Skip to main content

A general theorem on the stability of a class of functional equations including monomial equations

Abstract

In this paper, we prove a general theorem for the stability of a large class of n-dimensional functional equations of the form \(Df(x_{1}, x_{2}, \ldots, x_{n}) = 0\) by applying the direct method.

1 Introduction

Let V and W be real vector spaces and let n be a positive integer. For a given mapping \(f : V \to W\), we define a mapping \(D_{n} f : V \times V \to W\) by

$$ D_{n} f(x,y) := \sum_{i=0}^{n} (-1)^{n-i} {}_{n}C_{i} f(ix+y) - n! f(x) $$

for all \(x, y \in V\), where \({}_{n}C_{i} = \frac{n!}{i!(n-i)!}\). A mapping \(f : V \to W\) is called a monomial mapping of degree n if f satisfies the monomial functional equation \(D_{n} f(x,y) = 0\) for all \(x, y \in V\). For example, a mapping \(f : V \to W\) is called an additive mapping (or a quadratic mapping) if f satisfies the functional equation \(D_{1} f(x,y) = 0\) (or \(D_{2} f(x,y) = 0\)) for all \(x, y \in V\). We notice that if a mapping \(f : V \to W\) is a monomial mapping of degree n, then \(f(rx) = r^{n} f(x)\) for all \(x \in V\) and all rational numbers r (see [1, 2]).

In the study of Hyers-Ulam stability problems of monomial functional equations, we have followed out a routine and monotonous procedure for proving the stability of the monomial functional equations under various conditions. We can find in the books [3–6] a lot of references concerning the Hyers-Ulam stability of functional equations (see also [7–12]).

In this paper, we prove a general stability theorem that can be easily applied to the (generalized) Hyers-Ulam stability of a large class of n-dimensional functional equations of the form \(Df(x_{1}, x_{2}, \ldots, x_{n}) = 0\), which includes the monomial functional equations.

Throughout this paper, for a given mapping \(f : V \to W\), we define a mapping \(Df : V^{n} \to W\) by

$$ Df(x_{1}, x_{2}, \ldots, x_{n}) := \sum_{i=1}^{m} c_{i} f ( a_{i1} x_{1} + a_{i2} x_{2} + \cdots+ a_{in} x_{n} ), $$
(1)

where m is a positive integer and \(c_{i}\), \(a_{ij}\) are real constants.

Indeed, this stability theorem can save us much trouble of proving the stability of relevant solutions repeatedly appearing in the stability problems for various functional equations (see [13–15]).

It should be remarked that Bahyrycz and Olko [16] applied the fixed point method to investigate the generalized Hyers-Ulam stability of the general linear equation

$$ \sum_{i=1}^{m} A_{i} \Biggl( \sum _{i=1}^{n} a_{ij} x_{j} \Biggr) + A = 0. $$

Moreover, there are numerous recent results concerning the Hyers-Ulam stability of some particular cases of equation (1). Some of them were described in the survey paper [17].

In this paper, let V be a real vector space and let X and Y be a real normed space resp. a real Banach space if there is no specification.

2 Preliminaries

We introduce a lemma from the paper [18], Corollary 3.5.

Lemma 2.1

Let \(k \neq1\) be a positive real constant, let b be a real constant, and let Y be a real normed space. Assume, moreover, that \(\phi: V \backslash\{ 0 \} \to[0,\infty)\) is a function satisfying

$$ \Phi(x) := \sum_{i=0}^{\infty}\frac{\phi ( k^{i} x )}{k^{bi}} < \infty $$
(2)

for all \(x \in V \backslash\{ 0 \}\) and \(f : V \to Y\) is an arbitrarily given mapping. If there exists a mapping \(F : V \to Y\) satisfying

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\Phi(x) $$
(3)

for all \(x \in V \backslash\{ 0 \}\) and

$$ F(kx) = k^{b} F(x) $$
(4)

for all \(x \in V\), then F is a unique mapping satisfying (3) and (4).

We denote by \(\mathbf{N}_{0}\) the set of all nonnegative integers, i.e., \(\mathbf{N}_{0} = \mathbf{N} \cup\{ 0 \}\).

