Skip to main content

Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces

Abstract

We consider the boundedness of fractional multilinear integral operators with rough kernels \(T_{\Omega,\alpha}^{A,m}\) on the generalized Morrey spaces \(M_{p,\varphi}\). We find the sufficient conditions on the pair \((\varphi_{1},\varphi _{2})\), which ensures the boundedness of the operators \(T_{\Omega,\alpha}^{A,m}\) from \(M_{p,\varphi_{1}}\) to \(M_{p,\varphi_{2}}\) for \(1< p<\infty\). In all cases the conditions for the boundedness of the operator \(T_{\Omega,\alpha}^{A,m}\) is given in terms of Zygmund-type integral inequalities on \((\varphi_{1},\varphi_{2})\), which do not make any assumption on the monotonicity of \(\varphi_{1}(x,r)\), \(\varphi_{2}(x,r)\) in r.

1 Introduction and results

The classical Morrey spaces were originally introduced by Morrey in [1] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces, we refer the readers to [1–9]. Mizuhara [10] introduced generalized Morrey spaces. Later, Guliyev [5] defined the generalized Morrey spaces \(M_{p,\varphi}\) with normalized norm.

Suppose that \(\Omega\in L_{s}({\mathbb{S}}^{n-1})\) (\(s>1\)) is homogeneous of degree zero on \({\mathbb{R}^{n}}\) with zero means value on \({\mathbb{S}}^{n-1}\), A is a function defined on \({\mathbb {R}^{n}}\). Following [11], the rough fractional multilinear integral operator \(T_{\Omega,\alpha}^{A,m}\) is defined by

$$ T_{\Omega,\alpha}^{A,m}(f) (x)=\int_{{\mathbb{R}^{n}}} \frac {R_{m}(A;x,y)}{|x-y|^{n-\alpha+m-1}}\Omega(x-y)f(y)\, dy, $$
(1.1)

where \(0<\alpha<n\), and \(R_{m}(A;x,y)\) is the mth remainder of Taylor series of A at x about y. More precisely,

$$ R_{m}(A;x,y)=A(x)-\sum_{|\gamma|< m} \frac{1}{\gamma!}D^{\gamma}A(y) (x-y)^{\gamma}. $$
(1.2)

When \(m=1\), then \(T_{\Omega,\alpha}^{A} \equiv T_{\Omega,\alpha }^{A,1}\) is just the commutator of the fractional integral \(T_{\Omega ,\alpha}f(x)\) with function A,

$$ T_{\Omega,\alpha}^{A}(f) (x)=\int_{{\mathbb{R}^{n}}} \frac{\Omega (x-y)}{|x-y|^{n-\alpha}} \bigl(A(x)-A(y)\bigr)f(y)\, dy. $$

The weighted \((L_{p},L_{q})\)-boundedness of such a commutator is given by Ding and Lu in [12]. When \(m\ge2\), \(T_{\Omega,\alpha}^{A}\) is a non-trivial generalization of the above commutator. In [13], Wu and Yang proved the following result.

Theorem A

Suppose that \(\Omega\in L_{s}({\mathbb{S}}^{n-1})\) and assume that A has derivatives of order \(m-1\) in \(\mathit{BMO}({\mathbb{R}^{n}})\). Let \(m \ge2\), \(0<\alpha <n\), \(1\le s'< p< n/\alpha\), and \(1/q=1/p-\alpha/n\). Then there exists a constant C, independent of A and f, such that

$$ \bigl\Vert T_{\Omega,\alpha}^{A,m} f\bigr\Vert _{L_{q}({\mathbb{R}^{n}})}\le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\|f\|_{L_{p}({\mathbb{R}^{n}})}. $$

Here and in the sequel, we always denote by \(p'\) the conjugate index of any \(p>1\), that is, \(1/p+1/p'=1\), and by C a constant which is independent of the main parameters and may vary from line to line.

