Lipschitz and BMO norm inequalities for the composite operator on differential forms

Abstract

In this paper, we obtain PoincarĂ©-type inequalities for the composite operator acting on differential forms and establish the $$L^{p}$$, Lipschitz, and BMO norm estimates. We also give the weighted versions of the comparison theorems for the $$L^{p}$$, Lipschitz, and BMO norms.

1 Introduction

Differential forms are a generalization of the traditional functions. In recent years, differential forms have been widely used in physics systems, differential geometry, and PDEs. In this paper, we are interested in the properties of the composite operator acting on differential forms. Operator theory plays a critical role in investigating the properties of the solutions to partial differential equations. Many questions in partial differential equations involve estimating various norms of operators. The operator theory for functions has been very well developed in recent years. However, compared to the function cases, the operator theory for differential forms is more complicated, so we need some advanced methods to deal with operators. This paper contributes to derive the properties of the composite operator $$\mathbb{M}^{\sharp}_{s}\circ D\circ G$$ on differential forms, where $$\mathbb{M}^{\sharp}_{s}$$ is the general sharp maximal operator defined by

$$\mathbb{M}^{\sharp}_{s}(u)=\mathbb{M}^{\sharp}_{s}u(x)= \sup_{r>0} \biggl( {{1} \over {|B_{(x,r)}|}} \int _{B_{(x,r)}}\bigl\vert u(t)-u_{B_{(x,r)}}\bigr\vert ^{s}\, dt \biggr)^{1/s}$$

for any $$u(x) \in L^{p}(M,\Lambda^{l})$$, where $$1\leq s \leq p$$. Here D is the Dirac operator proposed by the physicist Dirac. According to the needs of practical problems, different versions of the Dirac operators have been defined. The Dirac operator we are studying is the Hodge-Dirac operator defined by $$D=d+d^{*}$$. Here d is the exterior differential operator on differential forms, and $$d^{*}$$ is the formal adjoint operator of d. See [1] for more details. The operator G is the well-known Greenâ€™s operator satisfying the equation

$$\Delta G(u)=u-H(u),$$

where H is the harmonic projection operator. See [2â€“6] for more results and applications for the sharp maximal operator, the Dirac operator, and Greenâ€™s operator.

In the following, M stands for a bounded convex domain in $$\mathbb {R}^{n}$$, $$n\geq2$$. The Lebesgue measure of a measurable set $$E\subseteq \mathbb{R}^{n}$$ is denoted by $$|E|$$. We use B and ÏƒB to denote concentric balls such that $$\operatorname{diam}(\sigma{B})=\sigma{\operatorname {diam}(B)}$$. By $$\Lambda^{l}=\Lambda^{l}({\mathbb{R}}^{n})$$ we denote the linear space of all l-vectors spanned by the exterior products $$e_{I}={e_{i_{1}}}\wedge{e_{i_{2}}}\wedge\cdots\wedge{e_{i_{l}}}$$ for all ordered l-tuples $$I=(i_{1},i_{2},\ldots,i_{l})$$, $$1\leq{i_{1}}<{i_{2}}<\cdots <{i_{l}}\leq n$$. The l-form $$u(x)=\Sigma_{I}{u_{I}(x)}\, dx_{I}$$ is a linear combination of the standard basis $$dx^{I}=dx_{i_{1}}\wedge\cdots\wedge dx_{i_{l}}$$ for all ordered l-tuples I. If the coefficient $$u_{I}$$ is differential, we say that u is a differential l-form. By $$D'{(M,\Lambda^{l})}$$ we denote the space of all differential l-forms. Similarly, we write $$L^{s}(M,\Lambda^{l})$$ for the l-form $$u(x)$$ on M with $$u_{I}$$ satisfying $$\int_{M}|u_{I}|^{s}<\infty$$.

A differential l-form $$u\in D'(M,\Lambda^{l})$$ is called a closed form if $$du=0$$ in M. From the PoincarĂ© lemma $$d du=0$$ we know that du is a closed form. The module of a differential form u is given by $$|u|^{2}= * (u\wedge * u)\in D'(M,\Lambda^{0})$$.

A very important operator, the homotopy operator $$T:C^{\infty}(M,\Lambda ^{l})\rightarrow C^{\infty}(M,\Lambda^{l-1})$$, is defined by

$$Tu= \int_{M}\varphi(y)K_{y}u\, dy$$

for differential forms u, where $$\varphi\in C^{\infty}_{0}(M)$$ is normalized by $$\int_{M}\varphi(y)\, dy=1$$, and $$K_{y}$$ is the liner operator defined by

$$(K_{y}u) (x;\xi_{1},\ldots,\xi_{l-1})= \int^{1}_{0}t^{l-1}u(tx+y-ty;x-y;\xi_{1}, \ldots ,\xi_{l-1})\, dt.$$

