Skip to main content

A survey on the study of Hilbert-type inequalities

Abstract

Hilbert-type inequalities are divided three parts: Hilbert’s inequalities (1908), Hardy-Hilbert-type inequalities (1934) and Yang-Hilbert-type inequalities (2009). In this paper, we give a summary of the development of the theory of Hilbert-type inequalities during the past 110 years.

1 Hilbert’s inequalities and the operator expressions

1.1 Hilbert’s inequalities

In 1908, Weyl [1] published the following inequality.

If \(\{a_{m}\}_{m=1}^{\infty}\) and \(\{b_{n}\}_{n=1}^{\infty}\) are real sequences, satisfying \(0<\sum_{m=1}^{\infty}a_{m}^{2}<\infty\) and \(0<\sum_{n=1}^{\infty}b_{n}^{2}<\infty\), then

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \pi \Biggl( \sum _{m=1}^{\infty}a_{m}^{2}\sum _{n=1}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(1)

where the constant factor π is the best possible.

We named (1) Hilbert’s inequality; it does not contain any parameter. The best possible property of the constant factor π was proved by Schur [2] in 1911. He also gave the following integral analog of (1) at the same time.

If \(f(x)\) and \(g(y)\) are measurable functions, such that \(0<\int_{0}^{\infty }f^{2}(x)\, dx<\infty\) and \(0<\int_{0}^{\infty}g^{2}(y)\, dy<\infty\), then

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \pi \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac {1}{2}}, $$
(2)

where the constant factor π is still the best possible.

We called (2) Hilbert’s integral inequality, which still does not contain any parameter. Inequalities (1) and (2) are important in analysis and its applications. We can find a number of improvements and extensions in the vast mathematics literature, especially in [36].

1.2 Hilbert’s operators

We may express inequality (1) by using the form of the operator as follows.

If \(l^{2}\) is a space of real sequences, and \(T:l^{2}\rightarrow l^{2}\) is a linear operator, for any \(a=\{a_{m}\}_{m=1}^{\infty}\in l^{2}\), there exists a \(c=\{c_{n}\}_{n=1}^{\infty}\in l^{2}\), satisfying

$$ c_{n}=(Ta) (n)=\sum_{m=1}^{\infty} \frac{a_{m}}{m+n},\quad n\in\mathbf{N}=\{1,2,\ldots\}. $$
(3)

Hence for any \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{2}\), we may write the inner product of Ta and b as follows:

$$ (Ta,b)=(c,b)=\sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac {a_{m}}{m+n} \Biggr) b_{n}=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}. $$
(4)

Expressing the norm of a as \(\|a\|_{2}=\{\sum_{n=1}^{\infty }a_{n}^{2}\}^{1/2}\), in view of (4), inequality (1) may be rewritten as follows:

$$ (Ta,b)< \pi\|a\|_{2}\|b\|_{2}, $$
(5)

where \(\|a\|_{2},\|b\|_{2}>0\). We may prove that T is a bounded operator and obtain the norm \(\|T\|=\pi\) (cf. [7]). We call T Hilbert’s operator.

For \(\|a\|_{2}>0\), the equivalent form of (5) is given as \(\|Ta\|_{2}<\pi\|a\|_{2}\), e.t.

$$ \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{a_{m}}{m+n} \Biggr) ^{2}< \pi^{2}\sum_{m=1}^{\infty}a_{m}^{2}, $$
(6)

where the constant factor \(\pi^{2}\) is still the best possible. Obviously, inequalities (6) and (1) are equivalent (cf. [3]).

Similarly, if \(L^{2}(\mathbf{R}_{+})\) is a space of real functions, we may define Hilbert’s integral operator \(\widetilde{T}:L^{2}(\mathbf {R}_{+})\rightarrow L^{2}(\mathbf{R}_{+})\) as follows.

For any \(f\in L^{2}(\mathbf{R}_{+})\), there exists a \(h=\widetilde {T}f\in L^{2}(\mathbf{R}_{+})\), satisfying

$$ (\widetilde{T}f) (y)=h(y)=\int_{0}^{\infty} \frac{f(x)}{x+y}\,dx,\quad y\in (0,\infty ). $$
(7)

Hence, for any \(g\in L^{2}(\mathbf{R}_{+})\), we may still can indicate the inner product of T̃f and g as follows:

$$ (\widetilde{T}f,g)=\int_{0}^{\infty} \biggl( \int _{0}^{\infty}\frac {f(x)}{x+y}\,dx \biggr) g(y)\,dy=\int _{0}^{\infty}\int_{0}^{\infty} \frac {f(x)g(y)}{x+y}\,dx\,dy. $$
(8)

Setting the norm of f as \(\|f\|_{2}= ( \int_{0}^{\infty }f^{2}(x)\,dx ) ^{\frac{1}{2}}\), if \(\|f\|_{2},\|g\|_{2}>0\), then (2) may be rewritten as follows:

$$ (\widetilde{T}f,g)< \pi\|f\|_{2}\|g\|_{2}. $$
(9)

It follows that \(\|\widetilde{T}f\|=\pi\) (cf. [8]), and then we have the equivalent form of (2) as \(\|\widetilde{T}f\|_{2}<\pi \|f|\|_{2}\|\), e.t. (cf. [3]):

$$ \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{f(x)}{x+y}\,dx \biggr) ^{2}\,dy< \pi^{2}\int _{0}^{\infty}f^{2}(x)\,dx, $$
(10)

where the constant factor \(\pi^{2}\) is still the best possible. It is obvious that inequality (10) is the integral analog of (6).

1.3 A more accurate discrete Hilbert’s inequality

If we let the subscripts m, n of the double series go from 0 to infinity, then we may rewrite inequality (1) equivalently in the following form:

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+2}< \pi \Biggl( \sum _{m=0}^{\infty}a_{m}^{2}\sum _{n=0}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(11)

where the constant factor π is still the best possible. Obviously, we may raise the following question:

Is there a positive constant α (<2) that leaves the inequality still valid as we replace 2 by α in the kernel \(\frac{1}{m+n+2}?\) The answer is positive. That is, we have the following more accurate Hilbert inequality (for short, Hilbert’s inequality) (cf. [3]):

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1}< \pi \Biggl( \sum _{m=0}^{\infty}a_{m}^{2} \sum_{n=0}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(12)

where the constant factor π is the best possible.

Since for \(a_{m},b_{n}\geq0\), \(\alpha\geq1\),

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+\alpha }\leq \sum _{n=0}^{\infty}\sum_{m=0}^{\infty} \frac{a_{m}b_{n}}{m+n+1}, $$

then by (12) and for \(\alpha\geq1\), we have

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+\alpha }< \pi \Biggl( \sum _{m=0}^{\infty}a_{m}^{2} \sum_{n=0}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(13)

For \(1\leq\alpha<2\), inequality (13) is a refinement of (11). Obviously, we have a refinement of (6), which is equivalent to (13) as follows:

$$ \sum_{n=0}^{\infty} \Biggl( \sum _{m=0}^{\infty}\frac{a_{m}}{m+n+\alpha} \Biggr) ^{2}< \pi^{2}\sum_{m=0}^{\infty}a_{m}^{2} \quad (1\leq\alpha< 2). $$
(14)

For \(0<\alpha<1\), in 1936, Ingham [9] gave the following.

If \(\alpha\geq\frac{1}{2}\), then

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}a_{n}}{m+n+\alpha }\leq \pi\sum _{m=0}^{\infty}a_{m}^{2}; $$
(15)

if \(0<\alpha<\frac{1}{2}\), then

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}a_{n}}{m+n+\alpha }\leq \frac{\pi}{\sin(\alpha\pi)} \sum_{m=0}^{\infty}a_{m}^{2}. $$
(16)

Note that if we set \(x=X+\frac{\alpha}{2}\), \(y=Y+\frac{\alpha}{2}\), \(F(X)=f(X+\frac{\alpha}{2})\) and \(G(Y)=g(Y+\frac{\alpha}{2})\) (\(\alpha \in \mathbf{R}=(-\infty,\infty)\)) in (2), then we obtain

$$ \int_{-\frac{\alpha}{2}}^{\infty}\int_{-\frac{\alpha}{2}}^{\infty } \frac{F(X)G(Y)}{X+Y+\alpha}\, dX\, dY< \pi \biggl( \int_{-\frac{\alpha}{2}}^{\infty }F^{2}(X) \, dX\int_{-\frac{\alpha}{2}}^{\infty}G^{2}(Y)\, dY \biggr) ^{\frac {1}{2}}. $$
(17)

It is said that for \(\alpha\geq\frac{1}{2}\), inequality (17) is an integral analog of (13) (for \(G=F\)) and for \(0<\alpha<\frac {1}{2}\), (17) is not an integral analog of (13), since the two constant factors are different.

In recent years, by using the improved Euler-Maclaurin summation formula and introducing parameters, a few authors gave some more accurate Hilbert-type inequalities as (13) (cf. [1017]).

2 Hardy-Hilbert-type inequalities with a pair of conjugate exponents

2.1 Hardy-Hilbert’s inequalities and the operator expressions

In 1925, by introducing one pair of conjugate exponents \((p,q)\) with \(\frac{1}{p}+\frac{1}{q}=1\), Hardy [18] gave an extension of (1) as follows.

If \(p>1\), \(a_{m},b_{n}\geq0\), such that \(0<\sum_{m=1}^{\infty }a_{m}^{p}<\infty\) and \(0<\sum_{n=1}^{\infty}b_{n}^{q}<\infty\), then

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, $$
(18)

where the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible.

The equivalent form of (18) is as follows:

$$ \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{a_{m}}{m+n} \Biggr) ^{p}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{p} \sum_{m=1}^{\infty }a_{m}^{p}, $$
(19)

where the constant factor \([\frac{\pi}{\sin(\pi/p)}]^{p}\) is still the best possible.

In the same way, inequalities (12) and (14) (for \(\alpha=1\)) may be extended to the following equivalent forms (cf. [3]):

$$\begin{aligned}& \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1}< \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=0}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=0}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(20)
$$\begin{aligned}& \sum_{n=0}^{\infty} \Biggl( \sum _{m=0}^{\infty}\frac{a_{m}}{m+n+1} \Biggr) ^{p}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{p}\sum _{m=0}^{\infty }a_{m}^{p}, \end{aligned}$$
(21)

where the constant factors \(\frac{\pi}{\sin(\pi/p)}\) and \([\frac{\pi }{\sin(\pi/p)}]^{p}\) are the best possible. The equivalent integral analogs of (18) and (19) are given as follows:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi }{\sin(\frac{\pi}{p})} \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(22)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{f(x)}{x+y}\,dx \biggr) ^{p}\,dy< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{p}\int_{0}^{\infty }f^{p}(x) \,dx, \end{aligned}$$
(23)

with the best possible constant factors. We call (18) Hardy-Hilbert’s inequality and call (22) Hardy-Hilbert’s integral inequality.

Inequality (20) may be expressed in the form of the operator as follows.

If \(l^{p}\) is a space of real sequences, \(T_{p}:l^{p}\rightarrow l^{p}\) is a linear operator, such that for any non-negative sequence \(a=\{a_{m}\}_{m=1}\in l^{p}\), there exists a \(T_{p}a=c=\{c_{n}\} _{n=1}^{\infty }\in l^{p}\), satisfying

$$ c_{n}=(T_{p}a) (n)=\sum_{m=0}^{\infty} \frac{a_{m}}{m+n+1},\quad n\in\mathbf {N}_{0}=\mathbf{N}\cup \{0\}. $$
(24)

For any non-negative sequence \(b=\{b_{n}\}_{n=1}\in l^{q}\), we can indicate the formal inner product of \(T_{p}a\) and b as follows:

$$ (T_{p}a,b)=\sum_{n=0}^{\infty} \Biggl( \sum_{m=0}^{\infty}\frac {a_{m}}{m+n+1} \Biggr) b_{n}=\sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac {a_{m}b_{n}}{m+n+1}. $$
(25)

Setting the norm of a as \(\|a\|_{p}= ( \sum_{n=0}^{\infty }|a_{n}|^{p} ) ^{\frac{1}{p}}\), then inequality (20) may be rewritten as follows:

$$ (T_{p}a,b)< \frac{\pi}{\sin(\frac{\pi}{p})}\|a\|_{p}\|b \|_{q}, $$
(26)

where \(\|a\|_{p},\|b\|_{q}>0\). We call \(T_{p}\) Hardy-Hilbert’s operator.

Similarly, if \(L^{p}(\mathbf{R}_{+})\) is a space of real functions, we may define the following Hardy-Hilbert’s integral operator \(\widetilde {T}_{p}: L^{p}(\mathbf{R}_{+})\rightarrow L^{p}(\mathbf{R}_{+})\) as follows.

For any \(f\ (\geq0)\in L^{p}(\mathbf{R}_{+})\), there exists a \(h=\widetilde{T}_{p}f\in L^{p}(\mathbf{R}_{+})\), satisfying

$$ (\widetilde{T}_{p}f) (y)=h(y)=\int_{0}^{\infty} \frac{f(x)}{x+y}\,dx,\quad y\in \mathbf{R}_{+}. $$
(27)

For any \(g\ (\geq0)\in L^{q}(\mathbf{R}_{+})\), we can indicate the formal inner product of \(\widetilde{T}_{p}f\) and g as follows:

$$ (\widetilde{T}_{p}f,g)=\int_{0}^{\infty} \int_{0}^{\infty}\frac {f(x)g(y)}{x+y}\,dx\,dy. $$
(28)

Setting the norm of f as \(\|f\|_{p}= ( \int_{0}^{\infty }|f(x)|^{p}\,dx ) ^{\frac{1}{p}}\), then inequality (22) may be rewritten as follows:

$$ (\widetilde{T}_{p}f,g)< \frac{\pi}{\sin(\frac{\pi}{p})}\|f\|_{p}\|g \|_{q}. $$
(29)

2.2 Some kinds of Hardy-Hilbert-type inequalities

(1) For \((p,q)\) not being a pair of conjugate exponents, we have the following results (cf. [3], Theorem 339).

If \(p>1\), \(q>1\), \(\frac{1}{p}+\frac{1}{q}\geq1\), \(0<\lambda=2-(\frac {1}{p}+\frac{1}{q})\leq1\), then

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}\leq K \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, $$
(30)

where \(K=K(p,q)\) relates to p, q, only for \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda=2-(\frac{1}{p}+\frac{1}{q})=1\), the constant factor K is the best possible.