Lemma 2.2

Let \(k \neq1\) be a positive real constant and let b be a real constant. Assume that a function \(\phi: V \backslash\{ 0 \} \to[0,\infty)\) satisfies condition (2) for all \(x \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and

$$ \biggl\Vert f(x) - \frac{f(kx)}{k^{b}} \biggr\Vert \leq\phi(x) $$
(5)

for all \(x \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) satisfying (3) and (4) for all \(x \in V \backslash\{ 0 \}\) resp. for all \(x \in V\).

Proof

It follows from (5) that

$$\begin{aligned} \biggl\Vert \frac{f(k^{m} x)}{k^{bm}} - \frac{f(k^{m+l} x)}{k^{b(m+l)}} \biggr\Vert \leq& \sum_{i=m}^{m+l-1} \biggl\Vert \frac{f ( k^{i} x )}{k^{bi}} - \frac{f ( k^{i+1} x )}{k^{b(i+1)}} \biggr\Vert \\ = & \sum_{i=m}^{m+l-1} \frac{1}{k^{bi}} \biggl\Vert f \bigl( k^{i} x \bigr) - \frac{1}{k^{b}} f \bigl( k \cdot k^{i} x \bigr) \biggr\Vert \\ \leq& \sum_{i=m}^{m+l-1} \frac{\phi ( k^{i} x )}{k^{bi}} \end{aligned}$$
(6)

for all \(x \in V \backslash\{ 0 \}\) and \(m, l \in\mathbf{N}_{0}\). Thus, in view of (2), it is easy to show that the sequence \(\{ \frac{f(k^{m} x)}{k^{bm}} \}\) is a Cauchy sequence for all \(x \in V \backslash\{ 0 \}\). Since Y is complete and \(f(0) = 0\), the sequence \(\{ \frac{f(k^{m} x)}{k^{bm}} \}\) converges for all \(x \in V\). Hence, we can define a mapping \(F: V \to Y\) by

$$ F(x) := \lim_{m \to\infty} \frac{f(k^{m} x)}{k^{bm}} $$

for all \(x \in V\).

We easily see that equality (4) is true by the definition of F. Moreover, we put \(m = 0\) and let \(l \to\infty\) in (6) to get inequality (3). Obviously, in view of Lemma 2.1, the mapping \(F : V \to Y\) satisfying (3) and (4) is uniquely determined. □

Lemma 2.3

Let \(k \neq1\), b, V, Y be as in Lemma  2.2, let \(f : V \to Y\) and \(F : V \to Y\) be arbitrary mappings, and let n be a fixed integer greater than 1. Assume that a function \(\varphi: (V \backslash\{ 0 \})^{n} \to[0,\infty)\) satisfies the condition

$$ \sum_{i=0}^{\infty}\frac{\varphi(k^{i} x_{1}, k^{i} x_{2}, \ldots, k^{i} x_{n})}{k^{bi}} < \infty $$
(7)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\). If f satisfies the condition

$$ \bigl\Vert Df(x_{1}, x_{2}, \ldots, x_{n}) \bigr\Vert \leq\varphi(x_{1}, x_{2}, \ldots, x_{n}) $$
(8)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\) and if F satisfies the equality

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = \lim_{m \to\infty} \frac{Df ( k^{m} x_{1}, k^{m} x_{2}, \ldots, k^{m} x_{n} )}{k^{bm}} $$
(9)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\), then F satisfies the equation

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = 0 $$
(10)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\).

Proof

It follows from (7), (8), and (9) that

$$\begin{aligned} \bigl\Vert DF(x_{1}, x_{2}, \ldots, x_{n} ) \bigr\Vert = & \lim_{m \to\infty} \biggl\Vert \frac{Df ( k^{m} x_{1}, k^{m} x_{2}, \ldots, k^{m} x_{n} )}{ k^{bm}} \biggr\Vert \\ \leq& \lim_{m \to\infty} \frac{\varphi ( k^{m} x_{1}, k^{m} x_{2}, \ldots, k^{m} x_{n} )}{ k^{bm}} \\ = & 0 \end{aligned}$$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\). In other words, \(DF(x_{1}, x_{2}, \ldots, x_{n}) = 0\) holds for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\). □

Lemma 2.4

Let a be a real constant satisfying \(a \notin\{ -1, 0, 1 \}\), let N be an integer, and let n be a fixed integer greater than 1. Assume that \(\mu: V \backslash\{ 0 \} \to[0,\infty)\) is a function satisfying the condition

$$ \sum_{i=0}^{\infty}\frac{\mu(a^{i} x)}{|a|^{Ni}} < \infty $$
(11)

for all \(x \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and

$$ \bigl\Vert f(ax) - a^{N} f(x) \bigr\Vert \leq\mu(x) $$
(12)

for all \(x \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) satisfying

$$ F(ax) = a^{N} F(x) $$
(13)

for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum _{i=0}^{\infty} \frac{\mu(a^{i} x)}{|a|^{Ni+N}} $$
(14)

for all \(x \in V \backslash\{ 0 \}\).