The commutators are useful in many nondivergence elliptic equations with discontinuous coefficients [3, 14–16]. In the recent development of commutators, Pérez and Trujillo-González [17] generalized these multilinear commutators and proved the weighted Lebesgue estimates.

In [18], Guliyev proved the following result.

Theorem B

Let \(0 < \alpha< n\), \(1 < p < n/\alpha\), and \(1/q=1/p-\alpha /n\), \(\Omega\in L_{s}({\mathbb{S}}^{n-1})\), \(1< s \le\infty \), \(A \in \mathit{BMO}\), and \((\varphi_{1},\varphi_{2})\) satisfies the condition

$$ \int_{r}^{\infty} \ln \biggl(e+\frac{t}{r} \biggr) \frac{ {\operatorname{ess\, sup}} _{t< s< \infty} \varphi_{1}(x,s) s^{\frac{n}{p}}}{t^{\frac{n}{q}}} \frac{dt}{t} \le C \varphi_{2}(x,r), $$

where C does not depend on x and r. Then the operator \(T_{\Omega ,\alpha}^{A}\) is bounded from \(M_{p,\varphi_{1}}\) to \(M_{q,\varphi_{2}}\).

It has been proved by many authors that most of the operators which are bounded on a Lebesgue space are also bounded in an appropriate Morrey space; see [19]. As far as we know, there is no research regarding the boundedness of the fractional multilinear integral operator on Morrey space.

In this paper, we are going to prove that these results are valid for the rough fractional multilinear integral operator \(T_{\Omega,\alpha }^{A,m}\) on generalized Morrey spaces. Our main results can be formulated as follows.

Theorem 1.1

Let \(0 < \alpha< n\), \(1\le s' < p < n/\alpha\), and \(1/q=1/p-\alpha/n\). Suppose that \(\Omega\in L_{s}({\mathbb{S}}^{n-1})\) and \((\varphi _{1},\varphi_{2})\) satisfy the condition

$$ \int_{r}^{\infty} \biggl(1+\ln \frac{t}{r} \biggr) \frac{ {\operatorname{ess\, inf}} _{t< \tau< \infty } \varphi_{1}(x,\tau) \tau^{\frac{n}{p}}}{t^{\frac{n}{q}}} \frac{dt}{t} \le C_{0} \varphi_{2}(x,r), $$
(1.3)

where \(C_{0}\) does not depend on x and r. If A has derivatives of order \(m-1\) in \(\mathit{BMO}({\mathbb{R}^{n}})\), then the operator \(T_{\Omega,\alpha}^{A,m}\) is bounded from \(M_{p,\varphi_{1}}({\mathbb{R}^{n}})\) to \(M_{q,\varphi_{2}}({\mathbb {R}^{n}})\). Moreover, then there is a constant \(C>0\) independent of f such that

$$ \bigl\Vert T_{\Omega,\alpha}^{A,m} f\bigr\Vert _{M_{q,\varphi_{2}}}\le C \sum_{|\gamma|=m-1} \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\|f\|_{M_{p,\varphi_{1}}}. $$

Remark 1.1

Note that in the case \(m=1\) from Theorem 1.1 we get Theorem B.

2 Generalized Morrey spaces \(M_{p,\varphi}\)

The classical Morrey spaces \(M_{p,\lambda}\) were originally introduced by Morrey in [1] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces, we refer the readers to [20, 21].

We denote by \(M_{p,\lambda} \equiv M_{p,\lambda}({\mathbb{R}^{n}})\) the Morrey space, the space of all functions \(f\in L_{p}^{\mathrm{loc}}({\mathbb{R}^{n}})\) with finite quasinorm,

$$\Vert f\Vert _{M_{p,\lambda}} = \sup_{x\in{\mathbb{R}^{n}}, r>0 } r^{-\frac{\lambda}{p}} \|f\|_{L_{p}(B(x,r))}, $$

where \(1\le p < \infty\) and \(0 \le\lambda\le n\).