The integral analogs of (30) are given as follows:

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy\leq K \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}. $$
(31)

We also find an extension of (31) as follows (cf. [4]).

If \(p>1\), \(q>1\), \(\frac{1}{p}+\frac{1}{q}>1\), \(0<\lambda=2-(\frac{1}{p}+\frac {1}{q})<1\), then

$$ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{f(x)g(y)}{|x+y|^{\lambda}}\,dx\,dy\leq k(p,q) \biggl( \int_{-\infty}^{\infty }f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{-\infty}^{\infty }g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}. $$
(32)

For \(f(x)=g(x)=0\), \(x\in(-\infty,0]\), inequality (32) reduces to (31). Levin [19] also studied the expression forms of the constant factors in (30) and (31). But he did not prove their best possible property. In 1951, Bonsall [20] considered the case of (31) as regards the general kernel.

(2) If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(h(t)>0\), \(\phi(s)=\int_{0}^{\infty }h(t)t^{s-1}\, dt\in\mathbf{R}_{+}\), \(f(x),g(y)\geq0\), then we have the following integral inequalities with the non-homogeneous kernel (cf. [3], Theorem 350):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}h(xy)f(x)g(y) \,dx\,dy \\& \quad < \phi\biggl(\frac{1}{p}\biggr) \biggl( \int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(33)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty}h(xy)f(x) \,dx \biggr) ^{p}\,dy< \phi ^{p}\biggl(\frac{1}{p} \biggr)\int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx, \end{aligned}$$
(34)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty}h(xy)f(x) \,dx \biggr) ^{p}\,dy< \phi ^{p}\biggl(\frac{1}{p} \biggr)\int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx, \end{aligned}$$
(35)
$$\begin{aligned}& \int_{0}^{\infty}y^{p-2} \biggl( \int _{0}^{\infty}h(xy)f(x)\,dx \biggr) ^{p}\,dy< \phi^{p}\biggl(\frac{1}{q}\biggr)\int_{0}^{\infty}f^{p}(x) \,dx, \end{aligned}$$
(36)

where the integrals on the right-hand side are positive. The authors did not proved that the above constant factors are the best possible.

(3) If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(h(t)>0\) is decreasing with respect to \(t>0\), \(\phi(s)=\int_{0}^{\infty}h(t)t^{s-1}\, dt\in\mathbf{R}_{+}\), \(f(x),a_{n}\geq0\), then we have the following half-discrete inequalities (cf. [3], Theorem 351):

$$\begin{aligned}& \int_{0}^{\infty} \Biggl( \sum _{n=1}^{\infty}h(nx)a_{n} \Biggr) ^{p}\,dx< \phi ^{p}\biggl(\frac{1}{p}\biggr)\sum _{n=1}^{\infty}n^{p-2}a_{n}^{p}, \end{aligned}$$
(37)
$$\begin{aligned}& \sum_{n=1}^{\infty} \biggl( \int _{0}^{\infty}h(nx)f(x)\,dx \biggr) ^{p}< \phi ^{p}\biggl(\frac{1}{p}\biggr)\int_{0}^{\infty}x^{p-2}f^{p}(x) \,dx, \end{aligned}$$
(38)
$$\begin{aligned}& \int_{0}^{\infty}x^{p-2} \Biggl( \sum _{n=1}^{\infty}h(nx)a_{n} \Biggr) ^{p}\,dx< \phi^{p}\biggl(\frac{1}{q}\biggr)\sum _{n=1}^{\infty}a_{n}^{p}, \end{aligned}$$
(39)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p-2} \biggl( \int_{0}^{\infty}h(nx)f(x)\,dx \biggr) ^{p}< \phi^{p}\biggl(\frac{1}{q}\biggr)\int_{0}^{\infty}f^{p}(x) \,dx, \end{aligned}$$
(40)

where the integrals and series on the right-hand side are positive. The authors also did not prove that the above constant factors are the best possible.

2.3 Hardy-Hilbert-type inequalities with the general homogeneous kernel of degree −1

If \(\alpha\in\mathbf{R,}\) the function \(k(x,y)\) is measurable in \(\mathbf{R}_{+}^{2}\), satisfying for any \(x,y,u>0\), \(k(ux,uy)=u^{\alpha }k(x,y)\), then we call \(k(x,y)\) the homogeneous function of degree α.

In 1934, Hardy et al. published the following theorem (cf. [3], Theorem 318 and Theorem 319).

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(k_{1}(x,y)\) (≥0) is a homogeneous function of degree −1 in \(\mathbf{R}_{+}^{2}\). If \(k_{p}=\int_{0}^{\infty}k_{1}(u,1)u^{-\frac{1}{p}}\, du\) is finite, then we have \(k_{p}=\int_{0}^{\infty}k_{1}(1,u)u^{-\frac{1}{q}}\, du\) and the following equivalent inequalities:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{1}(x,y)f(x)g(y) \,dx\,dy \\& \quad \leq k_{p} \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty }g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(41)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty}k_{1}(x,y)f(x) \,dx \biggr) ^{p}\,dy\leq k_{p}^{p}\int _{0}^{\infty}f^{p}(x)\,dx, \end{aligned}$$
(42)

where the constant \(k_{p}\) is the best possible.

Moreover, if both \(k_{1}(u,1)u^{\frac{-1}{p}}\) and \(k_{1}(1,u)u^{\frac {-1}{q}} \) are decreasing in \(\mathbf{R}_{+}\), then we have the following equivalent forms:

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}k_{1}(m,n)a_{m}b_{n} \leq k_{p} \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty }b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(43)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}k_{1}(m,n)a_{m} \Biggr) ^{p}\leq k_{p}^{p}\sum _{n=1}^{\infty}a_{n}^{p}. \end{aligned}$$
(44)

For \(0< p<1\), if \(k_{p}\) is finite, then we have the reverses of (41) and (42). (Note that we have not seen any proof of (41) and (42), and the reverse examples in the book [3].)

We name \(k_{1}(x,y)\) the kernel of (41) and (42). If all the integrals and series in the right-hand side of inequalities (41)-(44) are positive, then we can get the following particular examples (cf. [3]):

(i) For \(k_{1}(x,y)=\frac{1}{x+y}\), (41)-(44) deduce to (22), (23), (18), and (19).

(ii) For \(k_{1}(x,y)=\frac{1}{\max\{x,y\}}\), (41)-(44) deduce to the following two pairs of equivalent forms:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{\max\{x,y\}}\,dx\,dy< pq \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(45)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{f(x)}{\max\{x,y\}}\,dx \biggr) ^{p}\,dy< (pq)^{p} \int_{0}^{\infty}f^{p}(x)\,dx; \end{aligned}$$
(46)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\max\{m,n\}}< pq \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(47)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{a_{m}}{\max\{m,n\} } \Biggr) ^{p}< (pq)^{p}\sum_{n=1}^{\infty}a_{n}^{p}. \end{aligned}$$
(48)

(iii) For \(k_{1}(x,y)=\frac{\ln(x/y)}{x-y}\), (41)-(44) deduce to the following two pairs of equivalent forms:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ln(\frac {x}{y})f(x)g(y)}{x-y}\,dx\,dy \\& \quad < \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2} \biggl( \int _{0}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty }g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(49)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{\ln(\frac {x}{y})f(x)}{x-y}\,dx \biggr) ^{p}\,dy< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2p}\int_{0}^{\infty}f^{p}(x) \,dx; \end{aligned}$$
(50)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{\ln(\frac {m}{n})a_{m}b_{n}}{m-n}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2} \Biggl( \sum _{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty }b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(51)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{\ln(\frac {m}{n})a_{m}}{m-n} \Biggr) ^{p}< \biggl[ \frac{\pi}{\sin(\frac{\pi}{p})} \biggr] ^{2p}\sum _{n=1}^{\infty}a_{n}^{p}. \end{aligned}$$
(52)

Note that the constant factors in the above inequalities are all the best possible. We call (47) and (51) Hardy-Littlewood-Polya’s inequalities, or H-L-P inequalities. We find that the kernels in the above inequalities are all decreasing. But this is not necessary. For example, we find the following two pairs of equivalent forms with the non-decreasing kernel (cf. [21, 22]):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{\max\{x,y\}}\,dx\,dy \\ & \quad < \bigl(p^{2}+q^{2}\bigr) \biggl( \int _{0}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p} } \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(53)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)}{\max\{x,y\}}\,dx \biggr) ^{p}\,dy< \bigl(p^{2}+q^{2} \bigr)^{p}\int_{0}^{\infty}f^{p}(x) \,dx; \end{aligned}$$
(54)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{\max\{m,n\}}< \bigl(p^{2}+q^{2} \bigr) \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(55)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}}{\max\{m,n\}} \Biggr) ^{p}< \bigl(p^{2}+q^{2}\bigr)^{p}\sum _{n=1}^{\infty}a_{n}^{p}, \end{aligned}$$
(56)

where the constant factors \(p^{2}+q^{2}\) and \((p^{2}+q^{2})^{p}\) are the best possible.

Other inequalities of this type with the best constants are provided as follows (cf. [23, 24]):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{x+y}\,dx\,dy \\& \quad < c_{0}(p) \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}g^{p}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(57)
$$\begin{aligned}& \int_{0}^{\infty} \biggl( \int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)}{x+y}\,dx \biggr) ^{p}\,dy< c_{0}^{p}(p) \int_{0}^{\infty}f^{p}(x)\,dx; \end{aligned}$$
(58)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{m+n}< c_{0}(2) \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(59)
$$\begin{aligned}& \sum_{n=1}^{\infty} \Biggl( \sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}}{m+n} \Biggr) ^{2}< c_{0}^{2}(2)\sum _{n=1}^{\infty}a_{n}^{2}, \end{aligned}$$
(60)

where the constant factor \(c_{0}(p)\) is indicated by

$$ c_{0}(p)=2\sum_{n=1}^{\infty}(-1)^{n-1} \biggl[ \frac{1}{(n-\frac {1}{p})^{2}}-\frac{1}{(n-\frac{1}{q})^{2}} \biggr] . $$

2.4 Two multiple Hardy-Hilbert-type inequalities with the homogeneous kernels of degree \(-n+1\)

Suppose \(n\in\mathbf{N}\backslash\{1\}\), n numbers \(p,q,\ldots,r\) satisfying \(p,q,\ldots,r>1\), \(p^{-1}+q^{-1}+\cdots+r^{-1}=1\), \(k(x,y,\ldots,z)\geq0\) is a homogeneous function of degree \(-n+1\). If

$$ k=\int_{0}^{\infty}\int_{0}^{\infty} \cdots\int_{0}^{\infty }k(1,y,\ldots ,z)y^{-\frac{1}{q}} \cdots z^{-\frac{1}{r}}\,dy\cdots \,dz $$

is a finite number, \(f,g,\ldots, h\) are non-negative measurable functions in \(\mathbf{R}_{+}\), then we have the following multiple Hilbert-type integral inequality (cf. [3], Theorem 322):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \cdots\int_{0}^{\infty }k(x,y,\ldots ,z)f(x)g(y)\cdots h(z)\,dx\,dy\cdots \,dz \\& \quad \leq k \biggl( \int_{0}^{\infty}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}\cdots \biggl( \int_{0}^{\infty}h^{r}(z) \,dz \biggr) ^{\frac{1}{r}}. \end{aligned}$$
(61)

Moreover, if \(a_{m},b_{n},\ldots,c_{s}\geq0\), \(k(1,y,\ldots ,z)x^{0}y^{-\frac{1}{q}}\cdots z^{-\frac{1}{r}}\), \(k(x,1,\ldots,z)\times x^{-\frac {1}{p}}y^{0}\cdots z^{-\frac{1}{r}}\), … , \(k(x,y,\ldots,1)x^{-\frac {1}{p}}y^{-\frac{1}{q}}\cdots z^{0}\) are all decreasing with respect to any single variable in \(\mathbf{R}_{+}\), then we have

$$\begin{aligned}& \sum_{s=1}^{\infty}\cdots\sum _{n=1}^{\infty}\sum_{m=1}^{\infty }k(m,n, \ldots,s)a_{m}b_{n}\cdots c_{s} \\& \quad \leq k \Biggl( \sum_{m=1}^{\infty}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}b_{n}^{q} \Biggr) ^{\frac{1}{q}}\cdots \Biggl( \sum_{s=1}^{\infty}c_{s}^{r} \Biggr) ^{\frac{1}{r}}. \end{aligned}$$
(62)

For \(n=2\), inequalities (61) and (62) reduce, respectively, to (41) and (43).

3 Modern research for Hilbert’s inequalities and Hardy-Hilbert’s inequalities

3.1 Modern research for Hilbert’s integral inequality

(1) In 1979, based on an improvement of Hölder’s inequality, Hu [25] gave a refinement of (2) (for \(f=g\)) as follows:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)f(y)}{x+y}\,dx\,dy \\& \quad < \pi \biggl[ \biggl( \int_{0}^{\infty}f^{2}(x) \,dx \biggr) ^{2}-\frac {1}{4} \biggl( \int _{0}^{\infty}f^{2}(x)\cos\sqrt{x}\,dx \biggr) ^{2} \biggr] ^{\frac{1}{2}}. \end{aligned}$$
(63)

Since then, he published many interesting results similar to (63) (cf. [6]).

(2) In 1998, Pachpatte [26] gave an inequality similar to (2) as follows.

For \(a,b>0\),

$$\begin{aligned}& \int_{0}^{a}\int_{0}^{b} \frac{f(x)g(y)}{x+y}\,dx\,dy \\& \quad < \frac{\sqrt{ab}}{2} \biggl[ \int_{0}^{a}(a-x)f^{\prime 2}(x) \,dx\int_{0}^{b}(b-y)g^{\prime2}(y)\,dy \biggr] ^{\frac{1}{2}}. \end{aligned}$$
(64)

Some improvements and extensions were made by Zhao et al. [2729]. We can find other work of Pachpatte in [30].