For the homotopy operator T, we have the following decomposition, which will be used repeatedly in this paper:

$$u=d(Tu)+T(du)$$

for any differential form u. A closed form $$u_{M}$$ is defined by $$u_{M}=d(Tu)$$; in particular, when u is a 0-form, $$u_{M}=|M|^{-1}\int_{M}u(y)\, dy$$. In regard to Greenâ€™s operator, we need the following results in [7]:

• $$\|dd^{*}G(u)\|_{s,B}+\|d^{*}dG(u)\|_{s,B}+\|dG(u)\|_{s,B}+\|d^{*}G(u)\| _{s,B}+\|G(u)\|_{s,B}\leq C(s)\|u\|_{s,B}$$,

• $$\|d^{*}G(u)\|_{s,B}=\|Gd^{*}(u)\|_{s,B}$$, and $$\|dG(u)\|_{s,B}=\|Gd(u)\|_{s,B}$$

for any differential form u in M and $$1< s<\infty$$.

In this section, we give a PoincarĂ©-type inequality for the composite operator $$\mathbb{M}^{\sharp}_{s}\circ D\circ G$$, which will be used in the estimates for the $$L^{p}$$, Lipschitz, and BMO norms. We will need the following lemmas.

The following estimate for the homotopy operator T appears in [8].

Lemma 2.1

Let $$u\in L^{t}_{\mathrm{loc}}$$, $$l=1,2,\ldots,n$$, $$1< t<\infty$$, be a differential form in M, and T be the homotopy operator defined on differential forms. Then there exists a constant C, independent of u, such that

$$\|Tu\|_{t,M}\leq C|M|\operatorname{diam}(M)\|u\|_{t,M}.$$

We will use the generalized HĂ¶lder inequality repeatedly.

Lemma 2.2

[1]

Let $$0< q<\infty$$, $$0< p<\infty$$, and $$s^{-1}=q^{-1}+p^{-1}$$. If f and g are measurable functions on $$\mathbb{R}^{n}$$, then

$$\|fg\|_{s,M}\leq{\|f\|_{q,M}} {\|g\|_{p,M}}$$

for any $$M\subset\mathbb{R}^{n}$$.

The following lemma appears in [9].

Lemma 2.3

Let $$\varphi:[0,+\infty)$$ be a strictly increasing convex function such that $$\varphi(0)=0$$. If $$u(x)\in D'(M,\Lambda^{l})$$ satisfies $$\varphi(|u|)\in L^{1}(M,\mu)$$, then for any $$a>0$$, we have

$$\int_{M}\varphi\biggl({{a}\over {2}}\vert u-u_{M}\vert \biggr)\, d\mu\leq \int_{M}\varphi \bigl(a\vert u\vert \bigr)\, d\mu.$$

First, we establish the boundedness for the composite operator $$\mathbb {M}^{\sharp}_{s}\circ D\circ G$$.

Lemma 2.4

Let $$u\in{L^{t}(M,\Lambda^{l})}$$, $$l=1,2,\ldots,n$$, $$1\leq s< t<\infty$$, be a differential form in a domain M. Then, there exists a constant C, independent of u, such that

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{t,B}\leq{C}|B|\operatorname{diam}(B)\Vert u\Vert _{t,B}.$$

Proof

For a ball B in M, using LemmaÂ 2.1 for any $$B_{(x,r)}\subset B$$ and the decomposition theorem, we have

\begin{aligned}& \biggl({{1}\over {|B_{(x,r)}|}} \int _{B_{(x,r)}}\bigl\vert DG(u)-\bigl(DG(u)\bigr)_{B_{(x,r)}} \bigr\vert ^{s}\, dt \biggr)^{1/s} \\& \quad = |B_{(x,r)}|^{-{1}/{s}}\bigl\Vert DG(u)-\bigl(DG(u) \bigr)_{B_{(x,r)}}\bigr\Vert _{s,B_{(x,r)}} \\& \quad = |B_{(x,r)}|^{-{1}/{s}}\bigl\Vert TdDG(u)\bigr\Vert _{s,B_{(x,r)}} \\& \quad \leq C|B_{(x,r)}|^{1-{1}/{s}+{1}/{n}}\bigl\Vert dDG(u)\bigr\Vert _{s,B_{(x,r)}} \\& \quad = C|B_{(x,r)}|^{1+{1}/{n}-{1}/{s}}\bigl\Vert ddG(u)+dd^{*}G(u)\bigr\Vert _{s,B_{(x,r)}} \\& \quad = C|B_{(x,r)}|^{1+{1}/{n}-{1}/{s}}\bigl\Vert dd^{*}G(u)\bigr\Vert _{s,B_{(x,r)}} \\& \quad \leq C_{1}|B_{(x,r)}|^{1+{1}/{n}-{1}/{s}}\Vert u\Vert _{s,B_{(x,r)}}. \end{aligned}
(1)