Note that \(M_{p,0}=L_{p}({\mathbb{R}^{n}})\) and \(M_{p,n}=L_{\infty }({\mathbb{R}^{n}})\). If \(\lambda<0\) or \(\lambda>n\), then \(M_{p,\lambda}={\Theta}\), where Θ is the set of all functions equivalent to 0 on \({\mathbb{R}^{n}}\).

In [10], Mizuhara introduced the generalized Morrey spaces \(\mathcal{M}_{p,\varphi}({\mathbb{R}^{n}})\) in the following form and discussed the boundedness of the Calderón-Zygmund singular integral operators.

Definition 2.1

Let \(\varphi(x,r)\) be a positive measurable function on \({\mathbb {R}^{n}}\times (0,\infty)\) and \(1 \le p < \infty\). We denote by \(\mathcal{M}_{p,\varphi} \equiv\mathcal{M}_{p,\varphi }({\mathbb{R}^{n}})\) the generalized Morrey space, the space of all functions \(f\in L_{p}^{\mathrm{loc}}({\mathbb{R}^{n}})\) with finite quasinorm

$$\|f\|_{\mathcal{M}_{p,\varphi}} = \sup_{x\in{\mathbb {R}^{n}}, r>0} \varphi(x,r)^{-1} \|f\|_{L_{p}(B(x,r))}. $$

Note that the generalized Morrey spaces \(M_{p,\varphi} \equiv M_{p,\varphi}({\mathbb{R}^{n}})\) with normalized norm,

$$\|f\|_{M_{p,\varphi}} = \sup_{x\in{\mathbb{R}^{n}}, r>0} \varphi (x,r)^{-1} \bigl\vert B(x,r)\bigr\vert ^{-\frac{1}{p}} \|f \|_{L_{p}(B(x,r))}, $$

were first defined by Guliyev in [5].

Also, in [5], by \(\mathit{WM}_{p,\varphi} \equiv \mathit{WM}_{p,\varphi }({\mathbb{R}^{n}} )\) we denote the weak generalized Morrey space of all functions \(f\in WL_{p}^{\mathrm{loc}}({\mathbb{R}^{n}})\) for which

$$\|f\|_{\mathit{WM}_{p,\varphi}} = \sup_{x\in{\mathbb{R}^{n}}, r>0} \varphi (x,r)^{-1} \bigl\vert B(x,r)\bigr\vert ^{-\frac{1}{p}} \|f \|_{WL_{p}(B(x,r))} < \infty. $$

By the definition, we recover the Morrey space \(M_{p,\lambda}\) and weak Morrey space \(\mathit{WM}_{p,\lambda}\) under the choice \(\varphi(x,r)=r^{\frac{\lambda-n}{p}}\):

$$M_{p,\lambda}= {\bigl.M_{p,\varphi}\bigr|_{\varphi(x,r)=r^{\frac{\lambda-n}{p}}}},\qquad \mathit{WM}_{p,\lambda}={\bigl. \mathit{WM}_{p,\varphi}\bigr|_{\varphi(x,r)=r^{\frac{\lambda-n}{p}}}}. $$

There are many papers discussing the conditions on \(\varphi(x,r)\) to obtain the boundedness of operators on the generalized Morrey spaces. For example, in [10], the function φ is supposed to be a positive growth function and satisfy the double condition: for all \(r>0\), \(\varphi(2r) \le D \varphi(r)\), where \(D \ge1\) is a constant independent of r. This type of conditions on φ is studied by many authors; see, for example, [22, 23]. In [24], the following statement was proved by Nakai for the Riesz potential \(I_{\alpha }\):

$$I_{\alpha }f(x) = \int_{{\mathbb{R}^{n}}} \frac {f(y)\,dy}{|x-y|^{n-\alpha }}, \quad 0 < \alpha < n. $$