(3) In 1998, by introducing parameters \(\lambda\in(0,1]\) and \(a,b\in \mathbf{R}_{+}\) (\(a< b\)), Yang [31] gave an extension of (2) as follows:

$$\begin{aligned}& \int_{a}^{b}\int_{a}^{b} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl[ 1-\biggl( \frac{a}{b}\biggr)^{\frac {\lambda}{4}} \biggr] \biggl( \int_{a}^{b}x^{1-\lambda }f^{2}(x) \,dx\int_{a}^{b}y^{1-\lambda}g^{2}(y) \,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(65)

where \(B(u,v)\) is the beta function. In 1999, Kuang [32] gave another extension of (2) as follows.

For \(\lambda\in(\frac{1}{2},1]\),

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)f(y)}{x^{\lambda }+y^{\lambda}}\,dx\,dy< \frac{\pi}{\lambda\sin(\frac{\pi}{2\lambda})} \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac {1}{2}}. $$
(66)

We can find other work of Kuang in [5] and [33].

(4) In 1999, by using the methods of algebra and analysis, Gao [34] gave an improvement of (2) as follows:

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)f(y)}{x+y}\,dx\,dy< \pi\sqrt {1-R} \biggl( \int _{0}^{\infty}f^{2}(x)\,dx\int _{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, $$
(67)

where \(R=\frac{1}{\pi}(\frac{u}{\|g\|}-\frac{v}{\|f\|})^{2}\), \(u=\sqrt {\frac{2}{\pi}}(g,e)\), \(v=\sqrt{2\pi}(f,e^{-x})\), \(e(y)=\int_{0}^{\infty}\frac {e^{x}}{x+y}\,dx\). We can find other work of Gao and Hsu in [35].

(5) In 2002, by using the operator theory, Zhang [36] gave an improvement of (2) as follows:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy \\& \quad \leq \frac{\pi}{\sqrt{2}} \biggl[ \int_{0}^{\infty }f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy+ \biggl( \int_{0}^{\infty }f(x)g(x)\,dx \biggr) ^{2} \biggr] ^{\frac{1}{2}}. \end{aligned}$$
(68)

3.2 On the way of weight coefficients for giving a strengthened version of Hilbert’s inequality

In 1991, for giving an improvement of (1), Hsu and Wang [37] raised the way of weight coefficient as follows.

At first, by using Cauchy’s inequality in the left-hand side of (1), it follows:

$$\begin{aligned} I =&\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}=\sum _{n=1}^{\infty}\sum_{m=1}^{\infty} \frac{1}{m+n} \biggl[ \biggl(\frac {m}{n}\biggr)^{\frac{1}{4}}a_{m} \biggr] \biggl[ \biggl(\frac{n}{m}\biggr)^{\frac{1}{4}}b_{n} \biggr] \\ \leq& \Biggl\{ \sum_{m=1}^{\infty} \Biggl[ \sum_{n=1}^{\infty}\frac {1}{m+n} \biggl( \frac{m}{n} \biggr) ^{\frac{1}{2}} \Biggr] a_{m}^{2} \sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\frac{1}{m+n} \biggl( \frac{m}{n} \biggr) ^{\frac{1}{2}} \Biggr] b_{n}^{2} \Biggr\} ^{\frac{1}{2}}. \end{aligned}$$
(69)

Then define the weight coefficient

$$ \omega(n):=\sum_{m=1}^{\infty} \frac{1}{m+n} \biggl( \frac{m}{n} \biggr) ^{\frac{1}{2}},\quad n\in \mathbf{N}, $$
(70)

and rewrite (69) as follows:

$$ I\leq \Biggl( \sum_{m=1}^{\infty} \omega(m)a_{m}^{2}\sum_{n=1}^{\infty } \omega(n)b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(71)

Afterwards, setting

$$ \omega(n)=\pi-\frac{\theta(n)}{n^{1/2}},\quad n\in\mathbf{N}, $$
(72)

where \(\theta(n)=(\pi-\omega(n))n^{1/2}\), and estimating the series of \(\theta(n)\), it follows that

$$ \theta(n)= \Biggl[ \pi-\sum_{m=1}^{\infty} \frac{1}{m+n}\biggl(\frac {m}{n}\biggr)^{\frac{1}{2}} \Biggr] n^{1/2}>\theta=1.1213^{+}. $$
(73)

Then by (72), it yields

$$ \omega(n)< \pi-\frac{\theta}{n^{1/2}},\quad n\in\mathbf{N},\theta=1.1213^{+}. $$
(74)

In view of (71), a strengthened version of (1) is given as follows:

$$ I< \Biggl[ \sum_{m=1}^{\infty} \biggl( \pi- \frac{\theta}{m^{1/2}} \biggr) a_{m}^{2}\sum _{n=1}^{\infty} \biggl( \pi-\frac{\theta}{n^{1/2}} \biggr) b_{n}^{2} \Biggr] ^{\frac{1}{2}}. $$
(75)

Hsu also raised the open problem of obtaining the best value of (75). In 1992, Gao [38] gave the best value \(\theta_{0}=1.281669^{+}\).

Still in 1991, by using the above method, a strengthened version of (8) was given by [39] as follows:

$$\begin{aligned} I < & \Biggl\{ \sum_{m=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{p-1}{m^{1/p}+m^{-1/q}} \biggr] a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &{}\times \Biggl\{ \sum_{n=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{q-1}{n^{1/q}+n^{-1/p}} \biggr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(76)

In 1997, by using the method of weight coefficients and the improved Euler-Maclaurin summation formula, Yang and Gao [40] gave

$$ I < \Biggl\{ \sum_{m=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{1-\gamma}{m^{1/p}} \biggr] a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n=1}^{\infty} \biggl[ \frac{\pi}{\sin(\frac{\pi }{p})}-\frac{1-\gamma}{n^{1/q}} \biggr] b_{n}^{q} \Biggr\} ^{\frac{1}{q}}, $$
(77)

where \(1-\gamma=0.42278433^{+}\) (γ is the Euler constant). We can find similar work in Gao and Yang [41].

In 1998, Yang and Debnath [42] gave another, strengthened, version of (8), which is an improvement of (76). We can find some strengthened versions of (12) and (20) in [4345].

3.3 Hilbert’s inequalities and Hardy-Hilbert’s inequalities with independent parameters

In 1998, by using the optimized weight coefficients and introducing an independent parameter \(\lambda\in(0,1]\), Yang [31] gave an extension of (2) as follows.

If \(0<\int_{0}^{\infty}x^{1-\lambda}f^{2}(x)\,dx<\infty\) and \(0<\int_{0}^{\infty}y^{1-\lambda}g^{2}(y)\,dy<\infty\), then

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl( \int _{0}^{\infty }x^{1-\lambda}f^{2}(x)\,dx\int _{0}^{\infty}y^{1-\lambda }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(78)

where the constant factor \(B(\frac{\lambda}{2},\frac{\lambda}{2})\) is the best possible. The proof about the best possible property of the constant factor was given by [46], and the expressions of the beta function \(B(u,v)\) are given in Wang and Guo [47]:

$$\begin{aligned} B(u,v) =&\int_{0}^{\infty}\frac{t^{u-1}\, dt}{(1+t)^{u+v}}= \int_{0}^{1}(1-t)^{u-1}t^{v-1}\, dt \\ =&\int_{1}^{\infty}\frac{(t-1)^{u-1}\, dt}{t^{u+v}}\quad (u,v>0). \end{aligned}$$
(79)

Some extensions of (18), (20), and (22) were given by [4850] as follows.

If \(\lambda>2-\min\{p,q\}\), then

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B \biggl( \frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q} \biggr) \biggl( \int _{0}^{\infty}x^{1-\lambda}f^{p}(x)\,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}y^{1-\lambda}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}; \end{aligned}$$
(80)

if \(2-\min\{p,q\}<\lambda\leq2\), then

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}} \\& \quad < B \biggl( \frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q} \biggr) \Biggl( \sum _{m=1}^{\infty}m^{1-\lambda}a_{m}^{p} \Biggr) ^{\frac {1}{p}} \Biggl( \sum_{n=1}^{\infty}n^{1-\lambda}b_{n}^{q} \Biggr) ^{\frac{1}{q}}, \end{aligned}$$
(81)
$$\begin{aligned}& \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac {a_{m}b_{n}}{(m+n+1)^{\lambda}} \\& \quad < B \biggl( \frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q} \biggr) \Biggl[ \sum _{m=0}^{\infty} \biggl( m+\frac{1}{2} \biggr) ^{1-\lambda }a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=0}^{\infty} \biggl( n+ \frac{1}{2} \biggr) ^{1-\lambda}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(82)

where the constant factor \(B(\frac{p+\lambda-2}{p},\frac{q+\lambda-2}{q})\) is the best possible.

Yang [51] also proved that (81) is valid for \(p=2\) and \(\lambda \in(0,4]\). Yang [52, 53] gave another extensions of (18) and (20) as follows.

If \(0<\lambda\leq\min\{p,q\}\), then

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m^{\lambda }+n^{\lambda}} < \frac{\pi}{\lambda\sin(\frac{\pi}{p})} \Biggl[ \sum_{m=1}^{\infty}m^{(p-1)(1-\lambda)}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{(q-1)(1-\lambda )}b_{n}^{q} \Biggr] ^{\frac{1}{q}}; $$
(83)

if \(0<\lambda\leq1\), then

$$\begin{aligned}& \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{(m+\frac{1}{2} )^{\lambda}+(n+\frac{1}{2})^{\lambda}} \\& \quad < \frac{\pi}{\lambda\sin(\frac {\pi }{p})} \Biggl[ \sum_{m=0}^{\infty} \biggl( m+\frac{1}{2} \biggr) ^{p-1-\lambda }a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=0}^{\infty} \biggl( n+\frac{1}{2} \biggr) ^{q-1-\lambda}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. \end{aligned}$$
(84)

In 2004, Yang [54] discovered the following dual form of (18):

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}m^{p-2}a_{m}^{p} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}n^{q-2}b_{n}^{q} \Biggr) ^{\frac {1}{q}}. $$
(85)

Inequality (85) is similar to (18) but different and for \(p=2\), both of them reduce to (1).

For \(\lambda=1\), (84) reduces to the dual form of (20) as follows:

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1} < \frac {\pi}{\sin(\frac{\pi}{p})} \Biggl[ \sum_{m=0}^{\infty} \biggl( m+\frac{1}{2} \biggr) ^{p-2}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=0}^{\infty} \biggl( n+\frac {1}{2} \biggr) ^{q-2}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. $$
(86)

We can find some best extensions of the H-L-P inequalities such as (37)-(48) in [5561], by introducing some independent parameters.

In 2001, by introducing some parameters, Hong [62] gave a multiple integral inequality, which is an extension of (18). He et al. [63] gave a similar result for particular conjugate exponents. For making an improvement of their work, Yang [64] gave the following inequality, which is a best extension of (18).

If \(n\in\mathbf{N}\backslash\{1\}\), \(p_{i}>1\), \(\sum_{i=1}^{n}\frac {1}{p_{i}}=1\), \(\lambda>n-\min_{1\leq i\leq n}\{p_{i}\}\), \(f_{i}(t)\geq0\), and \(0<\int_{0}^{\infty}t^{n-1-\lambda}f_{i}^{p_{i}}(t)\, dt<\infty\) (\(i=1,2,\ldots,n\)), then we have

$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty} \frac{\prod_{i=1}^{n}f_{i}(x_{i})}{(\sum_{i=1}^{n}x_{i})^{\lambda }}\,dx_{1}\cdots \,dx_{n} \\& \quad < \frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n} \biggl( \frac{p_{i}+\lambda -n}{p_{i}} \biggr) \biggl( \int_{0}^{\infty}t^{n-1-\lambda }f_{i}^{p_{i}}(t) \,dt \biggr) ^{\frac{1}{p_{i}}}, \end{aligned}$$
(87)

where the constant factor \(\frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n}(\frac{p_{i}+\lambda-n}{p_{i}})\) is the best possible. In particular, for \(\lambda =n-1\), it follows that

$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty} \frac{\prod_{i=1}^{n}f_{i}(x_{i})}{(\sum_{i=1}^{n}x_{i})^{n-1}}\,dx_{1}\cdots \,dx_{n} \\& \quad < \frac{1}{(n-2)!}\prod_{i=1}^{n} \biggl( 1-\frac{1}{p_{i}} \biggr) \biggl( \int_{0}^{\infty}f_{i}^{p_{i}}(t) \,dt \biggr) ^{\frac{1}{p_{i}}}. \end{aligned}$$
(88)

In 2003, Yang and Rassias [65] introduced the method of weight coefficients and considered its applications to Hilbert-type inequalities. They summarized how to use the method of weight coefficients to obtain some new improvements and generalizations of the Hilbert-type inequalities. Since then, a number of authors discussed this problem (cf. [6686]). But how to give a best extension of inequalities (85) and (18) was solved in 2004 by introducing two pairs of conjugate exponents.

3.4 Hilbert-type inequalities with two conjugate exponents and multi-parameters

In 2004, by introducing an independent parameter \(\lambda>0\) and two pairs of conjugate exponents \((p,q)\) and \((r,s)\) with \(\frac {1}{p}+\frac{1}{q}=\frac{1}{r}+\frac{1}{s}=1\), Yang [87] gave an extension of (2) as follows.

If \(p,r>1\), and the integrals of the right-hand side are positive, then

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x^{\lambda }+y^{\lambda}}\,dx\,dy \\& \quad < \frac{\pi}{\lambda\sin(\frac{\pi}{r})} \biggl[ \int_{0}^{\infty }x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty}y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac {1}{q}}, \end{aligned}$$
(89)

where the constant factor \(\frac{\pi}{\lambda\sin(\frac{\pi}{r})}\) is the best possible.

For \(\lambda=1\), \(r=q\), \(s=p\), inequality (89) reduces to (22); for \(\lambda=1\), \(r=p\), \(s=q\), inequality (89) reduces to the dual form of (22) as follows:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy \\& \quad < \frac{\pi}{\sin(\frac{\pi}{p})} \biggl( \int_{0}^{\infty }x^{p-2}f^{p}(x) \,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{\infty }y^{q-2}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(90)

In 2005, by introducing an independent parameter \(\lambda>0\), and two pairs of generalized conjugate exponents \((p_{1},p_{2},\ldots,p_{n})\) and \((r_{1},r_{2},\ldots,r_{n})\) with \(\sum_{i=1}^{n}\frac{1}{p_{i}}=\sum_{i=1}^{n}\frac{1}{r_{i}}=1\), Yang et al. [88] gave a multiple integral inequality as follows.