Since $$1+{1}/{n}-{1}/{s}>0$$, taking the supremum over r, we get

\begin{aligned} \begin{aligned}[b] &\sup_{r>0} \biggl( \biggl({{1}\over {|B_{(x,r)}|}} \int _{B_{(x,r)}}\bigl\vert DG(u)-\bigl(DG(u)\bigr)_{B_{(x,r)}} \bigr\vert ^{s}\, dt \biggr)^{1/s} \biggr) \\ &\quad \leq \sup_{r>0} \bigl(C_{1}|B_{(x,r)}|^{1+{1}/{n}-{1}/{s}} \|u\| _{s,B_{(x,r)}} \bigr) \\ &\quad \leq \sup_{r>0} \bigl(C_{1}|B|^{1+{1}/{n}-{1}/{s}} \|u\|_{s,B} \bigr) \\ &\quad = C_{1}|B|^{1+{1}/{n}-{1}/{s}}\|u\|_{s,B}. \end{aligned} \end{aligned}
(2)

Using the generalized HĂ¶lder inequality, we find

\begin{aligned} \|u\|_{s,B} \leq&\|u\|_{t,B}\|1 \|_{{ts}/{(t-s)},B} \\ =&|B|^{{(t-s)}/{ts}}\|u\|_{t,B}. \end{aligned}
(3)

Combining (2) and (3), we obtain

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{t,B} \leq&\bigl\Vert C_{1}|B|^{1+{1}/{n}-{1}/{s}}\|u \|_{s,B}\bigr\Vert _{t,B} \\ \leq&\bigl\Vert C_{1}|B|^{1+{1}/{n}-{1}/{s}+{(t-s)}/{ts}}\|u\|_{t,B}\bigr\Vert _{t,B} \\ =&C_{1}|B|^{1+{1}/{n}-{1}/{t}}\|u\|_{t,B}\|1\|_{t,B} \\ =&C_{1}|B|^{1+{1}/{n}}\|u\|_{t,B}. \end{aligned}
(4)

The proof of LemmaÂ 2.4 is completed.â€ƒâ–¡

Theorem 2.5

Let $$u\in{L^{t}(M,\Lambda^{l})}$$, $$l=1,2,\ldots,n$$, $$1\leq s< t<\infty$$, be a differential form in a domain M. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{t,B}\leq {C}|B|\operatorname{diam}(B)\Vert u\Vert _{t,B},$$

where C is a constant independent of u.

Proof

Choosing $$\varphi(t)=x^{t}$$, $$a=2$$, and $$\omega (x)\equiv1$$ in LemmaÂ 2.3, we have

$$\|u-u_{B}\|_{t,B}\leq C_{1}\|u\|_{t,B}.$$

Replacing u by $$\mathbb{M}^{\sharp}_{s}DG(u)$$ and using LemmaÂ 2.4, we get

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{t,B} \leq & C_{1}\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u) \bigr\Vert _{t,B} \\ \leq& C|B|\operatorname{diam}(B)\Vert u\Vert _{t,B}. \end{aligned}
(5)

The proof of TheoremÂ 2.5 is completed.â€ƒâ–¡

3 Lipschitz and BMO norm inequalities

In this section, we compare the $$L^{p}$$ norm, Lipschitz norm, and BMO norm of the composite operator $$\mathbb{M}^{\sharp}_{s}\circ D\circ G$$ applied to differential forms. Especially, when we estimate the Lipschitz norm in terms of the BMO norm, we need the differential form to satisfy some versions of harmonic equations. We first introduce some definitions.

We call an equation a nonhomogeneous A-harmonic equation if

$$d^{\star} A(x, du) = B(x, du),$$
(6)

where the operators $$A: M \times\Lambda^{l}(\mathbb{R}^{n}) \to \Lambda ^{l}({\mathbb{R}}^{n})$$ and $$B: M \times\Lambda^{l}({\mathbb{R}}^{n}) \to \Lambda^{l-1}({\mathbb {R}}^{n})$$ satisfy

$$\bigl\vert A(x, \xi)\bigr\vert \leq a\vert \xi \vert ^{p-1}, \qquad A(x, \xi) \cdot\xi \geq \vert \xi \vert ^{p}\quad \mbox{and} \quad \bigl\vert B(x, \xi)\bigr\vert \leq b \vert \xi \vert ^{p-1}$$

for almost all $$x \in M$$ and all $$\xi\in\Lambda^{l} ({\mathbb{R}}^{n})$$. Here $$p>1$$ is a constant related to equation (6) and $$a,b>0$$. Now we give definitions of the BMO and Lipschitz norms. See [1] for more details.

For $$u\in L^{1}_{\mathrm{loc}}(M,\Lambda^{l})$$, $$l=0,1,\ldots,n$$, we write $$u\in \operatorname{loc} \operatorname{Lip}_{k}(M,\Lambda^{l})$$, $$0\leq{k}\leq1$$, if

$$\|u\|_{\operatorname{loc} \operatorname{Lip}_{k},M}=\sup_{\sigma{B}\subset{M}}|B|^{{-(n+k)}/{n}}\| u-u_{B}\|_{1,B}< \infty$$

for some $$\sigma>1$$.

