}(u)\), such that
So,
Now, using the feasibility of z for MPEC, that is, \(g_{i}(z)\leq0\), \(h_{i}(z)=0\), \(G_{i}(z)\geq0\), \(H_{i}(z) \geq0\), we get
Hence,
This completes the proof. □
The following corollary is a direct consequence of Theorem 3.1.
Corollary 3.2
Let z̄ be feasible for MPEC where all constraint functions \(g_{i}\), \(h_{i}\), \(G_{i}\), \(H_{i}\) are affine and index sets \(I_{g}\), α, β, γ defined accordingly. Then, for any z feasible for the MPEC and \((u,\lambda)\) feasible for \(\operatorname{WDMPEC} (\bar{z})\), we have
Analogously, we have the following result for Asplund spaces.
Theorem 3.3
(Weak duality)
Let z̄ be feasible for MPEC where X is an Asplund space, \((u,\lambda)\) feasible for \(\operatorname{WDMPEC} (\bar{z})\) and index sets \(I_{g}\), α, β, γ defined accordingly. Suppose that f, \(g_{i} \) (\(i\in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(G_{i}\) (\(i \in \alpha^{-}\cup\beta^{-}_{H}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta ^{-}_{G}\)) are convex at u and radially nonconstant. Also, assume that \(-h_{i} \) (\(i \in J^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta ^{+}_{H}\cup\beta^{+}\)), \(-H_{i}\) (\(i \in\gamma^{+}\cup\beta ^{+}_{G}\cup\beta^{+}\)) are directionally Lipschitzian, convex at u, and radially nonconstant. If \(\alpha^{-}\cup\gamma^{-} \cup\beta _{G}^{-}\cup\beta_{H}^{-} = \phi\), then, for any z feasible for the MPEC, we have
Proof
The proof follows the lines of the proof of Theorem 3.1. □
Theorem 3.4
(Strong duality)
Assume z̄ is a locally optimal solution of MPEC where X is an Asplund space, such that NNAMCQ is satisfied at z̄ and the index sets \(I_{g}\), α, β, γ are defined accordingly. Let f, \(g_{i} \) (\(i \in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(-h_{i}\) (\(i \in J^{-}\)), \(G_{i}\) (\(i \in\alpha^{-} \cup\beta_{H}^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup \beta_{H}^{+}\cup\beta^{+}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta _{G}^{-}\)), \(-H_{i}\) (\(i \in\gamma^{+} \cup\beta_{G}^{+} \cup\beta^{+}\)) satisfy the assumption of the Theorem 3.3. Then there exists λ̄, such that \((\bar{z},\bar{\lambda})\) is an optimal solution of \(\operatorname{WDMPEC} (\bar{z})\) and the respective objective values are equal.
Proof
Since z̄ is a locally optimal solution of MPEC and the NNAMCQ is satisfied at z̄, hence, by Theorem 2.9, \(\exists \bar {\lambda}=(\bar{\lambda}^{g},\bar{\lambda}^{h},\bar{\lambda}^{G},\bar {\lambda}^{H}) \in\mathbb{R}^{k+p+2l}\), such that the nonsmooth M-stationarity conditions for MPEC are satisfied, that is, there exist \(\bar{\xi}\in \partial_{c} f(\bar{z})\), \(\bar{\xi}_{i}^{g}\in\partial_{c} g_{i}(\bar{z})\), \(\bar{\xi}_{i}^{h}\in\partial_{c} h_{i}(\bar{z})\), \(\bar{\xi }_{i}^{G}\in\partial_{c} G_{i}(\bar{z})\), and \(\bar{\xi}_{i}^{H}\in\partial_{c} H_{i}(\bar{z})\), such that
Therefore, \((\bar{z},\bar{\lambda})\) is feasible for \(\operatorname{WDMPEC} (\bar{z})\). By Theorem 3.3, we have
for any feasible solution \((u,\lambda)\) for \(\operatorname{WDMPEC} (\bar{z})\). Also, from the feasibility condition of MPEC and \(\operatorname{WDMPEC} (\bar{z})\), that is, for \(i \in I_{g}(\bar{z})\), \(g_{i}(\bar{z})=0\), and \(h_{i}(\bar{z})=0\), \(G_{i}(\bar{z})=0\), \(\forall i\in\alpha\cup\beta\), \(H_{i}(\bar{z})=0\), \(\forall i \in\beta\cup\gamma\), we have
Using (3.8) and (3.9), we have
Hence, \((\bar{z},\bar{\lambda})\) is an optimal solution for \(\operatorname{WDMPEC} (\bar {z})\) and the respective objective values are equal. □
Example 3.1
Consider the following MPEC in \(\mathbb{R}^{2}\):
Now, we formulate Wolfe-type dual problem \(\operatorname{WDMPEC} (\bar{z})\) for MPEC(1):
subject to
where \(\xi,\eta\in[-1,1]\).
