Generic stability of the solution mapping for set-valued optimization problems
- Xian-Jun Long^{1}Email author,
- Ying-Quan Huang^{1} and
- Li-Ping Tang^{1}
https://doi.org/10.1186/s13660-015-0875-1
© Long et al. 2015
Received: 9 September 2015
Accepted: 29 October 2015
Published: 4 November 2015
Abstract
In this paper, we consider the generic stability of the weakly efficient solution mapping for set-valued optimization problems. Firstly, we obtain the upper semicontinuity of the weakly efficient solution mapping for set-valued optimization problems. Secondly, we show that, in the sense of Baire category, most set-valued optimization problems are stable. Finally, we give sufficient conditions ensuring the existence of essential. Our results extend and improve the corresponding results of Song et al. (J. Optim. Theory Appl. 156:591-599, 2013).
Keywords
MSC
1 Introduction
Set-valued optimization is a vibrant and expanding branch of applied mathematics that deals with optimization problems where the objective function is a set-valued map acting between abstract spaces. Set-valued optimization provides an important generalization and unification of scalar as well as vector optimization problems. Therefore, this relatively new discipline has justifiably attracted a great deal of attention in recent years (see [1–21]).
Stability is very interesting and important in optimization theory and applications. It may be understood as the solution set having some topological properties such as semicontinuity, well-posedness, essential stability and so on. Essential stability was firstly introduced by Fort [22] for the study of fixed points of a continuous mapping. Since then, essentiality was applied in many nonlinear problems such as KKM points, vector equilibrium problems and Nash equilibrium problems (see [22–27]). Recently, Xiang and Zhou [28] obtained the essential stability of efficient solution sets for continuous vector optimization problems. Very recently, Song et al. [29] generalized the results obtained by Xiang and Zhou [28] to a set-valued case. They obtained the essential stability of efficient solution sets for set-valued optimization problems with the only perturbation of the objective function in compact metric spaces.
In this paper, we consider the stability of a weakly efficient solution mapping for set-valued optimization problems with the perturbation of both the objective function and the constraint set in noncompact Banach spaces. In Section 2 we recall some basic definitions and some known results. In Section 3 we obtain the upper semicontinuity of the weakly efficient solution mapping for set-valued optimization problems. Moreover, we show that, in the sense of Baire category, most set-valued optimization problems are stable. Finally, we give sufficient conditions ensuring the existence of essential. Our results extend and improve the corresponding results of Song et al. [29].
2 Preliminaries
Definition 2.1
A point \(x_{0}\in K\) is said to be a weakly efficient (resp. an efficient) solution of problem (SOP) iff there exists \(y_{0}\in F(x_{0})\) such that \(y_{0}\in\operatorname{WMin} F(K)\) (resp. \(y_{0}\in \operatorname{Min} F(K)\)).
Definition 2.2
[2]
- (1)
upper semicontinuous at \(x_{0}\in X\) if, for any open set V containing \(G(x_{0})\), there exists a neighborhood \(U(x_{0})\) of \(x_{0}\) such that \(G(x)\subset V\) for all \(x\in U(x_{0})\); G is said to be upper semicontinuous on X if it is upper semicontinuous at each \(x\in{X}\);
- (2)
lower semicontinuous at \(x_{0}\in X\) if, for any open set V with \(G(x_{0})\cap{V}\neq\emptyset\), there exists a neighborhood \(U(x_{0})\) of \(x_{0}\) such that \(G(x)\cap V\neq\emptyset\) for all \(x\in U(x_{0})\); G is said to be lower semicontinuous on X if it is lower semicontinuous at each \(x\in X\);
- (3)
continuous on X if it is both upper semicontinuous and lower semicontinuous on X;
- (4)
closed if \(\operatorname{Graph}(G):=\{(x,y):x\in X, y\in{G(x)}\}\) is a closed set in \(X\times{Y}\).
Lemma 2.1
[2]
Let \(G:X\rightarrow{2^{Y}}\) be a set-valued map. If G is upper semicontinuous and for any \(x\in X\), \(G(x)\) is a closed set, then G is closed.
Definition 2.3
Lemma 2.2
[32]
- (i)
\(\bigcup_{n=1}^{+\infty}A_{n} \cup A\) is also a nonempty compact subset of X.
- (ii)
If \(x_{n}\in A_{n}\) converging to x, then \(x\in A\).