For $$u\in L^{1}_{\mathrm{loc}}(M,\Lambda^{l})$$, $$l=0,1,\ldots,n$$, we write $$u\in \operatorname{BMO}(M,\Lambda^{l})$$ if

$$\|u\|_{*,M}=\sup_{\sigma{B}\subset{M}}|B|^{-1} \|u-u_{B}\|_{1,B}< \infty$$

for some $$\sigma>1$$. Similarly, we can define the weighted BMO norm and Lipschitz norm.

For $$u\in{L^{1}_{\mathrm{loc}}(M,\Lambda^{l},w)}$$, $$l=0,1,2,\ldots,n$$, we write $$u\in \operatorname{loc} \operatorname{Lip}_{k}(M,\Lambda^{l},w)$$, $$0\leq{k}\leq1$$, if

$$\|u\|_{\operatorname{loc} \operatorname{Lip}_{k},M,w}=\sup_{\sigma{B}\subset{M}}\bigl(\mu (B) \bigr)^{{-(n+k)}/{n}}\|u-u_{B}\|_{1,B,w}< \infty$$

for some $$\sigma>1$$, where w is a weight, and Î¼ is the Radon measure defined by $$d\mu=w(x)\, dx$$.

For $$u\in{L^{1}_{\mathrm{loc}}(M,\Lambda^{l},w)}$$, $$l=0,1,2,\ldots,n$$, we write $$u\in\operatorname{BMO}(M,\Lambda^{l},w)$$ if

$$\|u\|_{*,M,w}=\sup_{\sigma{B}\subset{M}}\bigl(\mu(B) \bigr)^{-1}\|u-u_{B}\| _{1,B,w}< \infty$$

for some $$\sigma>1$$, where w is a weight, and Î¼ is the Radon measure defined by $$d\mu=w(x)\, dx$$.

We also need the following inequality.

Lemma 3.1

[1]

Take Ï† be a strictly increasing convex function on $$[0,+\infty )$$ such that $$\varphi(0)=0$$. If $$u(x)\in D'(M,\Lambda^{l})$$ satisfies $$\varphi(|u|)\in L^{1}(M,\mu)$$ and for any constant c,

$$\mu\bigl\{ x\in M:|u-c|>0\bigr\} >0,$$

where Î¼ is the Radon measure defined by $$d\mu(x)=\omega(x)\, dx$$ with weight $$\omega(x)$$, then for any $$a>0$$, we have

$$\int_{M}\varphi\bigl(a\vert u\vert \bigr)\, d\mu\leq C \int_{M}\varphi\bigl(2a\vert u-u_{M}\vert \bigr)\, d\mu,$$

where C is a constant independent of u.

Now, we estimate the Lipschitz norm of $$\mathbb{M}^{\sharp}_{s}\circ D\circ G$$ in terms of the $$L^{t}$$-norm.

Theorem 3.2

Let $$u\in{L^{t}(M,\Lambda^{l})}$$, $$l=1,2,\ldots,n$$, $$1\leq s< t<\infty$$, be a differential form in M. Then, there exists a constant C, independent of u, such that

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M}\leq{C} \Vert u\Vert _{t,M},$$

where k is a constant with $$0\leq{k}\leq1$$.

Proof

From TheoremÂ 2.5 we obtain

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{t,B}\leq C_{1}|B|\operatorname{diam}(B)\Vert u\Vert _{t,B}$$

for all balls B with $$B\subset M$$. Using the HĂ¶lder inequality, we have

\begin{aligned}& \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{1,B} \\& \quad \leq \biggl( \int_{B} \bigl\vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\vert ^{t} \, dx \biggr)^{1/t} \biggl( \int_{B} 1^{t/(t-1)} \, dx \biggr)^{(t-1)/t} \\& \quad \leq |B|^{(t-1)/t} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\Vert _{t,B} \\& \quad = |B|^{1-1/t} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\Vert _{t,B} \\& \quad \leq |B|^{1-1/t}{C_{1}}|B|\operatorname{diam}(B)\Vert u \Vert _{t,B} \\& \quad \leq {C_{2}}|B|^{2-1/t+1/n}\Vert u\Vert _{t,B}. \end{aligned}
(7)

From the definition of the Lipschitz norm and (7) it follows that

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M} =&\sup_{\sigma{B}\subset {M}}|B|^{-(n+k)/n}\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl(\mathbb{M}^{\sharp }_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ =& \sup_{\sigma{B}\subset{M }}|B|^{-1-k/n}\bigl\Vert \mathbb{M}^{\sharp }_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ \leq& \sup_{\sigma{B}\subset{M }}|B|^{-1-k/n} C_{2}|B|^{2-1/t+1/n} \Vert u\Vert _{t,B} \\ =& \sup_{\sigma{B}\subset{M }}C_{2}|B|^{1-k/n-1/t+1/n}\Vert u \Vert _{t,B} \\ \leq& \sup_{\sigma{B}\subset{M }}C_{2}|M|^{1-k/n-1/t+1/n}\Vert u \Vert _{t,B} \\ \leq& {C_{3}}\sup_{\sigma{B}\subset{M }}\Vert u\Vert _{t,B} \\ \leq& C_{3}\Vert u\Vert _{t,M}. \end{aligned}
(8)

This ends the proof of TheoremÂ 3.2.â€ƒâ–¡

From the definitions of the Lipschitz and BMO norms we can get a simple relationship.