For \(p_{i},r_{i}>1\) (\(i=1,2,\ldots,n\)),

$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty} \frac{\prod_{i=1}^{n}f_{i}(x_{i})}{(\sum_{i=1}^{n}x_{i})^{\lambda }}\,dx_{1}\cdots \,dx_{n} \\& \quad < \frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n} \biggl(\frac{\lambda }{r_{i}}\biggr) \biggl[ \int_{0}^{\infty}t^{p_{i}(1-\frac{\lambda }{r_{i}})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(91)

where the constant factor \(\frac{1}{\Gamma(\lambda)}\prod_{i=1}^{n}(\frac{\lambda}{r_{i}})\) is the best possible. For \(r_{i}=\frac{p_{i}\lambda }{p_{i}-\lambda-n}\) (\(i=1,2,\ldots,n\)), inequality (91) reduces to (87); for \(n=2\), \(p_{1}=p\), \(p_{2}=q\), \(r_{1}=r\), and \(r_{2}=s\), inequality (91) reduces to the following:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B \biggl( \frac{\lambda}{r},\frac{\lambda}{s} \biggr) \biggl[ \int _{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty}y^{q(1-\frac{\lambda}{s} )-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(92)

It is obvious that inequality (92) is another best extension of (22).

In 2006, by using two pairs of conjugate exponents \((p,q)\) and \((r,s)\) with \(p,r>1\), Hong [89] gave a multi-variable integral inequality as follows.

If \(\mathbf{R}_{+}^{n}=\{x=(x_{1},x_{2},\ldots ,x_{n});x_{i}>0,i=1,2,\ldots ,n\}\), \(\alpha,\beta, \lambda>0\), \(\|x\|_{\alpha }=(\sum_{i=1}^{n}x_{i}^{\alpha})^{\frac{1}{\alpha}}\), \(f,g\geq0\), \(0<\int_{\mathbf{R}_{+}^{n}}\|x\|_{\alpha}^{p(n-\frac{\beta\lambda}{r})-n}f^{p}(x)\,dx<\infty\) and \(0<\int_{\mathbf{R}_{+}^{n}}\|y\|_{\alpha }^{q(n-\frac{\beta\lambda}{s})-n}g^{q}(y)\,dy<\infty\), then

$$\begin{aligned}& \int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{n}}\frac{f(x)g(y)\,dx\,dy}{(\|x\|_{\alpha}^{\beta}+\|y\|_{\alpha}^{\beta})^{\lambda}} \\& \quad < \frac {\Gamma ^{n}(\frac{1}{\alpha})}{\beta\alpha^{n-1}\Gamma(\frac{n}{\alpha})}B \biggl( \frac{\lambda}{r}, \frac{\lambda}{s} \biggr) \biggl[ \int_{\mathbf{R}_{+}^{n}}\|x \|_{\alpha}^{p(n-\frac{\beta \lambda}{r})-n}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\& \qquad {}\times\biggl[ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\alpha}^{q(n-\frac{\beta\lambda }{s})-n}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(93)

where the constant factor \(\frac{\Gamma^{n}(\frac{1}{\alpha})}{\beta \alpha^{n-1}\Gamma(\frac{n}{\alpha})}B(\frac{\lambda}{r},\frac {\lambda}{s})\) is the best possible. In particular, for \(n=1\), (93) reduces to Hong’s work in [90]; for \(n=\beta=1\), (93) reduces to (92). In 2007, Zhong and Yang [91] generalized (93) to a general homogeneous kernel and proposed the reversion. Some other results on the multi-dimensional Hilbert-type inequalities are provided by [9295].

We can find another inequality with two parameters as follows (cf. [96]):

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(m^{\alpha }+n^{\alpha})^{\lambda}}< \frac{1}{\alpha}B \biggl( \frac{\lambda}{r},\frac{\lambda}{s} \biggr) \Biggl[ \sum_{m=1}^{\infty}m^{p(1-\frac{\alpha\lambda}{r})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\frac{\alpha \lambda }{s})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, $$
(94)

where \(\alpha,\lambda>0\), \(\alpha\lambda\leq\min\{r,s\}\). In particular, for \(\alpha=1\), we have

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}} < B \biggl( \frac{\lambda}{r},\frac{\lambda}{s} \biggr) \Biggl[ \sum _{m=1}^{\infty}m^{p(1-\frac{\lambda}{r})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\frac{\lambda }{s})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}. $$
(95)

For \(\lambda=1\), \(r=q\), (95) reduces to (18), and for \(\lambda =1\), \(r=p\), (95) reduces to (85). Some other results are provided by [9799].

Also we can see the reverse form as follows (cf. [100]):

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{(m+n+1)^{2}} > 2 \Biggl\{ \sum_{m=0}^{\infty} \biggl[ 1-\frac{1}{4(m+1)^{2}} \biggr] \frac{a_{m}^{p}}{2m+1} \Biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n=0}^{\infty}\frac {b_{n}^{q}}{2n+1} \Biggr\} ^{\frac{1}{q}}, $$
(96)

where \(0< p<1\), \(\frac{1}{p}+\frac{1}{q}=1\). The other results on the reverse of the Hilbert-type inequalities are found in [101107].

In 2006, Xin [108] gave a best extension of H-L-P integral inequality (41) as follows:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ln(\frac {x}{y})}{x^{\lambda }-y^{\lambda}}f(x)g(y)\,dx\,dy \\& \quad < \biggl[ \frac{\pi}{\sin(\frac{\pi}{r})} \biggr] ^{2} \biggl[ \int _{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x)\,dx \biggr] ^{\frac {1}{p}} \biggl[ \int_{0}^{\infty}y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(97)

Zhong and Yang [109] gave an extension of another H-L-P integral inequality (37) as follows:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{\max\{x^{\lambda },y^{\lambda}\}}\,dx\,dy \\& \quad < \frac{rs}{\lambda} \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{r} )-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}; \end{aligned}$$
(98)

Zhong and Yang [110] also gave the reverse form of (98).

Considering a particular kernel, Yang [111] gave

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(\sqrt {m}+\sqrt{n})\sqrt{\max\{m,n\}}} \\& \quad < 4\ln2 \Biggl( \sum_{m=1}^{\infty}m^{\frac{p}{2}-1}a_{m}^{p} \Biggr) ^{ \frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}n^{\frac{q}{2}-1}b_{n}^{q} \Biggr) ^{\frac{1}{q}}. \end{aligned}$$
(99)

He also gave (cf. [112])

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(m+an)^{2}+n^{2}} \\& \quad < \biggl( \frac{\pi}{2}-\arctan a \biggr) \Biggl( \sum _{m=1}^{\infty }\frac{a_{m}^{p}}{m} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty}\frac {b_{n}^{q}}{n} \Biggr) ^{\frac{1}{q}}\quad (a\geq0). \end{aligned}$$
(100)

By using residue theory, Yang [113] obtained

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+ay)(x+by)(x+cy)}\,dx\,dy \\& \quad < k \biggl( \int_{0}^{\infty}x^{-\frac{p}{2}-1}f^{p}(x) \,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{0}^{\infty}y^{-\frac{q}{2}-1}g^{q}(y) \,dy \biggr) ^{\frac{1}{q}}, \end{aligned}$$
(101)

where \(k=\frac{1}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt {c})}\) (\(a,b,c>0\)).

The constant factors in the above new inequalities are all the best possible. We can find some other new work in [114120].

In 2005, Yang [121] gave a half-discrete inequality with the kernel \(\frac{1}{(1+nx)^{\lambda}}\) by introducing a variable and proved that the constant factor is the best possible. In 2011, Yang [122] deduced a half-discrete Hardy-Hilbert inequality with the best possible constant factor \(B(\lambda_{1},\lambda_{2})\):

$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{a_{n}f(x)}{(x+n)^{\lambda}}\,dx \\& \quad < B(\lambda_{1},\lambda_{2}) \biggl[ \int _{0}^{\infty}x^{p(1-\lambda _{1})-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(102)

where \(\lambda_{1}>0\), \(0<\lambda_{2}\leq1\), \(\lambda_{1}+\lambda _{2}=\lambda\).

Zhong et al. [123, 124] investigated several half-discrete Hilbert-type inequalities. A half-discrete Hilbert-type inequality with a general homogeneous kernel \(k_{\lambda}(x,n)\) of degree \(-\lambda\in\mathbf{R}\) and a best constant factor \(k ( \lambda _{1} ) \) was obtained, which is an extension of (102) (cf. [125]). Also a half-discrete Hilbert-type inequality with a general non-homogeneous kernel \(k_{\lambda}(1,xn)\) and a best constant factor was given by Yang [126].

3.5 Modern research for Hilbert-type operators

Suppose that H is a separable Hilbert space and \(T:H\rightarrow H\) is a bounded self-adjoint semi-positive definite operator. In 2002, Zhang [36] gave the following inequality:

$$ (a,Tb)^{2}\leq\frac{\|T\|^{2}}{2}\bigl(\|a\|^{2}\|b \|^{2}+(a,b)^{2}\bigr)\quad (a,b\in H), $$
(103)

where \((a,b)\) is the inner product of a and b, and \(\|a\|=\sqrt{(a,a)}\) is the norm of a. Since the Hilbert integral operator defined by (7) satisfies the condition of (103) with \(\|\widetilde{T}\|=\pi\), inequality (2) may be improved as (68). Since the operator \(T_{p}\) defined by (24) (for \(p=q=2\)) satisfies the condition of (103) (cf. [7]), we may improve (12) to the following form:

$$ \sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{a_{m}b_{n}}{m+n+1}< \frac {\pi}{\sqrt{2}} \Biggl[ \sum_{m=0}^{\infty}a_{m}^{2} \sum_{n=0}^{\infty }b_{n}^{2}+ \Biggl(\sum_{n=0}^{\infty}a_{n}b_{n} \Biggr)^{2} \Biggr] ^{\frac{1}{2}}. $$
(104)

The key of applying (103) is to obtain the norm of the operator and to show the property of semi-definite. Now, we consider the concept and the properties of Hilbert-type integral operator as follows.

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(L^{r}(\mathbf{R}_{+})\) (\(r=p,q\)) are real normal linear spaces and \(k(x,y)\) is a non-negative symmetric measurable function in \(\mathbf{R}_{+}^{2}\) satisfying

$$ \int_{0}^{\infty}k(x,t) \biggl(\frac{x}{t} \biggr)^{\frac{1}{r}}\,dt=k_{0}(p)\in \mathbf{R}\quad (x>0). $$

We define an integral operator as

$$ T:L^{r}(\mathbf{R}_{+})\rightarrow L^{r}( \mathbf{R}_{+})\quad (r=p,q), $$

for any \(f\ (\geq0)\in L^{p}(\mathbf{R}_{+})\), there exists a \(h=Tf\in L^{p}(\mathbf{R}_{+})\), such that

$$ (Tf) (y)=h(y)=\int_{0}^{\infty}k(x,y)f(x)\,dx\quad (y>0); $$
(105)

or for any \(g\ (\geq0)\in L^{q}(\mathbf{R}_{+})\), there exists a \(\tilde{h}=Tg\in L^{q}(\mathbf{R}_{+})\), such that

$$ (Tg) (x)=\tilde{h}(x)=\int_{0}^{\infty}k(x,y)g(y) \,dy\quad (x>0). $$
(106)

In 2006, Yang [127] proved that the operator T defined by (105) or (106) are bounded with \(\|T\|\leq k_{0}(p)\). The following are some results in this paper.

If \(\varepsilon>0\), is small enough and the integral \(\int_{0}^{\infty }k(x,t)(\frac{x}{t})^{\frac{1+\varepsilon}{r}}\,dt\) (\(r=p,q\); \(x>0\)) is convergent to a constant \(k_{\varepsilon}(p)\) independent of x satisfying \(k_{\varepsilon}(p)=k_{0}(p)+o(1)\) (\(\varepsilon\rightarrow 0^{+}\)), then \(\|T\|=k_{0}(p)\). If \(\|T\|>0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p},\|g\|_{q}>0\), then we have the following equivalent inequalities:

$$\begin{aligned}& (Tf,g) < \|T\|\cdot\|f\|_{p}\|g\|_{q}, \end{aligned}$$
(107)
$$\begin{aligned}& \|Tf\|_{p} < \|T\|\cdot\|f\|_{p}. \end{aligned}$$
(108)

Some particular cases are considered in this paper.

Yang [128] also considered some properties of Hilbert-type integral operator (for \(p=q=2\)). For the homogeneous kernel of degree −1, Yang [129] considered some sufficient conditions to obtain \(\|T\|=k_{0}(p)\). We can find some properties of the discrete Hilbert-type operator in the disperse space in Yang [130133]. A multiple integral operator is scored by Bényi and Oh [134]. In 2009, Yang [135] summarized the above part results. Some other works about Hilbert-type operators and inequalities with the general homogeneous kernel and multi-parameters were provided by [136145].

During 2009-2014, Yang published six books about the theory of Hilbert-type operators with their norms and inequalities. On January of 2009, Yang’s first book about the integral and discrete Hilbert-type operators with the general homogeneous kernels of non-negative number degree and two pairs of conjugate exponents as well as the related inequalities was published by Chinese Science Press (cf. [146]). On October of 2009, Yang’s second book about Hilbert-type integral operators with the general homogeneous kernels of real number degree and two pairs of conjugate exponents as well as their inequalities was published by Bentham Science Publishers Ltd. (cf. [147]). On February of 2011, Yang’s third book about discrete Hilbert-type operators as well as the related inequalities with the same kernels and parameters in integrals was published by Bentham Science Publishers Ltd. (cf. [148]). In 2012-2013, Yang published two books that considered multiple half-discrete Hilbert-type operators and their inequalities (cf. [149, 150]). In 2014, Yang and Debnath published a book considering general half-discrete operators and their inequalities. These six books provide an extensive account of these types of operators and inequalities successfully.

4 Yang-Hilbert-type inequalities with two pairs of conjugate exponents and independent parameters

4.1 Yang-Hilbert-type integral inequalities

In 2009, Yang [147] (Theorem 5.1.6) gave an extension of (91) as follows.