Theorem C

Let \(1\le p<\infty \), \(0 < \alpha < \frac {n}{p}\), \(\frac {1}{q}=\frac{1}{p}-\frac{\alpha }{n}\), and let \(\varphi(x,r)\) satisfy the conditions

$$ c^{-1} \varphi(x,r) \le\varphi(x,t) \le c \varphi(x,r), $$
(2.1)

whenever \(r \le t \le2r\), where c (\(c \ge1\)) does not depend on t, r, x, and

$$ \int_{r}^{\infty } t^{\alpha } \varphi^{q}(x,t)\frac{dt}{t} \le C \varphi^{p}(x,r), $$
(2.2)

where C does not depend on x and r. Then the operator \(I_{\alpha }\) is bounded from \(M_{p,\varphi}\) to \(M_{q,\varphi}\) for \(p > 1\) and from \(M_{1,\varphi}\) to \(\mathit{WM}_{1,\varphi}\) for \(p=1\).

The following statements, containing the Mizuhara and Nakai results obtained in [10, 24], were proved by Guliyev in [5, 25] (see also [26]).

Theorem D

Let \(1\le p<\infty \), \(0 < \alpha < \frac {n}{p}\), \(\frac {1}{q}=\frac{1}{p}-\frac{\alpha }{n}\), and \((\varphi_{1},\varphi_{2})\) satisfy the condition

$$ \int_{r}^{\infty } t^{\alpha } \varphi_{1}(x,t)\frac{dt}{t} \le C \varphi_{2}(x,r), $$
(2.3)

where C does not depend on x and r. Then the operator \(I_{\alpha }\) is bounded from \(M_{p,\varphi_{1}}\) to \(M_{q,\varphi_{2}}\) for \(p > 1\) and from \(M_{1,\varphi_{1}}\) to \(\mathit{WM}_{q,\varphi_{2}}\) for \(p=1\).

Recently, in [27] and [28], Guliyev et al. introduced a weaker condition for the boundedness of Riesz potential from \(M_{p,\varphi_{1}}\) to \(M_{q,\varphi_{2}}\).

Theorem E

Let \(1 \le p < \infty\), \(0<\alpha <\frac{n}{p}\), \(\frac{1}{q}=\frac{1}{p}-\frac{\alpha }{n}\), and \((\varphi_{1},\varphi_{2})\) satisfy the condition

$$ \int_{t}^{\infty} \frac{ {\operatorname{ess\, sup}}_{r< s< \infty} \varphi_{1}(x,s) s^{\frac {n}{p}}}{r^{\frac{n}{q}+1}}\, dr \le C \varphi_{2}(x,t), $$
(2.4)

where C does not depend on x and t. Then the operator \(I_{\alpha }\) is bounded from \(M_{p,\varphi_{1}}\) to \(M_{q,\varphi_{2}}\) for \(1< p< q<\infty \) and from \(M_{1,\varphi_{1}}\) to \(\mathit{WM}_{q,\varphi_{2}}\) for \(1< q<\infty \).

By an easy computation, we can check that if the pair \((\varphi _{1},\varphi_{2})\) satisfies the double condition, then it will satisfy condition (2.3). Moreover, if \((\varphi _{1},\varphi_{2})\) satisfies condition (2.3), it will also satisfy condition (2.4). But the opposite is not true. We refer to [24] and Remark 4.7 in [28] for details.

3 Some preliminaries

Let \(B=B(x_{0},r_{B})\) denote the ball with the center \(x_{0}\) and radius \(r_{B}\). For a given weight function ω and a measurable set E, we also denote the Lebesgue measure of E by \(|E|\). For any given \(\Omega\subseteq{\mathbb{R}^{n}}\) and \(0 < p < \infty\), denote by \(L_{p}(\Omega)\) the space of all function f satisfying

$$ \|f\|_{L_{p}(\Omega)}= \biggl(\int_{\Omega} \bigl\vert f(x) \bigr\vert ^{p} \, dx \biggr)^{\frac {1}{p}}< \infty. $$

First we recall the definition of the space \(\mathit{BMO}({\mathbb{R}^{n}})\).