Theorem 3.3

Let $$u\in{L^{s}(M,\Lambda^{l})}$$, $$l=1,2,\ldots,n$$, $$1\leq s<\infty$$, be a differential form in M. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{*,M}\leq{C}\bigl\Vert \mathbb{M}^{\sharp }_{s}DG(u) \bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M},$$

where k is a constant with $$0\leq{k}\leq1$$, and C is a constant independent of u.

Proof

From the definition of the BMO norms we obtain

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{*,M} =& \sup_{\sigma{B}\subset M }|B|^{-1}\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ =& \sup_{\sigma{B}\subset M }|B|^{k/n}|B|^{-(n+k)/n}\bigl\Vert \mathbb {M}^{\sharp}_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ \leq& \sup_{\sigma{B}\subset M }|M|^{k/n}|B|^{-(n+k)/n}\bigl\Vert \mathbb {M}^{\sharp}_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ \leq& |M|^{k/n}\sup_{\sigma{B}\subset M }|B|^{-(n+k)/n} \bigl\Vert \mathbb {M}^{\sharp}_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ \leq& {C}\sup_{\sigma{B}\subset M }|B|^{-(n+k)/n} \bigl\Vert \mathbb{M}^{\sharp }_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ \leq& {C}\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M}. \end{aligned}
(9)

This ends the proof of TheoremÂ 3.3.â€ƒâ–¡

Theorem 3.4

Let $$u\in{L^{s}(M,\Lambda^{l})}$$, $$l=1,2,\ldots,n$$, $$1< s<\infty$$, satisfy equation (6) in M and suppose that $$\mu\{x\in M:|u-c|>0\}>0$$. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M}\leq{C} \Vert u\Vert _{*,M},$$

where k is a constant with $$0\leq{k}\leq1$$, and C is a constant independent of u.

Proof

From (7) we have

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{1,B}\leq {C_{1}}|B|^{2-{1}/{s}+{1}/{n}}\Vert u\Vert _{s,B}.$$

Using the reverse HĂ¶lder inequality and LemmaÂ 3.1, we get

$$\|u\|_{s,B}\leq{C_{2}}|B|^{{(1-s)}/{s}}\|u \|_{1,\sigma B} \leq{C_{3}}|B|^{{(1-s)}/{s}}\bigl\Vert u-(u)_{B}\bigr\Vert _{1,\sigma B},$$

where $$\sigma>1$$. So, we have

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{1,B} \leq C_{4} |B|^{1+1/n}\bigl\Vert u-(u)_{B}\bigr\Vert _{1,\sigma{B}}.$$

Letting $$\sigma' > \sigma$$, we have

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M} =& \sup_{\sigma'{B}\subset{M}}|B|^{-(n+k)/n}\bigl\Vert \mathbb{M}^{\sharp }_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B} \\ \leq& \sup_{\sigma'{B}\subset{M}}C_{4}|B|^{1+1/n-{k}/{n}}|B|^{-1} \bigl\Vert u-(u)_{B}\bigr\Vert _{1,\sigma B} \\ \leq& {C_{5}}\sup_{\sigma'{B}\subset{M}}C_{4}|B|^{-1} \bigl\Vert u-(u)_{B}\bigr\Vert _{1,\sigma{B}} \\ \leq& C_{6} \Vert u\Vert _{*,M}. \end{aligned}
(10)

This ends the proof of TheoremÂ 3.4.â€ƒâ–¡

By TheoremÂ 3.2 and TheoremÂ 3.3 we can easily estimate the BMO norm of the composite operator $$\mathbb{M}^{\sharp}_{s}\circ D\circ G$$.

Corollary 3.5

Let $$u\in{L^{t}(M,\Lambda^{l})}$$, $$l=1,2,\ldots,n$$, $$1\leq s< t<\infty$$, be a differential form in M. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{*,M}\leq{C} \Vert u\Vert _{t,M},$$

where C is a constant independent of u.

4 The weighted norm inequalities

In this section, we consider the weighted situation. The weight function we select is $$A(\alpha,\beta,\gamma,M)$$-weight, which contains the well-known $$A_{r}(M)$$-weight. We will use the Radon measure to deal with the $$A(\alpha,\beta,\gamma,M)$$-weight in the proof.