If \(n\in\mathbf{N}\backslash\{1\}\), \(p_{i}>1\), \(r_{i}\neq0\) (\(i=1,2,\ldots,n\)), \(\sum_{i=1}^{n}\frac{1}{p_{i}}=\sum_{i=1}^{n}\frac{1}{r_{i}}=1\), \(\lambda \in \mathbf{R}\), \(k_{\lambda}(x_{1},\ldots,x_{n})\) (≥0) is a homogeneous function of degree −λ in \(\mathbf{R}_{+}^{n}\),

$$ k_{\lambda}(r_{1},\ldots,r_{n-1}) = \int_{0}^{\infty}\cdots\int _{0}^{\infty}k_{\lambda}(u_{1},\ldots ,u_{n-1},1)\prod_{j=1}^{n-1}u_{j}^{\frac{\lambda}{r_{j}}-1} \, du_{1}\cdots \, du_{n-1}\in\mathbf{R}_{+}, $$

\(f_{i}(t)\geq0\) and \(0<\int_{0}^{\infty}t^{p_{i}(1-\frac{\lambda }{r_{i}})-1}f_{i}^{p_{i}}(t)\,dt<\infty\) (\(i=1,2,\ldots,n\)), then we have the following inequality:

$$\begin{aligned}& \int_{0}^{\infty}\cdots\int_{0}^{\infty}k_{\lambda}(x_{1}, \ldots ,x_{n})\prod_{i=1}^{n}f_{i}(x_{i}) \,dx_{1}\cdots \,dx_{n} \\& \quad < k_{\lambda}(r_{1},\ldots,r_{n-1}) \biggl[ \int _{0}^{\infty }t^{p_{i}(1-\frac{\lambda}{r_{i}})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(109)

where the constant factor \(k_{\lambda}(r_{1},\ldots,r_{n-1})\) is the best possible.

In this reference, the equivalent form of (109), the reverses, the operator expressions, and some particular examples are provided.

In Theorem 6.14 of this book, Yang also gave the following multi-dimensional integral inequalities, an extension of (93).

If \(\lambda\in\mathbf{R}\), \(p>1\), \(r,s\neq0\), \(\frac{1}{p}+\frac{1}{q}=\frac {1}{r}+\frac{1}{s}=1\), \(k_{\lambda}(x,y)\) (≥0) is a homogeneous function of degree −λ in \(\mathbf{R}_{+}^{2}\),

$$ k_{\lambda}(r)=\int_{0}^{\infty}k_{\lambda}(u,1)u^{\frac{\lambda}{r} -1} \, du\in\mathbf{R}_{+}, $$

\(x,y\in\mathbf{R}_{+}^{n}\), \(\alpha>0\), \(f,g\geq0\), \(0<\int_{\mathbf{R}_{+}^{n}}\|x\|_{\alpha}^{p(n-\frac{\lambda}{r})-n}f^{p}(x)\,dx<\infty \), and \(0<\int_{\mathbf{R}_{+}^{n}}\|x\|_{\alpha}^{q(n-\frac{\lambda}{s})-n}g^{q}(x)\,dx<\infty\), then we have the following inequality:

$$\begin{aligned}& \int_{\mathbf{R}_{+}^{n}}\int_{\mathbf{R}_{+}^{n}}k_{\lambda } \bigl(\Vert x\Vert _{\alpha },\|y\|_{\alpha}\bigr)f(x)g(y)\,dx\,dy \\& \quad < \frac{\Gamma^{n}(\frac{1}{\alpha })}{\alpha ^{n-1}\Gamma(\frac{n}{\alpha})}k_{\lambda}(r) \biggl[ \int_{\mathbf{R}_{+}^{n}} \|x\|_{\alpha}^{p(n-\frac {\lambda}{r})-n}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \\& \qquad {}\times \biggl[ \int_{\mathbf{R}_{+}^{n}}\|y\|_{\alpha}^{q(n-\frac{\lambda}{s})-n}g^{q}(y) \,dy \biggr] ^{ \frac{1}{q}}, \end{aligned}$$
(110)

where the constant factor \(\frac{\Gamma^{n}(\frac{1}{\alpha})}{\alpha ^{n-1}\Gamma(\frac{n}{\alpha})}k_{\lambda}(r)\) is the best possible.

Also, the equivalent form of (110), the reverses, the Hardy-type inequalities, the operator expressions, and many particular examples are provided. Some other results of multi-dimensional Hilbert-type integral inequalities are discussed by [151, 152].

For \(n=2\) in (109), or \(\alpha=n=1\) in (110), we reduce the following Yang-Hilbert-type integral inequality:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda}(x,y)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r) \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(111)

where the constant factor \(k_{\lambda}(r)\) is the best possible. The equivalent form of (111) is obtained as follows (cf. [147], Theorem 2.2.1):

$$ \int_{0}^{\infty}y^{\frac{p\lambda}{s}-1} \biggl( \int _{0}^{\infty }k_{\lambda}(x,y)f(x)\,dx \biggr) ^{p}\,dy< k_{\lambda}^{p}(r)\int_{0}^{\infty }x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx, $$
(112)

where the constant factor \(k_{\lambda}^{p}(r)\) is the best possible.

For \(\lambda=1\), \(r=q\), \(s=p\), (111) and (112) reduce, respectively, to (33) and (34). Hence, Yang-Hilbert-type integral inequalities are extensions of Hardy-Hilbert-type integral inequalities.

If we replace y and \(g(\frac{1}{y})\) to \(\frac{1}{y}\) and \(y^{2-\lambda }g(y)\) in (111) and (112), then we obtain the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factors (cf. [153]):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda}(xy,1)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r) \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{r})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(113)
$$\begin{aligned}& \int_{0}^{\infty}y^{\frac{p\lambda}{r}-1} \biggl( \int _{0}^{\infty }k_{\lambda}(xy,1)f(x)\,dx \biggr) ^{p}\,dz< k_{\lambda}^{p}(r)\int_{0}^{\infty }x^{p(1-\frac{\lambda}{r})-1}f^{p}(x) \,dx. \end{aligned}$$
(114)

Replacing x and \(f(\frac{1}{x})\) to \(\frac{1}{x}\) and \(x^{2-\lambda}f(x)\) in (111) and (112), we also obtain the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factors:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda}(1,xy)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r) \biggl[ \int_{0}^{\infty}x^{p(1-\frac{\lambda}{s})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{s})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(115)
$$\begin{aligned}& \int_{0}^{\infty}y^{\frac{p\lambda}{s}-1} \biggl( \int _{0}^{\infty }k_{\lambda}(1,xy)f(x)\,dx \biggr) ^{p}\,dy< k_{\lambda}^{p}(r)\int_{0}^{\infty }x^{p(1-\frac{\lambda}{s})-1}f^{p}(x) \,dx. \end{aligned}$$
(116)

It is evident that (111)-(116) are equivalent. In particular, if \(k_{\lambda}(x,y)\) is symmetric, then we have

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty}k_{\lambda }(xy,1)f(x)g(y) \,dx\,dy \\& \quad < k_{\lambda}(r)\min_{a\in\{r,s\}} \biggl\{ \biggl[ \int _{0}^{\infty}x^{p(1-\frac {\lambda}{a})-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{0}^{\infty }y^{q(1-\frac{\lambda}{a})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(117)

The above inequalities are some refinements of (33)-(36).

4.2 Discrete Yang-Hilbert-type inequalities

In 2011, Yang [148] (Theorem 4.2.3) gave an extension of (35) and (36) as follows.

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\lambda_{1},\lambda_{2}\in\mathbf {R}\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{\lambda}(x,y)\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{2}\),

$$ k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda}(u,1)u^{\lambda _{1}-1} \, du\in \mathbf{R}_{+}, $$

\(k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{2}}}(k_{\lambda}(x,y)\frac {1}{y^{1-\lambda_{1}}})\) is decreasing with respect to \(x(y)>0\), \(a_{m},b_{n}\geq0\), \(0< \sum_{m=1}^{\infty}m^{p(1-\lambda _{1})-1}a_{m}^{p}<\infty\), \(0<\sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}b_{n}^{q}<\infty\), then we have the following equivalent discrete Yang-Hilbert-type inequalities:

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}k_{\lambda}(m,n)a_{m}b_{n} \\& \quad < k(\lambda_{1}) \Biggl[ \sum_{m=1}^{\infty}m^{p(1-\lambda _{1})-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(118)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{2}-1} \Biggl( \sum_{m=1}^{\infty }k_{\lambda }(m,n)a_{m} \Biggr) ^{p}< \bigl(k(\lambda_{1})\bigr)^{p}\sum _{m=1}^{\infty }m^{p(1-\lambda_{1})-1}a_{m}^{p}, \end{aligned}$$
(119)

where the constant factors \(k(\lambda_{1})\) and \((k(\lambda_{1}))^{p}\) are the best possible.

In this reference, some extensions of (118) and (119), the reverses, the operator expressions, and some particular examples are provided.

The following multiple inequalities are considered (cf. [148], Corollary 6.1.7).

If \(n\in\mathbf{N}\backslash\{1\}\), \(p_{i}>1\), \(\lambda_{i}\in\mathbf{R}\) (\(i=1,2,\ldots,n\)), \(\sum_{i=1}^{n}\frac{1}{p_{i}}=1\), \(\sum_{i=1}^{n}\lambda _{i}=\lambda\), \(\frac{1}{q_{n}}=1-\frac{1}{p_{n}}\), \(k_{\lambda }(x_{1},\ldots ,x_{n})\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{n}\), \(k_{\lambda}(x_{1},\ldots,x_{n})\frac{1}{x_{i}^{1-\lambda_{i}}}\) is decreasing with respect to \(x_{i}>0\) (\(i=1,\ldots ,n\)),

$$ k(\lambda_{1},\ldots,\lambda_{n-1}) = \int_{0}^{\infty}\cdots\int _{0}^{\infty}k_{\lambda}(u_{1},\ldots ,u_{n-1},1)\prod_{j=1}^{n-1}u_{j}^{\lambda_{j}-1} \, du_{1}\cdots \, du_{n-1}\in \mathbf{R}_{+}, $$

\(a_{m_{i}}^{(i)}\geq0\) and \(0<\sum_{m_{i}=1}^{\infty }m_{i}^{p_{i}(1-\lambda_{i})-1}(a_{m_{i}}^{(i)})^{p_{i}}<\infty\) (\(i=1,2,\ldots,n\)), then we still have the following multiple equivalent inequalities:

$$\begin{aligned}& \sum_{m_{n}=1}^{\infty}\cdots\sum _{m_{1}=1}^{\infty}k_{\lambda }(m_{1}, \ldots,m_{n})\prod_{i=1}^{n}a_{m_{i}}^{(i)} \\& \quad < k(\lambda_{1},\ldots,\lambda_{n-1})\prod _{i=1}^{n} \Biggl[ \sum _{m_{i}=1}^{\infty}m_{i}^{p_{i}(1-\lambda _{i})-1} \bigl(a_{m_{i}}^{(i)}\bigr)^{p_{i}} \Biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(120)
$$\begin{aligned}& \sum_{m_{n}=1}^{\infty}m_{n}^{q_{n}\lambda_{n}-1} \Biggl[ \sum_{m_{n-1}=1}^{\infty}\cdots\sum _{m_{1}=1}^{\infty}k_{\lambda }(m_{1}, \ldots,m_{n})\prod_{i=1}^{n-1}a_{m_{i}}^{(i)} \Biggr] ^{q_{n}} \\& \quad < \bigl(k(\lambda_{1},\ldots,\lambda_{n-1}) \bigr)^{q_{n}}\prod_{i=1}^{n-1} \Biggl[ \sum_{m_{i}=1}^{\infty}m_{i}^{p_{i}(1-\lambda _{i})-1} \bigl(a_{m_{i}}^{(i)}\bigr)^{p_{i}} \Biggr] ^{\frac{q_{n}}{p_{i}}}, \end{aligned}$$
(121)

where the constant factors \(k(\lambda_{1},\ldots,\lambda_{n-1})\) and \((k(\lambda_{1},\ldots,\lambda_{n-1}))^{q_{n}}\) are the best possible.

In this book, the reverses of (120) and (121) are also considered. For \(n=2\), (120) and (121) reduce, respectively, to (120) and (121); for \(\lambda=1\), \(\lambda_{i}=1-\frac {1}{p_{i}}\) (\(i=1,\ldots,n\)), (120) reduces to (54).

In 2014, Yang [154] (Corollary 3.2) gave the following results.

Suppose that \(i_{0},j_{0}\in\mathbf{N}\), \(\alpha,\beta>0\), \(\lambda _{1}< i_{0}\), \(\lambda_{2}< j_{0}\), \(\lambda_{1}+\lambda=\lambda\), \(k_{\lambda }(x,y)\) (>0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{2}\), which is decreasing with respect to \(x(y)>0\), there exists a constant \(0<\delta_{0}<j_{0}-\lambda_{2}\), such that for any \(\tilde{\lambda}_{1}\in(\lambda_{1}-\delta_{0},\lambda _{1}+\delta _{0})\), \(k(\tilde{\lambda}_{1})=\int_{0}^{\infty}k_{\lambda}(u,1)u^{ \tilde{\lambda}_{1}-1}\, du\in\mathbf{R}_{+}\), and there exists a constant \(\delta_{1}<\lambda_{1}-\delta_{0}\), satisfying \(k_{\lambda }(u,1)\leq\frac{L}{u^{\delta_{1}}}\) (\(u\in(0,\infty)\)). If \(p>1\), \(\frac {1}{p}+\frac{1}{q}=1\), \(a(m),b(n)\geq0\), \(0<\sum_{m\in\mathbf{N}^{i_{0}}}\|m\|_{\alpha}^{p(i_{0}-\lambda_{1})-i_{0}}a^{p}(m)<\infty \), \(0<\sum_{n\in\mathbf{N}^{j_{0}}}\|n\|_{\beta}^{q(j_{0}-\lambda _{2})-j_{0}}b^{q}(n)<\infty\),

$$ K(\lambda_{1})= \biggl( \frac{\Gamma^{i_{0}}(\frac{1}{\alpha})}{\alpha ^{i_{0}-1}\Gamma(\frac{i_{0}}{\alpha})} \biggr) ^{\frac{1}{q}} \biggl( \frac{\Gamma^{j_{0}}(\frac{1}{\beta})}{\beta^{j_{0}-1}\Gamma(\frac{j_{0}}{ \beta})} \biggr) k(\lambda_{1}), $$

then we have the following inequality:

$$\begin{aligned}& \sum_{n\in\mathbf{N}^{j_{0}}}\sum_{m\in\mathbf{N}^{i_{0}}}k_{\lambda } \bigl(\Vert m\Vert _{\alpha},\|n\|_{\beta}\bigr)a(m)b(n) \\& \quad < K(\lambda_{1}) \biggl[ \sum_{m\in\mathbf{N}^{i_{0}}} \|m\|_{\alpha }^{p(i_{0}-\lambda_{1})-i_{0}}a^{p}(m) \biggr] ^{\frac{1}{p}} \biggl[ \sum_{n\in\mathbf{N}^{j_{0}}}\|n\|_{\beta}^{q(j_{0}-\lambda _{2})-j_{0}}b^{q}(n) \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(122)
$$\begin{aligned}& \sum_{n\in\mathbf{N}^{j_{0}}}\|n\|_{\beta}^{p\lambda _{2}-j_{0}} \biggl( \sum_{m\in\mathbf{N}^{i_{0}}}k_{\lambda}\bigl(\Vert m \Vert _{\alpha},\|n\|_{\beta }\bigr)a(m) \biggr) ^{p} \\& \quad < K^{p}(\lambda_{1})\sum _{m\in\mathbf{N}^{i_{0}}}\|m\|_{\alpha }^{p(i_{0}-\lambda_{1})-i_{0}}a^{p}(m), \end{aligned}$$
(123)

where the constant factors \(K(\lambda_{1})\) and \(K^{p}(\lambda_{1})\) are the best possible.