A topological space X is said to be a Baire space if the following condition holds: given any countable collection \(\{A_{n}\}^{+\infty }_{n=1}\) of the closed subsets of X each of which has empty interior in X, their union \(\cup A_{n}\) also has empty interior in X. A subset G of X is called residual if it contains a countable intersection of open dense subsets of X.
Lemma 2.3
(Baire category theorem)
If X is a compact Hausdorff space or a complete metric space, then X is a Baire space.
Lemma 2.4
([22], Theorem 2)
Let X be a Baire space, Y be a metric space and \(G:X\rightarrow2^{Y}\) be upper semicontinuous with compact values. Then there exists a dense residual subset Q of X such that G is lower semicontinuous at each \(x\in Q\).
For convenience in the later presentation, denote by \(K(X)\) and \(K(Y)\) all nonempty compact subsets of X and Y, respectively.
Lemma 2.5
[31]
Let \((X,d)\) be a metric space and H be Hausdorff distance on X. Then \((K(X),H)\) is complete if and only if \((X,d)\) is complete.
The next lemma is a special case of Lemma 2.4 in [24].
Lemma 2.6
Let K be a nonempty compact subset of X and \(G:K\rightarrow{2^{Y}}\) be a set-valued map with nonempty compact values. Then G is continuous if and only if for any \(x_{0}\in K\), \(x\rightarrow x_{0}\) implies \(G(x)\rightarrow G(x_{0})\).
Lemma 2.7
[29]
Let \(F_{n}\rightarrow F\), \(n=1,2,\ldots\) , where \(F_{n}, F:X\rightarrow{2^{Y}}\) are continuous on X and have nonempty compact values. If \(y_{n}\in F_{n}(x_{n})\), \(x_{n}\rightarrow x^{*}\) and \(y_{n}\rightarrow y^{*}\), then \(y^{*}\in F(x^{*})\).
Lemma 2.8
Let \(F_{n}\rightarrow F\), \(n=1,2,\ldots\) , where \(F_{n}, F:X\rightarrow{2^{Y}}\) are continuous on X and have nonempty compact values. Then, for any \(x\in X\), \(y\in F(x)\), \(x_{n}\rightarrow x\), there exists \(y_{n}\in F_{n} (x_{n})\) such that \(y_{n}\rightarrow y\).
Proof
3 Main results
Throughout this section, let X and Y be two real Banach spaces, K be a nonempty subset of X, \(C\subset{Y}\) be a closed convex pointed cone with \(\operatorname{int}C\neq\emptyset\).
Lemma 3.1
\((M,\rho)\) is a complete metric space.
Proof
For any \(u=(F,K)\in M\), we denote by \(S(u)\) and \(S_{w} (u)\) the efficient solution set and the weakly efficient solution set of problem (SOP), respectively. Then S and \(S_{w}\) define two set-valued maps from M to X. By the compactness of K and the continuity of F, the set \(\operatorname{Min}(F(X))\) is nonempty, and so \(S(u)\) is nonempty for any \(u\in M\). Moreover, \(S_{w} (u)\) is nonempty since \(S (u)\subset S_{w} (u)\).
Theorem 3.1
The set-valued map \(S_{w}:M\rightarrow2^{X}\) is upper semicontinuous with compact values.
Proof
Next, we prove that \(S_{w}\) is upper semicontinuous on M. Suppose by contradiction that there exists \(u=(F,K)\in M\) such that \(S_{w}\) is not upper semicontinuous at u. Then there exists an open neighborhood U in X with \(U\supset S_{w}(u)\) such that, for each \(n=1,2,\ldots \) and each open neighborhood \(V_{n}:=\{u'=(F',K')\in M:\rho(u',u)<\frac{1}{n}\} \) of u, there exist \(u_{n}=(F_{n}, K_{n})\in V_{n}\) and \(x_{n}\in S_{w}(u_{n})\) but \(x_{n}\notin U\).
From the proof of Theorem 3.1, we obtain that for any \(u\in M\), the weakly efficient solution set \(S_{w}(u)\) is closed. By Lemma 2.1, we have the following corollary.
Corollary 3.1
The set-valued map \(S_{w}:M\rightarrow2^{X}\) is closed.
Remark 3.1
- (1)
the assumption that the metric space is compact is removed;
- (2)
the setting of Euclidean spaces is generalized to Banach spaces;
- (3)
the order cone \(\mathbb{R}_{+} ^{n}\) is generalized to any closed convex pointed cone;
- (4)
we not only consider the perturbation of the set-valued map, but also consider the perturbation of the feasible set; while Song et al. [29] only considered the former.