Definition 4.1

[10]

We say that a measurable function $$w(x)$$ defined on a subset $$M\subset \mathbb{R}^{n}$$ satisfies the $$A(\alpha,\beta,\gamma,M)$$-condition for some positive constants Î±, Î², Î³ if $$w(x)>0$$ a.e. and

$$\sup_{B\subset M} \biggl({{1}\over {|B|}} \int_{B}w^{\alpha}\, dx \biggr) \biggl( {{1}\over {|B|}} \int_{B}w^{-\beta}\, dx \biggr)^{\gamma/\beta}< \infty.$$

Now, we give estimates for the weighted Lipschitz and BMO norms.

Theorem 4.2

Let $$u\in{L^{q}(M,\Lambda^{l},\mu)}$$, $$l=1,2,\ldots,n$$, $$1\leq s< q<\infty$$. Assume that the Radon measure Î¼ is defined by $$d\mu=w(x)\, dx$$ with $$w(x)\in{A(\alpha,\beta,\gamma,M)}$$ for some $$\alpha>1$$, where $$1< p<\infty$$, $$\beta={\alpha{q}}/{({\alpha{p}-p-\alpha{q}})}$$, $$\gamma ={\alpha{q}}/{p}$$, and $$\alpha{p}-p-\alpha{q}>0$$. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M,w}\leq{C} \Vert u\Vert _{p,M,w},$$

where C is a constant independent of u.

Proof

Using the generalized HĂ¶lder inequality with exponents satisfying $${{1}/{q}}=1/\alpha{q}+{(\alpha-1)}/\alpha{q}$$, we get

\begin{aligned}& \biggl( \int_{B} \bigl\vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\vert ^{q}w(x) \, dx \biggr)^{1/q} \\& \quad = \biggl( \int_{B} \bigl\vert \bigl(\mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B} \bigr)w(x)^{1/q}\bigr\vert ^{q}\, dx \biggr)^{1/q} \\& \quad \leq \biggl( \int_{B} \bigl\vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\vert ^{{\alpha{q}}/{(\alpha-1)}}\, dx \biggr)^{{(\alpha-1)}/{\alpha {q}}} \biggl( \int_{B}\bigl(w(x)^{{1}/{q}}\bigr)^{\alpha{q}} \, dx \biggr)^{1/{\alpha {q}}} \\& \quad \leq C_{1}\vert B\vert \operatorname{diam}(B) \biggl( \int_{B} \vert u\vert ^{{\alpha {q}}/{(\alpha-1)}} \, dx \biggr)^{{(\alpha-1)}/{\alpha{q}}} \biggl( \int _{B}w(x)^{\alpha}\, dx \biggr)^{1/{\alpha{q}}}. \end{aligned}
(11)

Using the generalized HĂ¶lder inequality with exponents satisfying $$(\alpha-1)/\alpha q=1/p+(\alpha p-p-\alpha q)/\alpha qp$$, we get

\begin{aligned} \biggl( \int_{B} \vert u\vert ^{{\alpha{q}}/{(\alpha-1)}} \,dx \biggr)^{{(\alpha -1)}/{\alpha{q}}} =& \biggl( \int_{B} \bigl\vert uw(x)^{1/p}w(x)^{-{1/p}} \bigr\vert ^{{\alpha{q}}/{(\alpha-1)}} \,dx \biggr)^{{(\alpha-1)}/{\alpha{q}}} \\ \leq& \biggl( \int_{B} \bigl\vert uw(x)^{1/p}\bigr\vert ^{p} \,dx \biggr)^{1/p} \\ &{}\times \biggl( \int_{B} \bigl(w(x)^{-{1}/{p}}\bigr)^{{\alpha{qp}}/{(\alpha {p}-p-\alpha{q})}}\,dx \biggr)^{({\alpha{p}-p-\alpha{q}})/{\alpha {qp}}} \\ =& \biggl( \int_{B} \vert u\vert ^{p}w(x) \,dx \biggr)^{{1}/{p}} \\ &{}\times \biggl( \int_{B} \bigl(w(x)^{-1} \bigr)^{\alpha{q}/(\alpha {p}-p-\alpha{q})} \,dx \biggr)^{({\alpha{p}-p-\alpha{q}})/{\alpha {qp}}}. \end{aligned}
(12)