For \(i_{0}=j_{0}=\alpha=\beta=1\), (122) and (123) also reduce, respectively, to (118) and (119). In this chapter, the reverses and the operator expressions of (122) and (123) are provided. A composition formula of the operators is developed.

4.3 Half-discrete Yang-Hilbert-type inequalities

In 2014, Yang and Debnath [155] (Theorem 6.1) gave the following results.

Suppose that \(m\in\mathbf{N}\), \(p_{i}>1\), \(\lambda_{i}\in\mathbf{R}\) (\(i=1,2,\ldots,m+1\)), \(\sum_{i=1}^{m+1}\frac{1}{p_{i}}=1\), \(\sum_{i=1}^{m+1}\lambda_{i}=\lambda\), \(\frac{1}{p}=1-\frac{1}{p_{m+1}}\), \(k_{\lambda }(x_{1},\ldots,x_{n})\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf{R}_{+}^{n}\), there exists a constant \(\delta_{0}>0\), such that for any \(\tilde{\lambda}_{i}\in(\lambda_{i}-\delta _{0},\lambda_{i}+\delta_{0})\), \(\sum_{i=1}^{m+1}\tilde{\lambda}_{i}=\lambda\), \(k_{\lambda}(x_{1},\ldots,x_{m},y)\frac {1}{y^{1-\tilde{\lambda}_{m+1}}}\) is strictly decreasing with respect to \(y>0\), and

$$ k(\tilde{\lambda}_{m+1})=\int_{0}^{\infty} \cdots\int_{0}^{\infty }k_{\lambda}(u_{1}, \ldots,u_{m},1)\prod_{j=1}^{m}u_{j}^{\tilde {\lambda }_{j}-1} \, du_{1}\cdots\, du_{m}\in\mathbf{R}_{+}. $$

If \(f_{i}(x_{i}),a_{n}\geq0\) and \(0<\sum_{n=1}^{\infty }n^{p_{m+1}(1-\lambda_{m+1})-1}a_{n}^{p_{m+1}}<\infty\),

$$ 0< \int_{0}^{\infty}t^{p_{i}(1-\lambda_{i})-1}f_{i}^{p_{i}}(t) \,dt< \infty \quad (i=1,\ldots,m), $$

then we still have the following equivalent inequalities:

$$\begin{aligned}& \sum_{n=1}^{\infty}\int_{0}^{\infty} \cdots\int_{0}^{\infty }k_{\lambda }(x_{1}, \ldots,x_{m},n)a_{n}\prod_{i=1}^{m}f_{i}(x_{i}) \,dx_{1}\cdots \,dx_{m} \\& \quad < k(\lambda_{m+1}) \Biggl[ \sum_{n=1}^{\infty}n^{p_{m+1}(1-\lambda _{m+1})-1}a_{n}^{p_{m+1}} \Biggr] ^{\frac{1}{p_{m+1}}}\prod_{i=1}^{m} \biggl[ \int_{0}^{\infty}t^{p_{i}(1-\lambda_{i})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{1}{p_{i}}}, \end{aligned}$$
(124)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{m+1}-1} \Biggl( \int_{0}^{\infty }\cdots \int_{0}^{\infty}k_{\lambda}(x_{1}, \ldots ,x_{m},n)\prod_{i=1}^{m}f_{i}(x_{i}) \,dx_{1}\cdots \,dx_{m} \Biggr) ^{p} \\& \quad < k^{p}(\lambda_{m+1})\prod _{i=1}^{m} \biggl[ \int_{0}^{\infty }t^{p_{i}(1-\lambda_{i})-1}f_{i}^{p_{i}}(t) \,dt \biggr] ^{\frac{p}{p_{i}}}, \end{aligned}$$
(125)

where the constant factors

$$ k(\lambda_{m+1})=\int_{0}^{\infty}\cdots\int _{0}^{\infty}k_{\lambda }(u_{1}, \ldots,u_{m},1)\prod_{j=1}^{m}u_{j}^{\lambda _{j}-1} \, du_{1}\cdots \, du_{m} $$

and \(k^{p}(\lambda_{m+1})\) are the best possible.

In this book, the reverses, the operator expressions, and some particular examples are provided. Some other kinds of multiple half-discrete Hilbert-type inequalities are discussed in [149, 150]. The composition formula of operators are given by [156].

In Corollary 5.3 of this book, Yang also gave the following multi-dimensional half-discrete inequalities.

Suppose that \(m,s\in\mathbf{N}\), \(\alpha,\beta>0\), \(\lambda_{1},\lambda _{2}\in\mathbf{R}\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k_{\lambda }(x,y)\) (≥0) is a finite homogeneous function of degree −λ in \(\mathbf {R}_{+}^{2}\), \(k_{\lambda}(x,y)\frac{1}{y^{s-\lambda_{2}}}\) is decreasing with respect to \(y>0\), and strictly decreasing in an interval \(I\subset (1,\infty )\), \(k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda}(u,1)u^{\lambda _{1}-1}\, du\in\mathbf{R}_{+}\),

$$ K(\lambda_{1})= \biggl( \frac{\Gamma^{m}(\frac{1}{\alpha})}{\alpha ^{m-1}\Gamma(\frac{m}{\alpha})} \biggr) ^{\frac{1}{q}} \biggl( \frac {\Gamma ^{s}(\frac{1}{\beta})}{\beta^{s-1}\Gamma(\frac{s}{\beta})} \biggr) k(\lambda_{1}). $$

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),a(n)\geq0\), \(0<\int_{\mathbf {R}_{+}^{m}}\|x\|_{\alpha}^{p(m-\lambda_{1})-m}f^{p}(x)\,dx<\infty\), and \(0< \sum_{n\in\mathbf{N}^{s}}\|n\|_{\beta}^{q(s-\lambda _{2})-s}a^{q}(n)<\infty\), then we have the following equivalent inequalities:

$$\begin{aligned}& \int_{\mathbf{R}_{+}^{m}}\sum_{n\in\mathbf{N}^{s}}k_{\lambda } \bigl(\Vert x\Vert _{\alpha},\|n\|_{\beta}\bigr)f(x)a(n)\,dx \\& \quad < K(\lambda_{1}) \biggl[ \int_{\mathbf{R}_{+}^{m}}\|x \|_{\alpha}^{p(m-\lambda _{1})-m}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \sum_{n\in\mathbf{N}^{s}}\|n\|_{\beta}^{q(s-\lambda_{2})-s}a^{q}(n) \biggr] ^{\frac{1}{q}}, \end{aligned}$$
(126)
$$\begin{aligned}& \sum_{n\in\mathbf{N}^{s}}\|n\|_{\beta}^{p\lambda_{2}-s} \biggl( \int_{\mathbf{R}_{+}^{m}}k_{\lambda}\bigl(\|x\|_{\alpha},\|n \|_{\beta }\bigr)f(x)\,dx \biggr) ^{p} \\& \quad < \bigl(K(\lambda_{1})\bigr)^{p}\int _{\mathbf{R}_{+}^{m}}\|x\|_{\alpha }^{p(m-\lambda_{1})-m}f^{p}(x) \,dx, \end{aligned}$$
(127)
$$\begin{aligned}& \int_{\mathbf{R}_{+}^{m}}\|x\|_{\alpha}^{q\lambda_{1}-m} \biggl( \sum _{n\in\mathbf{N}^{s}}k_{\lambda}\bigl(\|x\|_{\alpha},\|n \|_{\beta }\bigr)a(n) \biggr) ^{q}\,dx < \bigl(K(\lambda_{1})\bigr)^{q}\sum _{n\in\mathbf{N}^{s}}\|n\|_{\beta }^{q(s-\lambda_{2})-s}a^{q}(n), \end{aligned}$$
(128)

where the constant factors \(K(\lambda_{1})\), \((K(\lambda_{1}))^{p}\), and \((K(\lambda_{1}))^{q}\) are the best possible.

For \(m=s=\alpha=\beta=1\), (126), (127), and (128) reduce to the following equivalent half-discrete Yang-Hilbert-type inequalities with the best possible constant factors:

$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty}k_{\lambda}(x,n)f(x)a_{n} \,dx \\& \quad < k(\lambda_{1}) \biggl[ \int_{0}^{\infty}x^{p(1-\lambda _{1})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(129)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{2}-1} \biggl( \int_{0}^{\infty }k_{\lambda }(x,n)f(x)\,dx \biggr) ^{p}< \bigl(k(\lambda_{1})\bigr)^{p}\int _{0}^{\infty }x^{p(1-\lambda_{1})-1}f^{p}(x)\,dx, \end{aligned}$$
(130)
$$\begin{aligned}& \int_{0}^{\infty}x^{q\lambda_{1}-1} \Biggl( \sum _{n=1}^{\infty }k_{\lambda }(x,n)a_{n} \Biggr) ^{q}\,dx< \bigl(k(\lambda_{1})\bigr)^{q} \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}a_{n}^{q}. \end{aligned}$$
(131)

Also, for \(m=1\), (124) and (125) reduce, respectively, to (129) and (130).

Replacing x to \(\frac{1}{x}\), \(x^{\lambda-2}f(\frac{1}{x})\) to \(f(x)\) in (129), (130), and (131), we have the following equivalent inequalities with the non-homogeneous kernel and the best possible constant factors:

$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty}k_{\lambda}(1,xn)f(x)a_{n} \,dx \\& \quad < k(\lambda_{1}) \biggl[ \int_{0}^{\infty}x^{p(1-\lambda _{2})-1}f^{p}(x) \,dx \biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty}n^{q(1-\lambda _{2})-1}a_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(132)
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{p\lambda_{2}-1} \biggl( \int_{0}^{\infty }k_{\lambda }(1,xn)f(x)\,dx \biggr) ^{p}< \bigl(k(\lambda_{1})\bigr)^{p}\int _{0}^{\infty }x^{p(1-\lambda_{2})-1}f^{p}(x)\,dx, \end{aligned}$$
(133)
$$\begin{aligned}& \int_{0}^{\infty}x^{q\lambda_{2}-1} \Biggl( \sum _{n=1}^{\infty }k_{\lambda }(1,xn)a_{n} \Biggr) ^{q}\,dx< \bigl(k(\lambda_{1})\bigr)^{q} \sum_{n=1}^{\infty }n^{q(1-\lambda_{2})-1}a_{n}^{q}. \end{aligned}$$
(134)

The above half-discrete inequalities are some refinements of (37)-(40).

4.4 Some simple Hilbert-type inequalities

If the Hilbert-type inequality relates to a simple symmetric homogeneous kernel of degree −1 and the best constant factor is a more brief form, which does not relate to any conjugate exponents (such as (2)), then we call it simple Hilbert-type integral inequality. Its series analog (if it exists) is called a simple Hilbert-type inequality. If the simple homogeneous kernel is of −λ degree (\(\lambda>0\)) with a parameter λ and the inequality cannot be obtained by a simple transform to a simple Hilbert-type integral inequality, then we call it a simple Hilbert-type integral inequality with a parameter.

For example, we call the following integral inequality (i.e. (2)):

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy< \pi \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac {1}{2}}, $$
(135)

and the following H-L-P inequalities (for \(p=2\) in (37) and (41)):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{\max\{x,y\}}\,dx\,dy< 4 \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(136)
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\ln(\frac {x}{y})f(x)g(y)}{x-y}\,dx\,dy< \pi^{2} \biggl( \int _{0}^{\infty}f^{2}(x)\,dx\int _{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(137)

simple Hilbert-type integral inequalities.

In 2006, Yang [21] gave the following simple Hilbert-type integral inequality:

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{\max \{x,y\}}\,dx\,dy< 8 \biggl( \int_{0}^{\infty}f^{2}(x) \,dx\int_{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}. $$
(138)

In 2008, Yang [23] and [157] gave the following simple Hilbert-type integral inequalities:

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{|\ln(\frac {x}{y})|f(x)g(y)}{x+y}\,dx\,dy< c_{0} \biggl( \int _{0}^{\infty}f^{2}(x)\,dx\int _{0}^{\infty }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(139)
$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{\arctan\sqrt{\frac {x}{y}}}{x+y}f(x)g(y)\,dx\,dy< \frac{\pi^{2}}{4} \biggl( \int _{0}^{\infty }f^{2}(x)\,dx\int _{0}^{\infty}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(140)

where \(c_{0}=8\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{2}}=7.3277^{+}\).

In 2005, Yang [158, 159] gave a simple Hilbert-type integral inequality with a parameter \(\lambda\in(0,1)\):

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{|x-y|^{\lambda}}\,dx\,dy \\& \quad < 2B\biggl(1-\lambda,\frac{\lambda}{2}\biggr) \biggl( \int _{0}^{\infty }x^{1-\lambda }f^{2}(x)\,dx\int _{0}^{\infty}y^{1-\lambda}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}. \end{aligned}$$
(141)

As in (16),

$$\begin{aligned}& \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}}\,dx\,dy \\& \quad < B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl( \int _{0}^{\infty }x^{1-\lambda}f^{2}(x)\,dx\int _{0}^{\infty}y^{1-\lambda }g^{2}(y)\,dy \biggr) ^{\frac{1}{2}} \end{aligned}$$
(142)

is called a simple Hilbert-type integral inequality with the parameter \(\lambda\in(0,\infty)\).