If β is non-empty, then either
If we take the point \(\bar{z}= (0,0 )\) from the feasible region, then the index sets \(\alpha (0,0 )\) and \(\gamma (0,0 )\) are empty sets, but \(\beta:=\beta (0,0 )\) is non-empty. Also, from solving a constraint equation in the feasible region of \(\operatorname{WDMPEC} (0,0 )\), we get \(\lambda^{G}=\frac{\xi}{\eta }\) and \(\lambda^{H}=\frac{\xi}{\eta}-2u_{2}\), where \(\eta\neq0\). Since β is non-empty, we consider a \(\beta^{+}\), \(\beta^{+}_{G}\), \(\beta ^{+}_{H}\) to decide the feasible region of WDMPEC\((0,0 )\). It is clear that the assumptions of Theorem 3.1 are satisfied, so Theorem 3.1 holds between MPEC(1) and \(\operatorname{WDMPEC} (0,0 )\).
It is clear that \(\bar{z}= (0,0 )\) is the optimal solution of MPEC(1) and NNAMCQ is satisfied at z̄. Hence, the assumptions of the Theorem 3.4 are satisfied. Then, by Theorem 3.4, there exists λ̄ such that \((\bar{z},\bar{\lambda})\) is an optimal solution of \(\operatorname{WDMPEC} (0,0 )\) and the respective values are equal.
We now prove the duality relation between the mathematical programming problem with equilibrium constraints (MPEC) and the following Mond-Weir-type dual problem
subject to
where \(\lambda=(\lambda^{g},\lambda^{h},\lambda^{G},\lambda^{H})\in \mathbb{R}^{k+p+2l}\).
Theorem 3.5
(Weak duality)
Let z̄ be feasible for MPEC where X is a Banach space, \((u,\lambda)\) be feasible for \(\operatorname{MWDMPEC} (\bar{z})\), and the index sets \(I_{g}\), α, β, γ are defined accordingly. Suppose that f, \(g_{i} \) (\(i\in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(G_{i}\) (\(i \in\alpha^{-}\cup \beta^{-}_{H}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta^{-}_{G}\)) are convex at u and radially nonconstant. Also, assume that \(-h_{i} \) (\(i \in J^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta^{+}_{H}\cup\beta ^{+}\)), \(-H_{i}\) (\(i \in\gamma^{+}\cup\beta^{+}_{G}\cup\beta^{+}\)) are directionally Lipschitzian, convex at u, and radially nonconstant. If \(\alpha^{-}\cup\gamma^{-} \cup\beta_{G}^{-}\cup\beta_{H}^{-} = \phi \), then, for any z feasible for the MPEC, we have
Proof
Since f is convex at u,
Similarly, we have
If \(\alpha^{-} \cup\gamma^{-}\cup\beta_{G}^{-} \cup\beta_{H}^{-}= \phi\), multiplying (3.12)-(3.16) by \(\lambda_{i}^{g}\geq 0 \) (\(i\in I_{g}\)), \(\lambda_{i}^{h}>0\) (\(i \in J^{+}\)), \(-\lambda_{i}^{h}>0\) (\(i \in J^{-}\)), \(\lambda_{i}^{G}>0\) (\(i \in\alpha^{+} \cup\beta_{H}^{+} \cup\beta^{+}\)), \(\lambda_{i}^{H}>0\) (\(i \in\gamma^{+} \cup\beta _{G}^{+} \cup\beta^{+}\)), respectively, and adding (3.11)-(3.16), we get
From (3.10), there exist \(\bar{\xi}\in \partial_{c} f(u)\), \(\bar{\xi }_{i}^{g}\in\partial_{c} g_{i}(u)\), \(\bar{\xi}_{i}^{h}\in\partial_{c} h_{i}(u)\), \(\bar{\xi }_{i}^{G}\in\partial_{c} G_{i}(u)\), and \(\bar{\xi}_{i}^{H}\in\partial_{c} H_{i}(u)\), such that
So,
Now, using the feasibility of z and u for MPEC and \(\operatorname{MWDMPEC}(\bar {z})\), respectively, we get
This completes the proof. □
The following corollary is a direct consequence of Theorem 3.5.