Since $$w(x)\in{A(\alpha,{{\alpha{q}}\over {(\alpha{p}-p-\alpha {q})}},{{\alpha{q}}\over {p}},M)}$$, we have

\begin{aligned}& \biggl( \int_{B}w(x)^{\alpha}\,dx \biggr)^{1/{\alpha{q}}} \biggl( \int_{B} \bigl(w(x)^{-1} \bigr)^{{\alpha{q}}/{(\alpha{p}-p-\alpha {q})}}\, dx \biggr)^{{(\alpha{p}-p-\alpha{q})}/{\alpha{qp}}} \\& \quad = |B|^{{2}/{\alpha{q}}} \biggl( \biggl({{{1}\over {|B|}}}\bigl(w(x) \bigr)^{\alpha}\,dx \biggr) \biggl({{{1}\over {|B|}}} \int_{B} \bigl(w(x)^{-1} \bigr)^{{\alpha {q}}/{(\alpha{p}-p-\alpha{q})}} \, dx \biggr)^{{(\alpha{p}-p-\alpha {q})}/{p}} \biggr)^{1/{\alpha{q}}} \\& \quad \leq {C_{2}}. \end{aligned}
(13)

Combining (11), (12), and (13), we obtain

$$\biggl( \int_{B} \bigl\vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\vert ^{q}w(x)\,dx \biggr)^{1/q} \leq{C_{3}}\vert B\vert \operatorname{diam}(B) \biggl( \int_{B}\vert u\vert ^{p}w(x)\, dx \biggr)^{1/p}.$$

It follows that

\begin{aligned}& \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\Vert _{1,B,w} \\& \quad = \int_{B} \bigl\vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{B}\bigr\vert \,d\mu \\& \quad \leq \biggl( \int_{B} \bigl\vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\vert ^{q}w(x) \,dx \biggr)^{1/q} \biggl( \int_{B} 1^{q/({q-1})} \, d\mu \biggr)^{({q-1})/{q}} \\& \quad = \bigl(\mu(B)\bigr)^{({q-1})/q}\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)- \bigl(\mathbb{M}^{\sharp }_{s}DG(u)\bigr)_{B}\bigr\Vert _{q,B,w} \\& \quad \leq {C_{4}}\bigl(\mu(B)\bigr)^{({q-1})/{q}}|B| \operatorname{diam}(B)\Vert u\Vert _{p,B,w}. \end{aligned}
(14)

Finally, we get

\begin{aligned}& \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M,w} \\& \quad = \sup_{\sigma{B}\subset{M}}\bigl(\mu(B)\bigr)^{{-(n+k)}/{n}}\bigl\Vert \mathbb{M}^{\sharp }_{s}DG(u)-\bigl(\mathbb{M}^{\sharp}_{s}DG(u) \bigr)_{B}\bigr\Vert _{1,B,w} \\& \quad \leq {C_{5}}\sup_{\sigma{B}\subset{M}}\bigl(\mu (B) \bigr)^{{-(n+k)}/{n}+{(q-1)}/{q}+1+{1/n}}\Vert u\Vert _{p,B,w} \\& \quad \leq {C_{5}}\sup_{\sigma{B}\subset{M}}\bigl(\mu (M) \bigr)^{{-(n+k)}/{n}+{{(q-1)}/{q}}+1+{1/n}}\Vert u\Vert _{p,B,w} \\& \quad \leq {C}\Vert u\Vert _{p,M,w}. \end{aligned}
(15)

This ends the proof of TheoremÂ 4.2.â€ƒâ–¡

Similarly to the proof of TheoremÂ 3.3, we have the following corollary.

Corollary 4.3

Let $$u\in{L^{s}(M,\Lambda^{l},\mu)}$$, $$l=1,2,\ldots,n$$, $$1\leq s<\infty$$, be a differential form in M, Î¼ and $$w(x)$$ be the same as in TheoremÂ  4.2. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{*,M,w}\leq{C}\bigl\Vert \mathbb{M}^{\sharp }_{s}DG(u) \bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},M,w},$$

where C is a constant independent of u.

The following corollary can be obtained by combining Theorem 4.2 and CorollaryÂ 4.3.

Corollary 4.4

Let u, Î¼, $$w(x)$$, and p be as in TheoremÂ  4.2. Then,

$$\bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{*,M,w}\leq{C} \Vert u\Vert _{p,M,w},$$

where C is a constant independent of u.

5 Applications

In this section, we apply our results to some differential forms.

Example 5.1

Let $$M = \{ (x, y, z):x^{2}_{1} +x^{2}_{2}+\cdots+x^{2}_{n} \leq1 \} \subset\mathbb{R}^{n}$$ and $$u(x_{1}, \ldots, x_{n})$$ be defined in $$\mathbb{R} ^{n}$$ by

$$u(x_{1}, \ldots, x_{n}) = \sum_{i=1}^{n} e^{1 + x_{1}^{2} + \cdots+ x_{n}^{2}} {x_{i} \over 1 + (x_{1}^{2} + \cdots+ x_{n}^{2})^{2}}\, dx_{i}.$$

So $$u(x_{1}, \ldots, x_{n})$$ is a differential form in M. Now we estimate $$\|\mathbb{M}^{\sharp}_{s}DG(u)-(\mathbb{M}^{\sharp}_{s}DG(u))_{M}\|_{t,M}$$.