Also we find the following simple Hilbert-type inequality:

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \pi \Biggl( \sum _{m=1}^{\infty}a_{m}^{2}\sum _{n=1}^{\infty}b_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(143)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{\max\{m,n\}}< 4 \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(144)
$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{\ln(\frac {m}{n})a_{m}b_{n}}{m-n}< \pi^{2} \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}. \end{aligned}$$
(145)

In (47), for \(p=q=2\), we have

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{\max\{m,n\}}< 8 \Biggl( \sum _{m=1}^{\infty}a_{m}^{2}\sum _{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(146)

In 2010, Xin and Yang [24] gave

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{|\ln(\frac {m}{n})|a_{m}b_{n}}{m+n}< c_{0} \Biggl( \sum_{m=1}^{\infty}a_{m}^{2} \sum_{n=1}^{\infty }b_{n}^{2} \Biggr) ^{\frac{1}{2}}, $$
(147)

where \(c_{0}=8\sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^{2}}=7.3277^{+}\). Inequalities (143) and (144) are new simple Hilbert-type inequalities. We still have a simple Hilbert-type inequality with a parameter \(\lambda\in(0,4]\) as follows (cf. [51]):

$$ \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}< B\biggl( \frac{\lambda}{2},\frac{\lambda}{2}\biggr) \Biggl( \sum _{m=1}^{\infty }m^{1-\lambda}a_{m}^{2} \sum_{n=1}^{\infty}n^{1-\lambda }b_{n}^{2} \Biggr) ^{\frac{1}{2}}. $$
(148)

Some simple half-discrete Hilbert-type inequalities are also listed as follows:

$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{a_{n}}{x+n}f(x)\,dx< \pi \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty}a_{n}^{2} \Biggr) ^{\frac {1}{2}}, \end{aligned}$$
(149)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{a_{n}}{\max\{x,n\}}f(x)\,dx< 4 \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(150)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{\ln(\frac{x}{n})a_{n}}{x-n} f(x)\,dx< \pi^{2} \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(151)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{|\ln(\frac {x}{n})|a_{n}}{\max \{x,n\}}f(x)\,dx< 8 \Biggl( \int_{0}^{\infty}f^{2}(x) \,dx\sum_{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}, \end{aligned}$$
(152)
$$\begin{aligned}& \int_{0}^{\infty}\sum_{n=1}^{\infty} \frac{|\ln(\frac {x}{n})|a_{n}}{x+n}f(x)\,dx< c_{0} \Biggl( \int _{0}^{\infty}f^{2}(x)\,dx\sum _{n=1}^{\infty }a_{n}^{2} \Biggr) ^{\frac{1}{2}}. \end{aligned}$$
(153)

References

  1. Weyl, H: Singulare integral Gleichungen mit besonderer Berücksichtigung des Fourierschen integral theorems. Inaugeral-Dissertation, Gottingen (1908)

  2. Schur, I: Bemerkungen für Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Math. 140, 1-28 (1911)

    MATH  MathSciNet  Google Scholar 

  3. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  4. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

    Book  MATH  Google Scholar 

  5. Kuang, J: Applied Inequalities. Shandong Science Technic Press, Jinan (2004)

    Google Scholar 

  6. Hu, K: Some Problems in Analysis Inequalities. Wuhan University Press, Wuhan (2007)

    Google Scholar 

  7. Wilhelm, M: On the spectrum of Hilbert’s matrix. Am. J. Math. 72, 699-704 (1950)

    Article  MATH  Google Scholar 

  8. Carleman, T: Sur les Équations Integrals Singulières a Noyau Reel et Symetrique. Almqvist & Wiksell, Uppsala (1923)

    Google Scholar 

  9. Ingham, AE: A note on Hilbert’s inequality. J. Lond. Math. Soc. 11, 237-240 (1936)

    Article  MathSciNet  Google Scholar 

  10. Yang, B: On a new Hardy-Hilbert’s type inequality. Math. Inequal. Appl. 7(3), 355-363 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Yang, B: A more accurate Hardy-Hilbert’s type inequality. J. Xinyang Norm. Univ. 18(2), 140-142 (2005)

    Google Scholar 

  12. Yang, B: A more accurate Hilbert-type inequality. Coll. Math. 21(5), 99-102 (2005)

    Google Scholar 

  13. Yang, B: On a more accurate Hardy-Hilbert’s type inequality and its applications. Acta Math. Sin. 49(3), 363-368 (2006)

    MATH  Google Scholar 

  14. Yang, B: A more accurate Hilbert type inequality. J. Math. 27(6), 673-678 (2007)

    MathSciNet  Google Scholar 

  15. Yang, B: On an extension of Hardy-Hilbert’s type inequality and a reverse. Acta Math. Sin. Chin. Ser. 50(4), 861-868 (2007)

    MATH  Google Scholar 

  16. Yang, B: On a more accurate Hilbert’s type inequality. Int. Math. Forum 2(37), 1831-1837 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Zhong, J, Yang, B: On an extension of a more accurate Hilbert-type inequality. J. Zhejiang Univ. Sci. Ed. 35(2), 121-124 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Hardy, GH: Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 23, 45-46 (1925)

    Google Scholar 

  19. Levin, V: Two remarks on Hilbert’s double series theorem. J. Indian Math. Soc. 11, 111-115 (1937)

    Google Scholar 

  20. Bonsall, FF: Inequalities with non-conjugate parameter. Q. J. Math. 2(1), 135-150 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, B: On a basic Hilbert-type inequality. J. Guangdong Educ. Inst. 26(3), 1-5 (2006)

    MATH  Google Scholar 

  22. Yang, B: A Hilbert-type inequality with two pairs of conjugate exponents. J. Jilin Univ. Sci. Ed. 45(4), 524-528 (2007)

    MATH  Google Scholar 

  23. Yang, B: On a basic Hilbert-type integral inequality and extensions. Coll. Math. 24(1), 87-91 (2008)

    Google Scholar 

  24. Xin, D, Yang, B: A basic Hilbert-type inequality. J. Math. 30(3), 554-560 (2010)

    MathSciNet  Google Scholar 

  25. Hu, K: A few important inequalities. J. Jianxi Teach. Coll. Nat. Sci. 3(1), 1-4 (1979)

    Google Scholar 

  26. Pachpatte, BG: On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 226, 166-179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhao, C, Debnath, L: Some new type Hilbert integral inequalities. J. Math. Anal. Appl. 262, 411-418 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lu, Z: Some new inverse type Hilbert-Pachpatte inequalities. Tamkang J. Math. 34(2), 155-161 (2003)

    MathSciNet  Google Scholar 

  29. He, B, Li, Y: On several new inequalities close to Hilbert-Pachpatte’s inequality. J. Inequal. Pure Appl. Math. 7(4), Article 154 (2006)

    MathSciNet  Google Scholar 

  30. Pachpatte, BG: Mathematical Inequalities. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  31. Yang, B: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kuang, J: On new extension of Hilbert’s integral inequality. J. Math. Anal. Appl. 235, 608-614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kuang, J: New progress in inequality study in China. J. Beijing Union Univ. Nat. Sci. 19(1), 29-37 (2005)

    Google Scholar 

  34. Gao, M: On the Hilbert inequality. J. Anal. Appl. 18(4), 1117-1122 (1999)

    MATH  Google Scholar 

  35. Gao, M, Hsu, L: A survey of various refinements and generalizations of Hilbert’s inequalities. J. Math. Res. Expo. 25(2), 227-243 (2005)

    MATH  MathSciNet  Google Scholar 

  36. Zhang, KW: A bilinear inequality. J. Math. Anal. Appl. 271, 288-296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hsu, L, Wang, Y: A refinement of Hilbert’s double series theorem. J. Math. Res. Expo. 11(1), 143-144 (1991)

    MATH  MathSciNet  Google Scholar 

  38. Gao, M: A note on Hilbert double series theorem. Hunan Ann. Math. 12(1-2), 143-147 (1992)

    Google Scholar 

  39. Xu, L, Guo, Y: Note on Hardy-Riesz’s extension of Hilbert’s inequality. Chin. Q. J. Math. 6(1), 75-77 (1991)

    Google Scholar 

  40. Yang, B, Gao, M: On a best value of Hardy-Hilbert’s inequality. Adv. Math. 26(2), 159-164 (1997)

    MATH  MathSciNet  Google Scholar 

  41. Gao, M, Yang, B: On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 126(3), 751-759 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yang, B, Debnath, L: On new strengthened Hardy-Hilbert’s inequality. Int. J. Math. Math. Sci. 21(2), 403-408 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang, B: A refinement of Hilbert’s inequality. Huanghuai J. 13(2), 47-51 (1997)

    Google Scholar 

  44. Yang, B: On a strengthened version of the more accurate Hardy-Hilbert’s inequality. Acta Math. Sin. 42(6), 1103-1110 (1999)

    MATH  Google Scholar 

  45. Yang, B, Debnath, L: A strengthened Hardy-Hilbert’s inequality. Proc. Jangjeon Math. Soc. 6(2), 119-124 (2003)

    MATH  MathSciNet  Google Scholar 

  46. Yang, B: A note on Hilbert’s integral inequalities. Chin. Q. J. Math. 13(4), 83-86 (1998)

    MATH  Google Scholar 

  47. Wang, Z, Guo, D: Introduction to Special Functions. Science Press, Beijing (1979)

    Google Scholar 

  48. Yang, B: A general Hardy-Hilbert’s integral inequality with a best value. Chin. Ann. Math., Ser. A 21(4), 401-408 (2000)

    MATH  Google Scholar 

  49. Yang, B, Debnath, L: On the extended Hardy-Hilbert’s inequality. J. Math. Anal. Appl. 272, 187-199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Yang, B, Debnath, L: On a new generalization of Hardy-Hilbert’s inequality. J. Math. Anal. Appl. 233, 484-497 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  51. Yang, B: On a generalization of Hilbert’s double series theorem. J. Nanjing Univ. Math. Biq. 18(1), 145-151 (2001)

    MATH  Google Scholar 

  52. Yang, B: On a general Hardy-Hilbert’s inequality. Chin. Ann. Math., Ser. A 23(2), 247-254 (2002)

    MATH  Google Scholar 

  53. Yang, B: A dual Hardy-Hilbert’s inequality and generalizations. Adv. Math. 35(1), 102-108 (2006)

    MathSciNet  Google Scholar 

  54. Yang, B: On new extensions of Hilbert’s inequality. Acta Math. Hung. 104(4), 291-299 (2004)

    Article  MATH  Google Scholar 

  55. Yang, B: On a new inequality similar to Hardy-Hilbert’s inequality. Math. Inequal. Appl. 6(1), 37-44 (2003)

    MATH  MathSciNet  Google Scholar 

  56. Yang, B: Best generalization of Hilbert’s type of inequality. J. Jilin Univ. Sci. Ed. 42(1), 30-34 (2004)

    MATH  Google Scholar 

  57. Yang, B: On a generalization of the Hilbert’s type inequality and its applications. Chin. J. Eng. Math. 21(5), 821-824 (2004)

    MATH  Google Scholar 

  58. Yang, B: Generalization of the Hilbert’s type inequality with best constant factor and its applications. J. Math. Res. Expo. 25(2), 341-346 (2005)

    MATH  Google Scholar 

  59. Yang, B: On Mulholland’s integral inequality. Soochow J. Math. 31(4), 573-580 (2005)

    MATH  MathSciNet  Google Scholar 

  60. Yang, B: A new Hilbert-type inequality. Bull. Belg. Math. Soc. Simon Stevin 13, 479-487 (2006)

    MATH  MathSciNet  Google Scholar 

  61. Wang, W, Yang, B: A strengthened Hardy-Hilbert’s type inequality. Aust. J. Math. Anal. Appl. 3(2), Article 17 (2006)

    Article  MathSciNet  Google Scholar 

  62. Hong, Y: All-side generalization about Hardy-Hilbert integral inequalities. Acta Math. Sin. 44(4), 619-626 (2001)

    MATH  Google Scholar 

  63. He, L, Yu, J, Gao, M: An extension of Hilbert’s integral inequality. J. Shaoguan Univ. Nat. Sci. 23(3), 25-30 (2002)

    Google Scholar 

  64. Yang, B: On a multiple Hardy-Hilbert’s integral inequality. Chin. Ann. Math., Ser. A 24(6), 743-750 (2003)

    MATH  Google Scholar 

  65. Yang, B, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)

    MATH  MathSciNet  Google Scholar 

  66. Yang, B: On the way of weight function and research for Hilbert’s type integral inequalities. J. Guangdong Educ. Inst. 25(3), 1-6 (2005)

    Google Scholar 

  67. Sulaiman, W: On Hardy-Hilbert’s integral inequality. J. Inequal. Pure Appl. Math. 5(2), Article 25 (2004)

    MathSciNet  Google Scholar 

  68. Brnetic, I, Pecaric, J: Generalization of Hilbert’s integral inequality. Math. Inequal. Appl. 7(2), 199-205 (2004)

    MATH  MathSciNet  Google Scholar 

  69. Krnić, M, Gao, M, Pečarić, J, Gao, X: On the best constant in Hilbert’s inequality. Math. Inequal. Appl. 8(2), 317-329 (2005)

    MATH  MathSciNet  Google Scholar 

  70. Brnet, I, Krnić, M, Pečarić, J: Multiple Hilbert and Hardy-Hilbert inequalities with non-conjugate parameters. Bull. Aust. Math. Soc. 71, 447-457 (2005)

    Article  Google Scholar 

  71. Krnić, M, Pečarić, J: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29-51 (2005)

    MathSciNet  Google Scholar 

  72. Sulaiman, W: New ideas on Hardy-Hilbert’s integral inequality (I). Panam. Math. J. 15(2), 95-100 (2005)

    MATH  MathSciNet  Google Scholar 

  73. Salem, SR: Some new Hilbert type inequalities. Kyungpook Math. J. 46, 19-29 (2006)

    MATH  MathSciNet  Google Scholar 

  74. Laith, EA: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2008, Article ID 546828 (2008)

    Google Scholar 

  75. Jia, W, Gao, M, Debnath, L: Some new improvement of the Hardy-Hilbert inequality with applications. Int. J. Pure Appl. Math. 11(1), 21-28 (2004)