Corollary 3.6
Let z̄ be feasible for MPEC where all constraint functions \(g_{i}\), \(h_{i}\), \(G_{i}\), \(H_{i}\) are affine and the index sets \(I_{g}\), α, β, γ defined accordingly. Then, for any z feasible for the MPEC and \((u,\lambda)\) feasible for \(\operatorname{MWDMPEC} (\bar{z})\), we have
Analogously, we have the following result for Asplund spaces.
Theorem 3.7
(Weak duality)
Let z̄ be feasible for MPEC where X is an Asplund space, \((u,\lambda)\) be feasible for \(\operatorname{MWDMPEC} (\bar{z})\) and the index sets \(I_{g}\), α, β, γ are defined accordingly. Suppose that f, \(g_{i}\) (\(i\in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(G_{i}\) (\(i \in\alpha^{-}\cup \beta^{-}_{H}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta^{-}_{G}\)) are convex at u and radially nonconstant. Also, assume that \(-h_{i}\) (\(i \in J^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta^{+}_{H}\cup\beta ^{+}\)), \(-H_{i}\) (\(i \in\gamma^{+}\cup\beta^{+}_{G}\cup\beta^{+}\)) are directionally Lipschitzian, convex at u, and radially nonconstant. If \(\alpha^{-}\cup\gamma^{-} \cup\beta_{G}^{-}\cup\beta_{H}^{-} = \phi \), then, for any z feasible for the MPEC, we have
Proof
The proof follows the lines of the proof of Theorem 3.5. □
Theorem 3.8
(Strong duality)
Assume z̄ is a locally optimal solution of MPEC where X is an Asplund space, such that NNAMCQ is satisfied at z̄ and the index sets \(I_{g}\), α, β, γ defined accordingly. Let f, \(g_{i}\) (\(i \in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(-h_{i}\) (\(i \in J^{-}\)), \(G_{i}\) (\(i \in\alpha^{-} \cup\beta_{H}^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta _{H}^{+}\cup\beta^{+}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta _{G}^{-}\)), \(-H_{i}\) (\(i \in\gamma^{+} \cup\beta_{G}^{+} \cup\beta^{+}\)) satisfy the assumption of the Theorem 3.7. Then there exists λ̄, such that \((\bar{z},\bar{\lambda})\) is an optimal solution of \(\operatorname{MWDMPEC} (\bar{z})\), and the respective objective values are equal.