By simple calculation we obtain

\begin{aligned} \|u\|_{t,M} =& \biggl( \int_{M}|u|^{t}\, dx \biggr)^{1/t} \\ \leq& \biggl( \int_{M}\bigl(e^{2 + 2x_{1}^{2} + \cdots+ 2x_{n}^{2}}\bigl(x_{1}^{2} + \cdots+ x_{n}^{2}\bigr)\bigr)^{t/2}\, dx \biggr)^{1/t} \\ \leq& \biggl( \int_{M}\bigl(e^{4}\bigr)^{t/2}\, dx \biggr)^{1/t} \\ =&e^{2}|M|^{1/t}. \end{aligned}

Using TheoremÂ 2.5, we have

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)-\bigl( \mathbb{M}^{\sharp}_{s}DG(u)\bigr)_{M}\bigr\Vert _{t,\Omega } \leq& C|M|\operatorname{diam}(M)e^{2}|M|^{1/t} \\ =&2e^{2}C \biggl({\pi^{n/2}\over \Gamma(1+n/2)} \biggr)^{1+1/t}. \end{aligned}

Example 5.2

Let $$u(x_{1}, \ldots, x_{n})$$ be defined in $$\mathbb {R}^{n}$$ by

$$u(x_{1}, \ldots, x_{n})= \sum_{i=1}^{n} { 1 \over \sqrt{1 + x_{1}^{2} + \cdots+ x_{n}^{2}}} \, dx_{i}.$$

For a ball $$B\subset\mathbb{R}^{n}$$ with radius r, it is difficult to estimate the upper bound directly for $$\|\mathbb{M}^{\sharp}_{s}DG(u)\| _{\operatorname{loc} \operatorname{Lip}_{k},B}$$, but by TheoremÂ 3.2 we have

\begin{aligned} \bigl\Vert \mathbb{M}^{\sharp}_{s}DG(u)\bigr\Vert _{\operatorname{loc} \operatorname{Lip}_{k},B} \leq& C\|u\|_{t,B} \\ \leq& C \biggl( \int_{B} \bigl({\bigl(x_{1}^{2} + \cdots+ x_{n}^{2}\bigr)}/{\bigl(1+x_{1}^{2} + \cdots + x_{n}^{2}\bigr)} \bigr)^{t/2}\, dx \biggr)^{1/t} \\ \leq& C|B|^{1/t} \\ =&C \biggl({\pi^{n/2}r^{n}\over \Gamma(1+n/2)} \biggr)^{1/t}. \end{aligned}

Similarly, we also obtain an upper bound for the BMO norm of the composite operator $$\mathbb{M}^{\sharp}_{s}\circ D\circ G$$.

References

1. Agarwal, RP, Ding, S, Nolder, C: Inequalities for Differential Forms. Springer, New York (2009)

2. Bi, H, Xing, Y: PoincarĂ©-type inequalities with $$L^{p}(\log L)^{\alpha}$$-norms for Greenâ€™s operator. Comput. Math. Appl. 60(10), 2764-2770 (2010)

3. Ding, S: Integral estimates for the Laplace-Beltrami and Greenâ€™s operators applied to differential forms on manifolds. Z. Anal. Anwend. 22(4), 939-957 (2003)

4. Xing, Y, Ding, S: Inequalities for Greenâ€™s operator with Lipschitz and BMO norms. Comput. Math. Appl. 58(2), 273-280 (2009)

5. Nolder, C: A-Harmonic equations and the Dirac operator. J. Inequal. Appl. 2010, Article ID 124018 (2010)

6. Ling, Y, Gejun, B: Some local PoincarĂ© inequalities for the composition of the sharp maximal operator and the Greenâ€™s operator. Comput. Math. Appl. 63(3), 720-727 (2012)

7. Scott, C: $$L^{p}$$ theory of differential forms on manifolds. Trans. Am. Math. Soc. 347(6), 2075-2096 (1995)

8. Iwaniec, T, Lutoborski, A: Integral estimates for null Lagrangians. Arch. Ration. Mech. Anal. 125(1), 25-79 (1993)

9. Ding, S: $$L^{\varphi}(\mu)$$-Averaging domains and the quasi-hyperbolic metric. Comput. Math. Appl. 47(10), 1611-1618 (2004)

10. Xing, Y: A new weight class and PoincarĂ© inequalities with the Radon measure. J. Inequal. Appl. 2012(1), 32 (2012)

Acknowledgements

The third author was supported in part by the Foundation of Education Department of Heilongjiang Province (#12541133).

Author information

Authors

Corresponding author

Correspondence to Yuming Xing.

Competing interests

The authors declare that they have no competing interests.

Authorsâ€™ contributions

All authors contributed to the main results. XL drafted the manuscript. YW and YX improved the final version. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

Li, X., Wang, Y. & Xing, Y. Lipschitz and BMO norm inequalities for the composite operator on differential forms. J Inequal Appl 2015, 370 (2015). https://doi.org/10.1186/s13660-015-0896-9