    MATH  MathSciNet  Google Scholar 

  76. Lu, Z: On new generalizations of Hilbert’s inequalities. Tamkang J. Math. 35(1), 77-86 (2004)

    MathSciNet  Google Scholar 

  77. Xie, H, Lu, Z: Discrete Hardy-Hilbert’s inequalities in \(\mathbf{R}^{n}\). Northeast. Math. J. 21(1), 87-94 (2005)

    MATH  MathSciNet  Google Scholar 

  78. Gao, M: A new Hardy-Hilbert’s type inequality for double series and its applications. Aust. J. Math. Anal. Appl. 3(1), Article 13 (2005)

    Google Scholar 

  79. He, L, Gao, M, Jia, W: On a new strengthened Hardy-Hilbert’s inequality. J. Math. Res. Expo. 26(2), 276-282 (2006)

    MATH  MathSciNet  Google Scholar 

  80. He, L, Jia, W, Gao, M: A Hardy-Hilbert’s type inequality with gamma function and its applications. Integral Transforms Spec. Funct. 17(5), 355-363 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  81. Jia, W, Gao, M, Gao, X: On an extension of the Hardy-Hilbert theorem. Studia Sci. Math. Hung. 42(1), 21-35 (2005)

    MATH  MathSciNet  Google Scholar 

  82. Gao, M, Jia, W, Gao, X: On an improvement of Hardy-Hilbert’s inequality. J. Math. 26(6), 647-651 (2006)

    MATH  MathSciNet  Google Scholar 

  83. Sun, B: Best generalization of a Hilbert type inequality. J. Inequal. Pure Appl. Math. 7(3), Article 113 (2006)

    MathSciNet  Google Scholar 

  84. Wang, W, Xin, D: On a new strengthened version of a Hardy-Hilbert type inequality and applications. J. Inequal. Pure Appl. Math. 7(5), Article 180 (2006)

    MathSciNet  Google Scholar 

  85. Xu, J: Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 189-198 (2007)

    MathSciNet  Google Scholar 

  86. Chen, Z, Xu, J: New extensions of Hilbert’s inequality with multiple parameters. Acta Math. Hung. 117(4), 383-400 (2007)

    Article  MATH  Google Scholar 

  87. Yang, B: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Math. Anal. Appl. 1(1), Article 11 (2004)

    MathSciNet  Google Scholar 

  88. Yang, B, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005)

    MATH  MathSciNet  Google Scholar 

  89. Hong, Y: On multiple Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Appl. 2006, Article ID 94960 (2006)

    Google Scholar 

  90. Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), Article 92 (2005)

    MathSciNet  Google Scholar 

  91. Zhong, W, Yang, B: On a multiple Hilbert-type integral inequality with the symmetric kernel. J. Inequal. Appl. 2007, Article ID 27962 (2007)

    Article  MathSciNet  Google Scholar 

  92. Yang, B, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011)

    MathSciNet  Google Scholar 

  93. Krnić, M, Pečarić, J, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008)

    MATH  MathSciNet  Google Scholar 

  94. Krnić, M, Vuković, P: On a multidimensional version of the Hilbert-type inequality. Anal. Math. 38, 291-303 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  95. Rassias, MT, Yang, B: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014)

    Article  MathSciNet  Google Scholar 

  96. Yang, B: On best extensions of Hardy-Hilbert’s inequality with two parameters. J. Inequal. Pure Appl. Math. 6(3), Article 81 (2005)

    MathSciNet  Google Scholar 

  97. Das, N, Sahoo, S: A generalization of Hardy-Hilbert’s inequality for non-homogeneous kernel. Bul. Acad. Ştiinţe Repub. Mold. Mat. 67(3), 29-44 (2011)

    MathSciNet  Google Scholar 

  98. Krnić, M, Pečarić, J, Vuković, P: Discrete Hilbert-type inequalities with general homogeneous kernels. Rend. Circ. Mat. Palermo 60(1-2), 161-171 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  99. Adiyasuren, V, Batbold, T: On a relation between the Hardy-Hilbert and Gabriel inequalities. In: Rassias, TM (ed.) Handbook of Functional Equations: Functional Inequalities. Springer, Berlin (2014)

    Google Scholar 

  100. Yang, B: A reverse of the Hardy-Hilbert’s type inequality. J. Southwest China Norm. Univ. Nat. Sci. 30(6), 1012-1015 (2005)

    Google Scholar 

  101. Yang, B: A reverse Hardy-Hilbert’s integral inequality. J. Jilin Univ. Sci. Ed. 42(4), 489-493 (2004)

    MATH  Google Scholar 

  102. Yang, B: On a reverse of Hardy-Hilbert’s integral inequality. Pure Appl. Math. 22(3), 312-317 (2006)

    MATH  MathSciNet  Google Scholar 

  103. Yang, B: On an extended Hardy-Hilbert’s inequality and some reversed form. Int. Math. Forum 1(39), 1905-1912 (2006)

    MATH  MathSciNet  Google Scholar 

  104. Yang, B: A reverse of the Hardy-Hilbert’s inequality. Math. Pract. Theory 36(11), 207-212 (2006)

    Google Scholar 

  105. Yang, B: On a reverse of a Hardy-Hilbert type inequality. J. Inequal. Pure Appl. Math. 7(3), Article 115 (2006)

    MathSciNet  Google Scholar 

  106. Xi, G: A reverse Hardy-Hilbert-type inequality. J. Inequal. Appl. 2007, Article ID 79758 (2007)

    Article  Google Scholar 

  107. Yang, B: On a relation to Hardy-Hilbert’s inequality and Mulholland’s inequality. Acta Math. Sin. 49(3), 559-566 (2006)

    MATH  Google Scholar 

  108. Xin, D: Best generalization of Hardy-Hilbert’s inequality with multi-parameters. J. Inequal. Pure Appl. Math. 7(4), Article 153 (2006)

    MathSciNet  Google Scholar 

  109. Zhong, W, Yang, B: A best extension of Hilbert inequality involving several parameters. J. Jinan Univ. Nat. Sci. 28(1), 20-23 (2007)

    Google Scholar 

  110. Zhong, W, Yang, B: A reverse Hilbert’s type integral inequality with some parameters and the equivalent forms. Pure Appl. Math. 24(2), 401-407 (2008)

    MathSciNet  Google Scholar 

  111. Yang, B: A new Hilbert-type inequality. J. Shanghai Univ. Nat. Sci. 13(3), 274-278 (2007)

    MATH  MathSciNet  Google Scholar 

  112. Yang, B: A bilinear inequality with a homogeneous kernel of −2-order. J. Xiamen Univ. Nat. Sci. 45(6), 752-755 (2006)

    MATH  Google Scholar 

  113. Yang, B: A Hilbert-type integral inequality with the kernel of −3-order homogeneous. J. Yunnam Univ. 30(4), 325-330 (2008)

    Google Scholar 

  114. Xie, Z: A new Hilbert-type inequality with the kernel of 3-homogeneous. J. Jilin Univ. Sci. Ed. 45(3), 369-373 (2007)

    MATH  Google Scholar 

  115. Xie, Z, Zheng, Z: A Hilbert-type inequality with parameters. J. Xiangtan Univ. Nat. Sci. 29(3), 24-28 (2007)

    MATH  Google Scholar 

  116. Xie, Z, Zheng, Z: A Hilbert-type integral inequality whose kernel is a homogeneous form of degree −3. J. Math. Anal. Appl. 339, 324-331 (2007)

    Article  MathSciNet  Google Scholar 

  117. Xie, Z, Zheng, Z: A new Hilbert-type integral inequality and its reverse. Soochow J. Math. 33(4), 751-759 (2007)

    MATH  MathSciNet  Google Scholar 

  118. Li, Y, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76, 1-13 (2007)

    Article  MATH  Google Scholar 

  119. He, B, Qian, Y, Li, Y: On analogues of the Hilbert’s inequality. Commun. Math. Anal. 4(2), 47-53 (2008)

    MATH  MathSciNet  Google Scholar 

  120. Yang, B: On a Hilbert-type inequality with the homogeneous kernel of −3-order. J. Guangdong Educ. Inst. 27(5), 1-5 (2007)

    Google Scholar 

  121. Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005)

    MATH  MathSciNet  Google Scholar 

  122. Yang, B: A half-discrete Hilbert’s inequality. J. Guangdong Univ. Educ. 31(3), 1-7 (2011)

    Google Scholar 

  123. Zhong, W: A mixed Hilbert-type inequality and its equivalent forms. J. Guangdong Univ. Educ. 31(5), 18-22 (2011)

    MATH  Google Scholar 

  124. Rassias, MT, Yang, B: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75-93 (2013)

    Article  MathSciNet  Google Scholar 

  125. Yang, B, Chen, Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011)

    Article  Google Scholar 

  126. Yang, B: A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables. Mediterr. J. Math. 10, 677-692 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  127. Yang, B: On the norm of an integral operator and applications. J. Math. Anal. Appl. 321, 182-192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  128. Yang, B: On the norm of a self-adjoint operator and a new bilinear integral inequality. Acta Math. Sin. Engl. Ser. 23(7), 1311-1316 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  129. Yang, B: On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities. Taiwan. J. Math. 12(2), 315-324 (2008)

    MATH  Google Scholar 

  130. Yang, B: On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 325, 529-541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  131. Yang, B: On the norm of a self-adjoint operator and applications to Hilbert’s type inequalities. Bull. Belg. Math. Soc. Simon Stevin 13, 577-584 (2006)

    MATH  MathSciNet  Google Scholar 

  132. Yang, B: On a Hilbert-type operator with a symmetric homogeneous kernel of −1-order and applications. J. Inequal. Appl. 2007, Article ID 47812 (2007)

    Article  Google Scholar 

  133. Yang, B: On the norm of a linear operator and its applications. Indian J. Pure Appl. Math. 39(3), 237-250 (2008)

    MATH  MathSciNet  Google Scholar 

  134. Bényi, A, Oh, C: Best constants for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006)

    Article  Google Scholar 

  135. Yang, B: A survey of the study of Hilbert-type inequalities with parameters. Adv. Math. 38(3), 257-268 (2009)

    MathSciNet  Google Scholar 

  136. Yang, B: On a Hilbert-type operator with a class of homogeneous kernels. J. Inequal. Appl. 2009, Article ID 572176 (2009)

    Article  Google Scholar 

  137. Huang, Q, Yang, B: On a multiple Hilbert-type integral operator and applications. J. Inequal. Appl. 2009, Article ID 192197 (2009)

    Article  Google Scholar 

  138. Yang, B, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  139. Liu, X, Yang, B: On a new Hilbert-Hardy-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 812636 (2010)

    Article  Google Scholar 

  140. Yang, B: A new Hilbert-type operator and applications. Publ. Math. (Debr.) 76(1-2), 147-156 (2010)

    MATH  Google Scholar 

  141. Yang, B, Krnić, M: Hilbert-type inequalities and related operators with homogeneous kernel of degree 0. Math. Inequal. Appl. 13(4), 817-839 (2010)

    MathSciNet  Google Scholar 

  142. Adiyasuren, V, Batbold, T, Krnić, M: On several new Hilbert-type inequalities involving means operators. Acta Math. Sin. Engl. Ser. 29(8), 1493-1514 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  143. Liu, X, Yang, B: On a new Hilbert-Hardy-type integral operator and applications. J. Inequal. Appl. 2010, Article ID 812636 (2010)

    Article  Google Scholar 

  144. Adiyasuren, V, Batbold, T, Krnić, M: Half-discrete Hilbert-type inequalities with mean operators, the best constants, and applications. Appl. Math. Comput. 231, 148-159 (2014)

    Article  MathSciNet  Google Scholar 

  145. Wang, A, Yang, B: A new Hilbert-type integral inequality in the whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, 123 (2011)

    Article  Google Scholar 

  146. Yang, B: On the Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  147. Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009)

    Google Scholar 

  148. Yang, B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., Sharjah (2011)

    Google Scholar 

  149. Yang, B: Two Kinds of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)

    Google Scholar 

  150. Yang, B: Topics on Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2013)

    Google Scholar 

  151. Yang, B: Hilbert-type integral operators: norms and inequalities. In: Pardalos, PM, Georgiev, PG, Srivastava, HM (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities. Springer, Berlin (2012)

    Google Scholar 

  152. Rassias, MT, Yang, B: A multidimensional Hilbert-type integral inequalities related to the Riemann zeta function. In: Daras, NJ (ed.) Applications of Mathematics and Informatics in Science and Engineering. Springer, Berlin (2014)

    Google Scholar 

  153. Yang, B: On Hilbert-type integral inequalities and their operator expressions. J. Guangdong Univ. Educ. 33(5), 1-17 (2013)

    MATH  Google Scholar 

  154. Yang, B: Multidimensional discrete Hilbert-type inequalities, operators and compositions. In: Milovanović, GV, Rassias, MT (eds.) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, Berlin (2014)

    Google Scholar 

  155. Yang, B, Debnath, L: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  156. Yang, B: Half-discrete Hilbert-type inequalities, operators and compositions. In: Rassias, TM (ed.) Handbook of Functional Equations: Functional Inequalities. Springer, Berlin (2014)

    Google Scholar 

  157. Yang, B: A basic Hilbert-type integral inequality with the homogeneous kernel of −1-degree and extensions. J. Guangdong Educ. Inst. 28(3), 1-10 (2008)

    MATH  Google Scholar 

  158. Yang, B: A new Hilbert-type integral inequality and its generalization. J. Jilin Univ. Sci. Ed. 43(5), 580-584 (2005)

    MATH  Google Scholar 

  159. Yang, B, Liang, H: A new Hilbert-type integral inequality with a parameter. J. Henan Univ. Nat. Sci. 35(4), 4-8 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the referees for their careful reading of the manuscript and for their valuable suggestions. This work is supported by the National Natural Science Foundation (No. 61370186), and the Science and Technology Planning Project of Guangzhou (No. 2014J4100032, No. 201510010203). We are grateful for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bicheng Yang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yang, B. A survey on the study of Hilbert-type inequalities. J Inequal Appl 2015, 302 (2015). https://doi.org/10.1186/s13660-015-0829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0829-7

MSC

Keywords