Definition 3.1
Let \(u\in M\). The weakly efficient solution set \(S_{w}(u)\) is called stable if the set-valued map \(S_{w}\) is continuous at u.
Remark 3.2
The following example shows that there exists \(u\in M\) such that \(S_{w}(u)\) is not stable.
Example 3.1
Definition 3.2
For \(u\in M\), a point \(x\in S_{w}(u)\) is said to be essential if, for any open neighborhood U of x in X, there exists an open neighborhood V of u in M such that \(S_{w}(u')\cap U\neq\emptyset\) for all \(u'\in V\). u is said to be essential if every \(x\in S_{w}(u)\) is essential.
From Definition 3.2, it is easy to see that the following lemma holds, so we omit its proof.
Lemma 3.2
The set-valued map \(S_{w}\) is lower semicontinuous at \(u\in M\) if and only if u is essential.
We now give a generic stability result for set-valued optimization problems.
Theorem 3.2
There exists a dense residual subset Q of M such that, for every \(u\in Q\), u is essential.
Proof
By Lemmas 3.1 and 2.3, M is a Baire space. By Theorem 3.1, the set-valued map \(S_{w}:M\rightarrow2^{X}\) is upper semicontinuous with compact values. By Lemma 2.4, there exists a dense residual subset Q of M such that \(S_{w}\) is lower semicontinuous at each \(u\in Q\). Therefore, the conclusion holds by Lemma 3.2. □
Remark 3.3
Example 3.1 shows that there exists \(u\in M\) such that u is not essential.
The following theorem gives a sufficient condition that \(u\in M\) is essential.
Theorem 3.3
If \(u\in M\) and \(S_{w}(u)\) is a singleton set, then u is essential.
Proof
Suppose that \(S_{w}(u)=\{x_{0}\}\). Let U be any open set in X such that \(S_{w}(u)\cap U\neq\emptyset\). Then \(x_{0}\in U\) and \(S_{w}(u)\subset U\). By Theorem 3.1, \(S_{w}\) is upper semicontinuous at \(u\in M\). It follows that there exists an open neighborhood V of u in M such that \(S_{w}(u')\subset U\) for each \(u'\in V\). This implies that \(S_{w}(u')\cap U\neq\emptyset\) for each \(u'\in V\). Thus, \(S_{w}\) is lower semicontinuous at u. By Lemma 3.2, u is essential. □
Declarations
Acknowledgements
The first author was supported by the National Natural Science Foundation of China (11001287, 11471059), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2014jcyjA00037), the Education Committee Project Research Foundation of Chongqing (KJ1400618) and the Program for Core Young Teacher of the Municipal Higher Education of Chongqing ([2014]47).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
- Ansari, QH, Jahn, J: T-Epiderivative of set-valued maps and its application to set optimization and generalized variational inequalities. Taiwan. J. Math. 14, 2447-2468 (2010) MATHMathSciNetGoogle Scholar
- Aubin, JP, Frankowska, H: Set-Valued Analysis. Birkhäuser, Boston (1990) MATHGoogle Scholar
- Chen, GY, Jahn, J: Optimality conditions for set-valued optimization problems. Math. Methods Oper. Res. 48, 187-200 (1998) MATHMathSciNetView ArticleGoogle Scholar
- Chen, GY, Huang, XX, Yang, XQ: Vector Optimization: Set-Valued and Variational Analysis. Springer, Berlin (2005) Google Scholar
- Durea, M, Strugariu, R: Calculus of tangent sets and derivatives of set-valued maps under metric subregularity conditions. J. Glob. Optim. 56, 587-603 (2013) MATHMathSciNetView ArticleGoogle Scholar
- Flores-Bazán, F: Radial epiderivatives and asymptotic functions in nonconvex vector optimization. SIAM J. Optim. 14, 284-305 (2003) MATHMathSciNetView ArticleGoogle Scholar
- Gong, XH, Dong, HB, Wang, SY: Optimality conditions for proper efficient solutions of vector set-valued optimization. J. Math. Anal. Appl. 284, 332-350 (2003) MATHMathSciNetView ArticleGoogle Scholar
- Hernández, E, Rodríguez-Marín, L, Sama, M: On solutions of set-valued optimization problems. Comput. Math. Appl. 60, 1401-1408 (2010) MATHMathSciNetView ArticleGoogle Scholar
- Jahn, J: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004) View ArticleGoogle Scholar