Proof

It follows from (12) that

$$\begin{aligned} \biggl\Vert \frac{f(a^{m} x)}{a^{Nm}} - \frac{f(a^{m+l} x)}{a^{N(m+l)}} \biggr\Vert \leq& \sum_{i=m}^{m+l-1} \biggl\Vert \frac{f(a^{i} x)}{a^{Ni}} - \frac{f(a^{i+1} x)}{a^{N(i+1)}} \biggr\Vert \\ = & \sum_{i=m}^{m+l-1} \frac{\Vert f(a \cdot a^{i} x) - a^{N} f(a^{i} x) \Vert }{ |a|^{N(i+1)}} \\ \leq& \sum_{i=m}^{m+l-1} \frac{\mu(a^{i} x)}{|a|^{Ni+N}} \end{aligned}$$
(15)

for all \(x \in V \backslash\{ 0 \}\) and all \(m, l \in\mathbf{N}_{0}\). Thus, in view of (11), it is easy to show that the sequence \(\{ \frac{f(a^{m} x)}{a^{Nm}} \}\) is a Cauchy sequence for all \(x \in V \backslash\{ 0 \}\). Since Y is complete and \(f(0) = 0\), the sequence \(\{ \frac{f(a^{m} x)}{a^{Nm}} \}\) converges for all \(x \in V\). Hence, we can define a mapping \(F : V \to Y\) by

$$ F(x) := \lim_{m \to\infty} \frac{f(a^{m} x)}{a^{Nm}} $$

for all \(x \in V\), from which it follows that (13).

Moreover, if we put \(m = 0\) and let \(l \to\infty\) in (15), then we obtain inequality (14). Finally, using Lemma 2.1, we conclude that the mapping F satisfying (13) and (14) is uniquely determined, since we have

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum_{i=0}^{\infty} \frac{\mu(a^{i} x)}{|a|^{Ni+N}} = \sum_{i=0}^{\infty} \frac{|a|^{N} \mu(a^{2i}x) + \mu(a \cdot a^{2i}x)}{ |a|^{2Ni+2N}} = \sum_{i=0}^{\infty} \frac{\phi(k^{i} x)}{k^{Ni}} $$

for all \(x \in V\), where we set \(k := a^{2}\) and \(\phi(x) := \frac{\mu(x)}{|a|^{N}} + \frac{\mu(ax)}{|a|^{2N}}\). □

Lemma 2.5

Let a, N, V, Y be defined as in Lemma  2.4, let \(f : V \to Y\) and \(F : V \to Y\) be arbitrary mappings, and let n be a fixed integer greater than 1. Assume that a function \(\varphi: (V \backslash\{ 0 \})^{n} \to[0,\infty)\) satisfies the condition

$$ \sum_{i=0}^{\infty}\frac{\varphi(a^{i} x_{1}, a^{i} x_{2}, \ldots, a^{i} x_{n})}{|a|^{Ni}} < \infty $$
(16)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\). If f satisfies the inequality

$$ \bigl\Vert Df(x_{1}, x_{2}, \ldots, x_{n}) \bigr\Vert \leq\varphi(x_{1}, x_{2}, \ldots, x_{n}) $$
(17)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\), and if F satisfies the condition

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = \lim_{m \to\infty} \frac{Df ( a^{m} x_{1}, a^{m} x_{2}, \ldots, a^{m} x_{n} )}{a^{Nm}} $$
(18)

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\), then F satisfies the equation

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = 0 $$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\).