Definition 3.1

Suppose that \(f\in L_{1}^{\mathrm{loc}}({\mathbb{R}^{n}})\), let

$$ \|f\|_{\ast}=\sup_{x\in{\mathbb{R}^{n}}, r>0}\frac{1}{|B(x,r)|} \int _{B(x,r)}\bigl\vert f(y)-f_{B(x,r)}\bigr\vert \,dy< \infty, $$

where

$$f_{B(x,r)}=\frac{1}{|B(x,r)|} \int_{B(x,r)} f(y)\,dy. $$

Define

$$\mathit{BMO}\bigl({\mathbb{R}^{n}}\bigr)=\bigl\{ f \in L_{1}^{\mathrm{loc}}\bigl({\mathbb{R}^{n}}\bigr) : \| f \|_{\ast} < \infty \bigr\} . $$

If one regards two functions whose difference is a constant as one, then space \(\mathit{BMO}({\mathbb{R}^{n}})\) is a Banach space with respect to norm \(\| \cdot \|_{\ast}\).

Remark 3.1

[29]

  1. (1)

    The John-Nirenberg inequality: there are constants \(C_{1}, C_{2}>0\), such that, for all \(f \in \mathit{BMO}({\mathbb{R}^{n}})\) and \(\beta>0\),

    $$\bigl\vert \bigl\{ x \in B : \bigl\vert f(x)-f_{B}\bigr\vert > \beta \bigr\} \bigr\vert \le C_{1} |B| e^{-C_{2} \beta/\| f \|_{\ast}}, \quad \forall B \subset {\mathbb{R}^{n}}. $$
  2. (2)

    The John-Nirenberg inequality implies that

    $$ \|f\|_{\ast}\approx\sup_{x\in{\mathbb{R}^{n}}, r>0} \biggl(\frac {1}{|B(x,r)|} \int_{B(x,r)}\bigl\vert f(y)-f_{B(x,r)}\bigr\vert ^{p} \,dy \biggr)^{\frac{1}{p}} $$
    (3.1)

    for \(1< p<\infty \).

  3. (3)

    Let \(f\in \mathit{BMO}({\mathbb{R}^{n}})\). Then there is a constant \(C>0\) such that

    $$ \vert f_{B(x,r)}-f_{B(x,t)}\vert \le C \|f \|_{\ast}\ln\frac{t}{r} \quad \mbox{for } 0< 2r< t, $$
    (3.2)

    where C is independent of f, x, r, and t.

Lemma 3.1

[30]

Let b be a function in \(\mathit{BMO}({\mathbb{R}^{n}})\), \(1 \le p < \infty\), and \(r_{1}, r_{2} > 0\). Then

$$\biggl( \frac{1}{|B(x,r_{1})|} \int_{B(x,r_{1})} \bigl\vert b(y)-b_{B(x,r_{2})}\bigr\vert ^{p} \,dy \biggr)^{\frac{1}{p}} \le C \biggl( 1+ \biggl\vert \ln\frac{r_{1}}{r_{2}} \biggr\vert \biggr) \| b \| _{\ast}, $$

where \(C>0\) is independent of b, x, \(r_{1}\), and \(r_{2}\).

Below we present some conclusions as regards \(R_{m}(A;x,y)\).

Lemma 3.2

[21]

Suppose b be a function on \({\mathbb{R}^{n}}\) with the mth derivatives in \(L_{q}({\mathbb{R}^{n}})\), \(q > n\). Then

$$ \bigl\vert R_{m}(b;x,y)\bigr\vert \le C |x-y|^{m} \sum _{|\gamma|=m} \biggl(\frac {1}{B(x,5\sqrt{n}|x-y|)}\int _{B(x,5\sqrt{n}|x-y|)} \bigl\vert D^{\gamma}b(z)\bigr\vert \, dz \biggr)^{1/q}. $$

Lemma 3.3

Let \(x\in B(x_{0},r)\), \(y\in B(x_{0},2^{j+1}r)\setminus B(x_{0},2^{j}r)\). Then

$$ \bigl\vert R_{m}(A;x,y)\bigr\vert \le C|x-y|^{m-1} \biggl(j\sum_{|\gamma|=m-1} \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}+\sum _{|\gamma|=m-1} \bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert \biggr). $$
(3.3)