Proof
z̄ is a locally optimal solution of MPEC and the NNAMCQ is satisfied at z̄, by Theorem 2.9, \(\exists \bar{\lambda }=(\bar{\lambda}^{g},\bar{\lambda}^{h},\bar{\lambda}^{G},\bar{\lambda }^{H}) \in\mathbb{R}^{k+p+2l}\), such that the nonsmooth M-stationarity conditions for MPEC are satisfied, that is, there exist \(\bar{\xi}\in \partial_{c} f(\bar{z})\), \(\bar{\xi}_{i}^{g}\in\partial_{c} g_{i}(\bar{z})\), \(\bar {\xi}_{i}^{h}\in\partial_{c} h_{i}(\bar{z})\), \(\bar{\xi}_{i}^{G}\in\partial_{c} G_{i}(\bar{z})\) and \(\bar{\xi}_{i}^{H}\in\partial_{c} H_{i}(\bar{z})\), such that
Since z̄ is an optimal solution for MPEC, we have
Therefore, \((\bar{z},\bar{\lambda})\) is feasible for \(\operatorname{MWDMPEC}(\bar {z})\). Also, by Theorem 3.7, for any feasible \((u,\lambda)\), we have
Thus, \((\bar{z},\bar{\lambda})\) is an optimal solution for \(\operatorname{MWDMPEC} (\bar{z})\) and the respective objective values are equal. This completes the proof. □
Example 3.2
Consider the following MPEC problem in \(\mathbb{R}^{2}\):
The Mond-Weir-type dual problem \(\operatorname{MWDMPEC}(\bar{z})\) for the MPEC is
subject to
where \(\xi_{1},\xi_{2},\eta\in[-1,1]\),
if β is non-empty, then either
From (3.17), \(\lambda^{G}\xi_{2}+\lambda^{H}\eta=\xi_{1}\), and \(\lambda^{G}+\lambda^{H}=1\), we get \(\lambda^{H}=\frac{\xi_{2}-\xi_{1}}{\xi_{2}-\eta}\) and \(\lambda^{G}=\frac{\xi _{1}-\eta}{\xi_{2}-\eta}\), where \(\xi_{2}\neq\eta\). If \(\bar{z}= (0,0 )\), then the index sets \(\alpha (0,0 )\) and \(\gamma (0,0 )\) are empty sets, but \(\beta (0,0 )\) is non-empty. It is clear that the assumptions of Corollary 3.6 are satisfied. So, Corollary 3.6 holds between MPEC and \(\operatorname{MWDMPEC} (0,0 )\).
Also, we can see that the NNAMCQ is satisfied at z̄. Then by Theorem 3.8 there exists \(\bar{\lambda}=(\bar{\lambda}^{G}, \bar{\lambda }^{H})\) such that \((\bar{z},\bar{\lambda})\) is an optimal solution of \(\operatorname{MWDMPEC} (0,0 )\) and the optimal values are equal.
Now, we establish weak and strong duality theorems for the MPEC and its Mond-Weir-type dual problem under generalized convexity assumptions.
Theorem 3.9
(Weak duality)
Let z̄ be feasible for MPEC where X is a Banach space, \((u,\lambda)\) be feasible for \(\operatorname{MWDMPEC} (\bar{z})\), and the index sets \(I_{g}\), α, β, γ are defined accordingly. Suppose that f is pseudoconvex at z̄, \(g_{i}\) (\(i\in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(G_{i}\) (\(i \in\alpha^{-}\cup\beta^{-}_{H}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta^{-}_{G}\)) are quasiconvex at u and radially nonconstant. Also, assume that \(-h_{i} \) (\(i \in J^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta^{+}_{H}\cup\beta^{+}\)), \(-H_{i}\) (\(i \in\gamma^{+}\cup\beta ^{+}_{G}\cup\beta^{+}\)) are directionally Lipschitzian, quasiconvex at u, and radially nonconstant. If \(\alpha^{-}\cup\gamma^{-} \cup\beta _{G}^{-}\cup\beta_{H}^{-} = \phi\), then, for any z feasible for the MPEC, we have
Proof
Suppose that, for some feasible point z, such that \(f(z)< f(u)\), then, by pseudoconvexity of f at u, we have
From (3.10), there exist \(\bar{\xi}_{i}^{g}\in\partial_{c} g_{i}(u)\) (\(i\in I_{g}\)), \(\bar{\xi}_{i}^{h}\in\partial_{c} h_{i}(u)\) (\(i=1,\ldots,p\)), \(\bar{\xi }_{i}^{G}\in\partial_{c} G_{i}(u)\) (\(i \in\alpha\cup\beta\)) and \(\bar{\xi }_{i}^{H}\in\partial_{c} H_{i}(u)\) (\(i\in\beta\cup\gamma\)), such that
By (3.20), we get
For each \(i\in I_{g}\), \(g_{i}(z)\leq0 \leq g_{i}(u)\). Hence, by Theorem 4.4 in [9], we have
Similarly, we have
Now, for any feasible point u of \(\operatorname{MWDMPEC} (\bar{z})\), and for each \(i \in J^{-}\), \(0=-h_{i}(u)=h_{i}(z)\). On the other hand, \(-G_{i}(z)\leq -G_{i}(u)\), \(\forall i \in\alpha^{+} \cup\beta_{H}^{+}\), and \(-H_{i}(z)\leq-H_{i}(u)\), \(\forall i \in\gamma^{+} \cup\beta_{G}^{+}\). Since all of these functions are directionally Lipschitzian, by Theorem 2.5, we get
From equation (3.23)-(3.27), it is clear that
Since \(\alpha^{-}\cup\gamma^{-} \cup\beta_{G}^{-}\cup\beta_{H}^{-} = \phi\), we have
Therefore,
which contradicts (3.22). Hence, \(f(z)\geq f(u)\). This completes the proof. □
Analogously, we have the following result for Asplund spaces.