Proof

It easily follows from (16), (17), and (18) that

$$\begin{aligned} \bigl\Vert DF(x_{1}, x_{2}, \ldots, x_{n} ) \bigr\Vert = & \lim_{m \to\infty} \biggl\Vert \frac{Df ( a^{m} x_{1}, a^{m} x_{2}, \ldots, a^{m} x_{n} )}{ a^{Nm}} \biggr\Vert \\ \leq& \lim_{m \to\infty} \frac{\varphi(a^{m} x_{1}, a^{m} x_{2}, \ldots, a^{m} x_{n})}{ |a|^{Nm}} \\ = & 0 \end{aligned}$$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\), which implies that \(DF(x_{1}, x_{2}, \ldots, x_{n} ) = 0\) holds for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\). □

3 Main results

In this section, we denote by V, X, and Y a real vector space, a real normed space, and a real Banach space, respectively, if there are no specifications.

We combine Lemmas 2.2 and 2.3 in the following theorem to formulate the main theorem which is easily applicable. We here notice that conditions (9) and (18) are satisfied in usual cases provided we apply the direct method for proving the (generalized) Hyers-Ulam stability of various functional equations of the form \(Df(x_{1}, x_{2}, \ldots, x_{n}) = 0\).

Theorem 3.1

Let \(k \neq1\), b, and \(n > 1\) be a positive real constant, a real constant, and an integer, respectively. Assume that \(\phi: V \backslash\{ 0 \} \to[0,\infty)\) is a function satisfying condition (2) for all \(x \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and

$$ \biggl\Vert f(x) - \frac{f(kx)}{k^{b}} \biggr\Vert \leq\phi(x) $$

for all \(x \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) satisfying

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\Phi(x) $$

for all \(x \in V \backslash\{ 0 \}\) and

$$ F(kx) = k^{b} F(x) $$

for all \(x \in V\). In particular, if there exists a function \(\varphi: (V \backslash\{ 0 \})^{n} \to[0,\infty)\) satisfying condition (7) for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\) and if f satisfies

$$ \bigl\Vert Df(x_{1}, x_{2}, \ldots, x_{n}) \bigr\Vert \leq\varphi(x_{1}, x_{2}, \ldots, x_{n}) $$

and if F satisfies

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = \lim _{m \to\infty} \frac{Df ( k^{m} x_{1}, k^{m} x_{2}, \ldots, k^{m} x_{n} )}{k^{bm}} $$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\), then F satisfies the equation

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = 0 $$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\).

In the following theorem, let a be a real number not in \(\{ -1, 0, 1 \}\). We can easily prove this theorem by using Lemmas 2.4 and 2.5. We also note that condition (18) is satisfied in usual cases when we use the direct method for proving the stability of functional equations of the form \(Df(x_{1}, x_{2}, \ldots, x_{n}) = 0\).

Theorem 3.2

Let \(a \notin\{ -1, 0, 1 \}\), N, and \(n > 1\) be a real constant and integers, respectively. Assume that \(\mu: V \backslash\{ 0 \} \to[0,\infty)\) is a function satisfying condition (11) for all \(x \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and

$$ \bigl\Vert f(ax) - a^{N} f(x) \bigr\Vert \leq\mu(x) $$

for all \(x \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) such that

$$ F(ax) = a^{N} F(x) $$

for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum_{i=0}^{\infty} \frac{\mu(a^{i} x)}{|a|^{Ni+N}} $$

for all \(x \in V \backslash\{ 0 \}\). In particular, if there exists a function \(\varphi: (V \backslash\{ 0 \})^{n} \to[0,\infty)\) satisfying condition (16) for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\) and if f satisfies

$$ \bigl\Vert Df(x_{1}, x_{2}, \ldots, x_{n}) \bigr\Vert \leq\varphi(x_{1}, x_{2}, \ldots, x_{n}) $$

and if F satisfies

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = \lim _{m \to\infty} \frac{Df ( a^{m} x_{1}, a^{m} x_{2}, \ldots, a^{m} x_{n} )}{a^{Nm}} $$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\), then F satisfies the equation

$$ DF(x_{1}, x_{2}, \ldots, x_{n}) = 0 $$

for all \(x_{1}, x_{2}, \ldots, x_{n} \in V \backslash\{ 0 \}\).

We now introduce a corollary to Lemma 2.2.

Corollary 3.3

Assume that k, b, p, θ, δ are real constants such that \(k > 0\), \(k \neq1\), \(p \neq b\), \(\theta> 0\), and \(\delta> 0\). If a mapping \(f : X \to Y\) satisfies \(f(0) = 0\) and

$$ \bigl\Vert f(kx) - k^{b} f(x) \bigr\Vert \leq\delta\| x \|^{p} $$

for all \(x \in X \backslash\{ 0 \}\), then there exists a unique mapping \(F : X \to Y\) satisfying (4) for all \(x \in X\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\frac{\delta\| x \|^{p}}{| k^{b} - k^{p} |} $$
(19)

for all \(x \in X \backslash\{ 0 \}\).