- Kuroiwa, D: On derivatives of set-valued maps and optimality conditions for set optimization. J. Nonlinear Convex Anal. 10, 41-50 (2009) MATHMathSciNetGoogle Scholar
- Khan, AA, Tammer, C, Zalinescu, C: Set-Valued Optimization: An Introduction with Applications. Springer, Berlin (2015) View ArticleGoogle Scholar
- Lalitha, CS, Arora, R: Weak Clarke epiderivative in set-valued optimization. J. Math. Anal. Appl. 342, 704-714 (2008) MATHMathSciNetView ArticleGoogle Scholar
- Luc, DT: Theory of Vector Optimization. Lecture Notes in Economics and Mathematics Systems, vol. 319. Springer, New York (1989) Google Scholar
- Long, XJ, Li, XB, Zeng, J: Lagrangian conditions for approximate solutions on nonconvex set-valued optimization problems. Optim. Lett. 7, 1847-1856 (2013) MATHMathSciNetView ArticleGoogle Scholar
- Long, XJ, Peng, JW: Lagrangian duality for vector optimization problems with set-valued mappings. Taiwan. J. Math. 17, 287-297 (2013) MATHMathSciNetGoogle Scholar
- Long, XJ, Peng, JW: Generalized B-well-posedness for set optimization problems. J. Optim. Theory Appl. 157, 612-623 (2013) MATHMathSciNetView ArticleGoogle Scholar
- Long, XJ, Peng, JW, Li, XB: Weak subdifferentials for set-valued mappings. J. Optim. Theory Appl. 162, 1-12 (2014) MATHMathSciNetView ArticleGoogle Scholar
- Long, XJ, Peng, JW, Peng, ZY: Scalarization and pointwise well-posedness for set optimization problems. J. Glob. Optim. 62, 763-773 (2015) MathSciNetView ArticleGoogle Scholar
- Tammer, C, Zalinescu, C: Vector variational principles for set-valued functions. In: Recent Developments in Vector Optimization, pp. 367-415. Springer, Berlin (2012) View ArticleGoogle Scholar
- Qiu, QS, Yang, XM: Some properties of approximate solutions for vector optimization problem with set-valued functions. J. Glob. Optim. 47, 1-12 (2010) MATHMathSciNetView ArticleGoogle Scholar
- Zhou, ZA, Yang, XM: Scalarization of ε-super efficient solutions of set-valued optimization problems in real ordered linear spaces. J. Optim. Theory Appl. 162, 680-693 (2014) MATHMathSciNetView ArticleGoogle Scholar
- Fort, MK: Essential and nonessential fixed points. Am. J. Math. 72, 315-322 (1950) MATHMathSciNetView ArticleGoogle Scholar
- Yu, J, Xiang, SW: The stability of the set of KKM points. Nonlinear Anal. 54, 839-844 (2003) MATHMathSciNetView ArticleGoogle Scholar
- Chen, JC, Gong, XH: The stability of set of solutions for symmetric vector quasi-equilibrium problems. J. Optim. Theory Appl. 136, 359-374 (2008) MATHMathSciNetView ArticleGoogle Scholar
- Yang, H, Yu, J: Essential components of the set of weakly Pareto-Nash equilibrium points. Appl. Math. Lett. 15, 553-560 (2002) MATHMathSciNetView ArticleGoogle Scholar
- Lin, Z: Essential components of the set of weakly Pareto-Nash equilibrium points for multiobjective generalized games in different topological spaces. J. Optim. Theory Appl. 124, 387-450 (2005) MATHMathSciNetView ArticleGoogle Scholar
- Luo, Q: Essential component and essential optimum solution of optimization problems. J. Optim. Theory Appl. 102, 433-438 (1999) MATHMathSciNetView ArticleGoogle Scholar
- Xiang, SW, Zhou, YH: On essential sets and essential components of efficient solutions for vector optimization problems. J. Math. Anal. Appl. 315, 317-326 (2006) MATHMathSciNetView ArticleGoogle Scholar
- Song, QQ, Tang, GQ, Wang, LS: On essential stable sets of solutions in set optimization problems. J. Optim. Theory Appl. 156, 591-599 (2013) MATHMathSciNetView ArticleGoogle Scholar
- Klein, E, Thompson, AC: Theory of Correspondences. Wiley, New York (1968) Google Scholar
- Kuratowski, K: Topology, Vols. 1 and 2. Academic Press, New York (1968) Google Scholar
- Yu, J: Essential weak efficient solution in multiobjective optimization problems. J. Math. Anal. Appl. 166, 230-235 (1992) MATHMathSciNetView ArticleGoogle Scholar