Theorem 3.10
(Weak duality)
Let z̄ be feasible for MPEC where X is an Asplund space, \((u,\lambda)\) be feasible for \(\operatorname{MWDMPEC} (\bar{z})\), and the index sets \(I_{g}\), α, β, γ are defined accordingly. Suppose that f is pseudoconvex at z̄, \(g_{i}\) (\(i\in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(G_{i}\) (\(i \in\alpha^{-}\cup\beta^{-}_{H}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta^{-}_{G}\)) are quasiconvex at u and radially nonconstant. Also, assume that \(-h_{i} \) (\(i \in J^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup\beta^{+}_{H}\cup\beta^{+}\)), \(-H_{i}\) (\(i \in\gamma^{+}\cup\beta ^{+}_{G}\cup\beta^{+}\)) are directionally Lipschitzian, quasiconvex at u, and radially nonconstant. If \(\alpha^{-}\cup\gamma^{-} \cup\beta _{G}^{-}\cup\beta_{H}^{-} = \phi\), then, for any z feasible for the MPEC, we have
Proof
The proof follows the lines of the proof of Theorem 3.9. □
Theorem 3.11
(Strong duality)
Assume z̄ is a locally optimal solution of MPEC where X is an Asplund space, such that NNAMCQ is satisfied at z̄, and the index sets \(I_{g}\), α, β, γ are defined accordingly. Let f, \(g_{i}\) (\(i \in I_{g}\)), \(h_{i}\) (\(i \in J^{+}\)), \(-h_{i}\) (\(i \in J^{-}\)), \(G_{i}\) (\(i \in\alpha^{-} \cup\beta_{H}^{-}\)), \(-G_{i}\) (\(i \in\alpha^{+} \cup \beta_{H}^{+}\cup\beta^{+}\)), \(H_{i}\) (\(i \in\gamma^{-} \cup\beta _{G}^{-}\)), \(-H_{i}\) (\(i \in\gamma^{+} \cup\beta_{G}^{+} \cup\beta^{+}\)) satisfy the assumption of Theorem 3.10. Then there exists λ̄, such that \((\bar{z},\bar{\lambda})\) is an optimal solution of \(\operatorname{MWDMPEC} (\bar{z})\), and the respective objective values are equal.
Proof
The proof follows the lines of the proof of Theorem 3.8, invoking Theorem 3.10. □
4 Results and discussion
We have studied mathematical programs with equilibrium constraints (MPECs). The objective function and functions in the constraint part are assumed to be lower semicontinuous. We studied the Wolfe-type dual problem for the MPEC under the convexity assumption. A Mond-Weir-type dual problem was also formulated and studied for the MPEC under convexity and generalized convexity assumptions. Conditions for weak duality theorems were given to relate the MPEC and two dual programs in Banach space, respectively. Also conditions for strong duality theorems were established in an Asplund space. We also discussed the cases when all the constraint functions are affine. Two numerical examples were given to illustrate the Wolfe-type duality and the Mond-Weir-type duality with our MPECs, respectively.