Proof

If \((k,p) \in(1,\infty) \times(-\infty, b)\) or \((k,p) \in(0,1) \times(b,\infty)\), then \(\phi(x) := \frac{\delta}{k^{b}} \| x \|^{p}\) satisfies condition (2) with

$$ \Phi(x) = \frac{\delta\| x \|^{p}}{k^{b} - k^{p}}. $$

For the case of \((k,p) \in(0,1) \times(-\infty,b)\) or \((k,p) \in(1,\infty) \times(b,\infty)\), we set \(k' := \frac{1}{k}\) to get \((k',p) \in(1,\infty) \times(-\infty,b)\) or \((k',p) \in(0,1) \times(b,\infty)\), and

$$ \bigl\Vert f \bigl( k' x \bigr) - k^{\prime b} f(x) \bigr\Vert = k^{\prime b} \biggl\Vert k^{b} f \biggl( \frac{x}{k} \biggr) - f(x) \biggr\Vert \leq k^{\prime b+p} \delta\| x \|^{p} $$

for all \(x \in X \backslash\{ 0 \}\). By applying the same argument as in the first case, we can see that \(\phi(x) := k^{\prime p} \delta\| x \|^{p}\) satisfies condition (2) with

$$ \Phi(x) = \sum_{i=0}^{\infty}\frac{\phi(k^{\prime i} x)}{k^{\prime bi}} = \frac{\delta\| x \|^{p}}{k^{p} - k^{b}} $$

for all \(x \in X \backslash\{ 0 \}\).

According to Lemma 2.2, there exists a unique mapping \(F : X \to Y\) satisfying (4) for all \(x \in X\) and (19) for all \(x \in X \backslash\{ 0 \}\). □

The following corollary can be easily proved by using Lemma 2.4.

Corollary 3.4

Assume that N is an integer and a, p, θ, δ are real constants such that \(a \notin\{ -1, 0, 1 \}\), \(p \neq N\), \(\theta> 0\), and \(\delta> 0\). If a mapping \(f : X \to Y\) satisfies \(f(0) = 0\) and

$$ \bigl\Vert f(ax) - a^{N} f(x) \bigr\Vert \leq\delta \| x \|^{p} $$
(20)

for all \(x \in X \backslash\{ 0 \}\), then there exists a unique mapping \(F : X \to Y\) satisfying (13) for all \(x \in X\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\frac{\delta\| x \|^{p}}{| |a|^{N}-|a|^{p} |} $$
(21)

for all \(x \in X \backslash\{ 0 \}\).

Proof

If \((|a|,p) \in(1,\infty) \times(-\infty, N)\) or \((|a|,p) \in(0,1) \times(N,\infty)\), then \(\mu(x) := \delta\| x \|^{p}\) satisfies condition (11) with

$$ \sum_{i=0}^{\infty}\frac{\mu(a^{i} x)}{|a|^{Ni}} = \frac{|a|^{N} \delta\| x \|^{p}}{|a|^{N} - |a|^{p}}. $$

When \((|a|,p) \in(0,1) \times(-\infty,N)\) or \((|a|,p) \in(1,\infty) \times(N,\infty)\), we set \(a' := \frac{1}{a}\) to get \((|a'|,p) \in(1,\infty) \times(-\infty,N)\) or \((|a'|,p) \in(0,1) \times(N,\infty)\), and

$$ \bigl\Vert f\bigl(a'x\bigr) - a^{\prime N} f(x) \bigr\Vert = \biggl\Vert f \biggl( \frac{x}{a} \biggr) - \frac{1}{a^{N}} f(x) \biggr\Vert \leq\frac{1}{|a|^{N}} \delta\biggl\Vert \frac{x}{a} \biggr\Vert ^{p} = \bigl\vert a' \bigr\vert ^{p+N} \delta \Vert x \Vert ^{p} $$

for all \(x \in X \backslash\{ 0 \}\). By arguing similarly as in the first case, we see that \(\mu(x) := | a' |^{p+N} \delta\| x \|^{p}\) satisfies condition (11) with

$$ \sum_{i=0}^{\infty}\frac{\mu(a^{\prime i} x)}{| a' |^{Ni}} = \frac{|a'|^{p+2N} \delta\| x \|^{p}}{|a'|^{N} - |a'|^{p}} = \frac{1}{|a|^{N}} \frac{\delta\| x \|^{p}}{|a|^{p} - |a|^{N}} $$

for all \(x \in X \backslash\{ 0 \}\).

Therefore, by Lemma 2.4, there exists a unique mapping \(F : X \to Y\) such that (13) and (21) hold for all \(x \in X\) resp. for all \(x \in X \backslash\{ 0 \}\). □

4 Applications

In this section, by V, X, and Y, we denote a real vector space, a real normed space, and a real Banach space, respectively, if there is no specification.

For a given mapping \(f : V \to Y\), we use the abbreviations

$$\begin{aligned}& D_{1} f(x,y) := f(ax+by) - af(x) - bf(y), \\& D_{2} f(x,y) := f(ax+by) + abf(x-y) - a(a+b) f(x) - b(a+b) f(y), \end{aligned}$$

where a and b are fixed nonzero real numbers with \(a+b \neq0\) and \(ab \neq0\). (The definitions of \(D_{1} f\) and \(D_{2} f\) just above have nothing to do with the \(D_{n} f\) given in the Introduction.)

Theorem 4.1

Let a and b be real constants such that \(a + b \notin\{ -1, 0, 1 \}\) and let \(\varphi: (V \backslash\{ 0 \})^{2} \to[0,\infty)\) be a function satisfying the condition

$$ \sum_{i=0}^{\infty}\frac{\varphi ( (a+b)^{i} x, (a+b)^{i} y )}{| a + b |^{i}} < \infty $$

for all \(x, y \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and

$$ \bigl\Vert D_{1} f(x,y) \bigr\Vert \leq \varphi(x,y) $$
(22)

for all \(x, y \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) such that

$$ D_{1} F(x,y) = 0 $$
(23)

for all \(x, y \in V \backslash\{ 0 \}\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum_{i=0}^{\infty} \frac{\varphi ( (a+b)^{i} x, (a+b)^{i} x )}{ | a + b |^{i+1}} $$

for all \(x \in V \backslash\{ 0 \}\).

Proof

It follows from (22) that

$$ \bigl\Vert (a+b) f(x) - f \bigl( (a+b)x \bigr) \bigr\Vert \leq\varphi(x,x) $$

for all \(x \in V \backslash\{ 0 \}\). If we set \(a_{1} := a+b\), \(\mu(x) := \varphi(x,x)\), \(n := 2\), \(N := 1\), and \(Df := D_{1} f\), then \(a_{1}\), N, f, and μ satisfy conditions (11) and (12). According to Lemma 2.4, there exists a unique mapping \(F : V \to Y\) satisfying (13) and (14), i.e., F satisfies

$$ F(a_{1} x) = a_{1}^{N} F(x) $$

for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum_{i=0}^{\infty}\frac{\varphi ( a_{1}^{i} x, a_{1}^{i} x )}{| a_{1} |^{Ni+N}} $$

for all \(x \in V \backslash\{ 0 \}\).

Moreover, φ, f, and F satisfy (16) and (17). Condition (18) is also satisfied due to the definition of F given in the proof of Lemma 2.4. Hence, in view of Theorem 3.2, the mapping F satisfies (23) for all \(x, y \in V \backslash\{ 0 \}\). □

Theorem 4.2

Let a and b be real constants such that \(a + b \notin\{ -1, 0, 1 \}\) and let \(\varphi: (V \backslash\{ 0 \})^{2} \to[0,\infty)\) be a function satisfying the condition

$$ \sum_{i=0}^{\infty}| a + b |^{i} \varphi \biggl( \frac{x}{(a+b)^{i}}, \frac{y}{(a+b)^{i}} \biggr) < \infty $$
(24)

for all \(x, y, z \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and (22) for all \(x, y \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) satisfying (23) for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum _{i=0}^{\infty} | a + b |^{i} \varphi \biggl( \frac{x}{(a+b)^{i+1}}, \frac{x}{(a+b)^{i+1}} \biggr) $$

for all \(x \in V \backslash\{ 0 \}\).