References
Luo, ZQ, Pang, JS, Ralph, D: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)
Flegel, ML, Kanzow, C: A Fritz John approach to first order optimality conditions for mathematical programs with equilibrium constraints. Optimization 52, 277-286 (2003)
Flegel, ML, Kanzow, C: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124, 595-614 (2005)
Ye, JJ: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350-369 (2005)
Outrata, JV, Kocvara, M, Zowe, J: Nonsmooth approach to optimization problems with equilibrium constraints. In: Theory, Applications and Numerical Results. Kluwer Academic, Dordrecht (1998)
Flegel, ML, Kanzow, C, Outrata, JV: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15, 139-162 (2006)
Movahedian, N, Nobakhtian, S: Constraint qualifications for nonsmooth mathematical programs with equilibrium constraints. Set-Valued Anal. 17, 65-95 (2009)
Movahedian, N, Nobakhtian, S: Nondifferentiable multiplier rules for optimization problems with equilibrium constraints. J. Convex Anal. 16(1), 187-210 (2009)
Movahedian, N, Nobakhtian, S: Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints. Nonlinear Anal. 72, 2694-2705 (2010)
Ardali, AA, Movahedian, N, Nobakhtian, S: Optimality conditions for nonsmooth equilibrium problems via Hadamard directional derivative. Set-Valued Var. Anal. (2015). doi:10.1007/s11228-015-0354-3
Chieu, NH, Lee, GM: A relaxed constant positive linear dependence constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 158, 11-32 (2013)
Guo, L, Lin, GH: Notes on some constraint qualifications for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 156, 600-616 (2013)
Guo, L, Lin, GH, Ye, JJ: Second order optimality conditions for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 158, 33-64 (2013)
Guo, L, Lin, GH, Ye, JJ: Solving mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 166, 234-256 (2015)
Ye, JJ, Zhang, J: Enhanced Karush-Kuhn-Tucker conditions for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 163, 777-794 (2014)
Raghunathan, AU, Biegler, LT: Mathematical programs with equilibrium constraints (MPECs) in process engineering. Comput. Chem. Eng. 27, 1381-1392 (2003)
Britz, W, Ferris, M, Kuhn, A: Modeling water allocating institutions based on multiple optimization problems with equilibrium constraints. Environ. Model. Softw. 46, 196-207 (2013)
Wolfe, P: A duality theorem for non-linear programming. Q. Appl. Math. 19, 239-244 (1961)
Toland, JF: A duality principle for non-convex optimisation and the calculus of variations. Arch. Ration. Mech. Anal. 71(1), 41-61 (1979)
Toland, JF: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399-415 (1978)
Rockafellar, RT: Duality theorems for convex functions. Bull. Am. Math. Soc. 70, 189-192 (1964)
Rockafellar, RT: Convex Analysis. Princeton University Press, Princeton (1970)
Mangasarian, OL: Nonlinear Programming. McGraw-Hill, New York (1969); SIAM, Philadelphia (1994)
Mishra, SK, Giorgi, G: Invexity and Optimization. Springer, New York (2008)
Rockafellar, RT: Directionally Lipschitzian functions and subgradiential calculus. Proc. Lond. Math. Soc. 39(2), 331-355 (1979)
Avriel, M, Diewert, EW, Schaible, S, Zang, I: Generalized Concavity. Plenum, New York (1988)
Clarke, FH: Optimization and Nonsmooth Analysis. Willey, New York (1983)
Aussel, D: Subdifferential properties of quasiconvex and pseudoconvex functions: unified approach. J. Optim. Theory Appl. 97(1), 29-45 (1998)
Mordukhovich, BS: Variations Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences). Springer, Berlin (2006)
Acknowledgements
The authors would like to express their deep appreciation to the helpful comments of reviewers. The research of S-M Guu was partially supported by NSC 102-2221-E-182-040-MY3 of the National Science Council, Taiwan and BMRPD017 of Chang Gung Memorial Hospital, Taiwan. The research of Yogendra Pandey was supported by the Council of Scientific and Industrial Research, New Delhi, Ministry of Human Resource Development, Government of India. Grant 09/013(0388)2011-EMR-1 02.05.2011.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
YP conceived of the study and drafted the manuscript initially. S-MG participated in its design, coordination and finalized the manuscript. SKM outlined the scope and design of the study. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Guu, SM., Mishra, S.K. & Pandey, Y. Duality for nonsmooth mathematical programming problems with equilibrium constraints. J Inequal Appl 2016, 28 (2016). https://doi.org/10.1186/s13660-016-0969-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-016-0969-4
MSC
- 90C30
- 90C46
Keywords
- mathematical programming problems with equilibrium constraints
- Wolfe-type dual
- Mond-Weir dual
- convexity
- nonsmooth analysis