Proof

It follows from (22) that

$$ \biggl\Vert \frac{1}{a+b} f(x) - f \biggl( \frac{x}{a+b} \biggr) \biggr\Vert \leq\frac{1}{| a+b |} \varphi \biggl( \frac{x}{a+b}, \frac{x}{a+b} \biggr) $$

for all \(x \in V \backslash\{ 0 \}\). If we set \(a_{1} := \frac{1}{a+b}\), \(\mu(x) := | a_{1} | \varphi(a_{1} x, a_{1} x)\), \(n := 2\), \(N := 1\), and \(Df := D_{1} f\), then \(a_{1}\), N, f, and μ satisfy conditions (11) and (12). In view of Lemma 2.4, there exists a unique mapping \(F : V \to Y\) satisfying (13) and (14), i.e., F satisfies

$$ F(a_{1} x) = a_{1}^{N} F(x) $$

for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum_{i=0}^{\infty}\frac{\varphi ( a_{1}^{i+1} x, a_{1}^{i+1} x )}{ | a_{1} |^{Ni+N-1}} $$

for all \(x \in V \backslash\{ 0 \}\).

Furthermore, φ, f, and F satisfy (16) and (17). The truth of (18) follows from the definition of F given in the proof of Lemma 2.4. By Theorem 3.2, the mapping F also satisfies (23) for all \(x, y \in V \backslash\{ 0 \}\). □

Theorem 4.3

Let a and b be real constants satisfying \(a + b \notin\{ -1, 0, 1 \}\) and let \(\varphi: (V \backslash\{ 0 \})^{2} \to[0,\infty)\) be a function satisfying the condition

$$ \sum_{i=0}^{\infty}\frac{\varphi ( (a+b)^{i} x, (a+b)^{i} y )}{(a+b)^{2i}} < \infty $$

for all \(x, y \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and

$$ \bigl\Vert D_{2} f(x,y) \bigr\Vert \leq\varphi(x,y) $$
(25)

for all \(x, y \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) such that

$$ D_{2} F(x,y) = 0 $$
(26)

for all \(x, y \in V \backslash\{ 0 \}\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum _{i=0}^{\infty}\frac{\varphi ( (a+b)^{i} x, (a+b)^{i} x )}{ (a+b)^{2i+2}} $$

for all \(x \in V \backslash\{ 0 \}\).

Proof

It follows from (25) that

$$ \bigl\Vert (a+b)^{2} f(x) - f \bigl( (a+b)x \bigr) \bigr\Vert \leq \varphi(x,x) $$

for all \(x \in V \backslash\{ 0 \}\). If we set \(a_{1} := a + b\), \(\mu(x) := \varphi(x,x)\), \(n := 2\), \(N := 2\), and \(Df := D_{2} f\), then \(a_{1}\), N, f, and μ satisfy conditions (11) and (12). We then see by Lemma 2.4 that there exists a unique mapping \(F : V \to Y\) satisfying (13) and (14), i.e., F satisfies

$$ F(a_{1} x) = a_{1}^{N} F(x) $$

for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum_{i=0}^{\infty}\frac{\varphi ( a_{1}^{i} x, a_{1}^{i} x )}{| a_{1} |^{Ni+N}} $$

for all \(x \in V \backslash\{ 0 \}\).

Furthermore, φ, f, and F satisfy (16) and (17). Due to the definition of F given in the proof of Lemma 2.4, we obtain the validity of (18). According to Theorem 3.2, the mapping F satisfies (26) for all \(x, y \in V \backslash\{ 0 \}\). □

Theorem 4.4

Let a and b be real constants such that \(a + b \notin\{ -1, 0, 1 \}\) and let \(\varphi: (V \backslash\{ 0 \})^{2} \to[0,\infty)\) be a function satisfying the condition

$$ \sum_{i=0}^{\infty}(a+b)^{2i} \varphi \biggl( \frac{x}{(a+b)^{i}}, \frac{y}{(a+b)^{i}} \biggr) < \infty $$
(27)

for all \(x, y \in V \backslash\{ 0 \}\). If a mapping \(f : V \to Y\) satisfies \(f(0) = 0\) and (25) for all \(x, y \in V \backslash\{ 0 \}\), then there exists a unique mapping \(F : V \to Y\) satisfying (26) for all \(x, y \in V \backslash\{ 0 \}\) and

$$ \bigl\Vert f(x) - F(x) \bigr\Vert \leq\sum _{i=0}^{\infty}(a+b)^{2i} \varphi \biggl( \frac{x}{(a+b)^{i+1}}, \frac{x}{(a+b)^{i+1}} \biggr) $$
(28)

for all \(x \in V \backslash\{ 0 \}\).

Proof

It follows from (25) that

$$ \biggl\Vert \frac{1}{(a+b)^{2}} f(x) - f \biggl( \frac{x}{a+b} \biggr) \biggr\Vert \leq\frac{1}{(a+b)^{2}} \varphi \biggl( \frac{x}{a+b}, \frac{x}{a+b} \biggr) $$

for all \(x \in V \backslash\{ 0 \}\). If we put \(a_{1} := \frac{1}{a+b}\), \(\mu(x) := a_{1}^{2} \varphi(a_{1} x, a_{1} x)\), \(n := 2\), \(N := 2\), and \(Df := D_{2} f\), then \(a_{1}\), N, f, and μ satisfy conditions (11) and (12). It then follows from Lemma 2.4 that there exists a unique mapping \(F : V \to Y\) satisfying (13) and (14), i.e., F satisfies

$$ F(a_{1} x) = a_{1}^{N} F(x) $$

for all \(x \in V\) and

$$ \bigl\Vert f(x) - F(x)\bigr\Vert \leq\sum_{i=0}^{\infty}\frac{\varphi ( a_{1}^{i+1} x, a_{1}^{i+1} x )}{ | a_{1} |^{Ni+N-2}} $$

for all \(x \in V \backslash\{ 0 \}\).

Moreover, φ, f, and F satisfy (16) and (17). From the definition of F given in the proof of Lemma 2.4, it follows that (18) is true. In view of Theorem 3.2, the mapping F satisfies (26) for all \(x, y \in V \backslash\{ 0 \}\). □

References

  1. Baker, JA: A general functional equation and its stability. Proc. Am. Math. Soc. 133, 1657-1664 (2005)

    Article  MATH  Google Scholar 

  2. Lee, Y-H: On the stability of the monomial functional equation. Bull. Korean Math. Soc. 45, 397-403 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cho, Y-J, Rassias, TM, Saadati, R: Stability of Functional Equations in Random Normed Spaces. Springer Optimization and Its Applications, vol. 86. Springer, New York (2013)

    MATH  Google Scholar 

  4. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, Hackensack (2002)

    Book  MATH  Google Scholar 

  5. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  6. Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, vol. 48. Springer, New York (2011)

    MATH  Google Scholar 

  7. Brillouët-Belluot, N, Brzdȩk, J, Ciepliński, K: On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, Article ID 716936 (2012)

    Article  Google Scholar 

  8. Găvruţa, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)

    Article  MathSciNet  Google Scholar 

  10. Lee, Y-H, Jung, S-M: A general uniqueness theorem concerning the stability of additive and quadratic functional equations. J. Funct. Spaces 2015, Article ID 643969 (2015)

    MathSciNet  Google Scholar 

  11. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)

    Article  MATH  Google Scholar 

  12. Ulam, SM: A Collection of Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  13. Almahelabi, M, Sirouni, M, Charifi, A, Kabboj, S: Fuzzy stability of the monomial functional equation. J. Nonlinear Anal. Appl. 2014, Article ID jnaa-00244 (2014)

    Google Scholar 

  14. Eskandani, GZ, Găvruţa, P, Kim, G-H: On the stability problem in fuzzy Banach space. Abstr. Appl. Anal. 2012, Article ID 763728 (2012)

    Article  Google Scholar 

  15. Zaharia, C: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6, 51-59 (2013)

    MATH  MathSciNet  Google Scholar 

  16. Bahyrycz, A, Olko, J: On stability of the general linear equation. Aequ. Math. (2015). doi:10.1007/s00010-014-0317-z

    Google Scholar 

  17. Brzdȩk, J, Ciepliński, K: Hyperstability and superstability. Abstr. Appl. Anal. 2013, Article ID 401756 (2013)

    Google Scholar 

  18. Lee, Y-H, Jung, S-M: A general uniqueness theorem concerning the stability of monomial functional equations in fuzzy spaces. J. Inequal. Appl. 2015, 66 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees for their kind suggestions and comments. Soon-Mo Jung was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2005557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Mo Jung.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YH., Jung, SM. A general theorem on the stability of a class of functional equations including monomial equations. J Inequal Appl 2015, 269 (2015). https://doi.org/10.1186/s13660-015-0795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0795-0

MSC

Keywords