Proof

For fixed \(x\in{\mathbb{R}}^{n}\), let

$$ \bar{A}(x)=A(x)-\sum_{|\gamma|=m-1}\frac{1}{\gamma !} \bigl(D^{\gamma}A\bigr)_{B(x,5\sqrt{n}|x-y|)}x^{\gamma}. $$

So

$$\begin{aligned} \bigl\vert R_{m}(A;x,y)\bigr\vert &=\bigl\vert R_{m}(\bar{A};x,y)\bigr\vert \\ & \le\bigl\vert R_{m-1}(\bar{A};x,y)\bigr\vert +\sum _{|\gamma|=m-1}\frac {1}{\gamma!}\bigl\vert \bigl(D^{\gamma}\bar{A}(y)\bigr)\bigr\vert |x-y|^{m-1}. \end{aligned}$$
(3.4)

By Lemma 3.2, we get

$$ \bigl\vert R_{m-1}(\bar{A};x,y)\bigr\vert \le C |x-y|^{m-1}\sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}. $$
(3.5)

Since \(x\in B(x_{0},r)\), \(y\in B(x_{0},2^{j+1}r)\setminus B(x_{0},2^{j}r)\), it is easy to see that \(2^{j-1}r \le|x-y| \le2^{j+2}r\). In this way, we have

$$ B\bigl(x_{0},2^{j-1}r\bigr)\subset B\bigl(x,5\sqrt{n}\vert x-y\vert \bigr)\subset100\sqrt{n}B\bigl(x_{0},2^{j}r \bigr). $$

Then

$$ \frac{|100\sqrt{n}B(x_{0},2^{j}r)|}{|B(x,5\sqrt{n}|x-y|)|}\le\frac {|100\sqrt{n}B(x_{0},2^{j}r)|}{|B(x_{0},2^{j-1}r)|}\le C. $$

Therefore

$$\begin{aligned}& \bigl\vert \bigl(D^{\gamma}A\bigr)_{B(x,5\sqrt{n}|x-y|)}- \bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{j}r)}\bigr\vert \\& \quad \le\frac{1}{|B(x,5\sqrt{n}|x-y|)|}\int_{B(x,5\sqrt {n}|x-y|)}\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{j}r)}\bigr\vert \,dy \\& \quad \le\frac{1}{|100\sqrt{n}B(x_{0},2^{j}r)|}\int_{100\sqrt {n}B(x_{0},2^{j}r)}\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{j}r)}\bigr\vert \,dy \\& \quad \le C \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}. \end{aligned}$$

Note that

$$\begin{aligned}& \bigl\vert \bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{j}r)}- \bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert \\& \quad \le\sum_{k=1}^{j} \bigl\vert \bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{k}r)}-\bigl(D^{\gamma}A \bigr)_{B(x_{0},2^{k-1}r)}\bigr\vert \\& \quad \le2^{n} j \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}. \end{aligned}$$

Then

$$\begin{aligned}& \bigl\vert \bigl(D^{\gamma}A\bigr)_{B(x,5\sqrt{n}|x-y|)}- \bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert \\& \quad \le\bigl\vert \bigl(D^{\gamma}A\bigr)_{B(x,5\sqrt{n}|x-y|)}- \bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{j}r)}\bigr\vert +\bigl\vert \bigl(D^{\gamma}A\bigr)_{B(x_{0},2^{j}r)}-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\vert \\& \quad \le C_{j} \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}. \end{aligned}$$

Thus

$$\begin{aligned} \bigl\vert D^{\gamma}\bar{A}(y)\bigr\vert & =\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x,5\sqrt {n}|x-y|)}\bigr\vert \\ & \le\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\vert +\bigl\vert \bigl(D^{\gamma}A \bigr)_{B(x,5\sqrt {n}|x-y|)}-\bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert \\ & \le\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\vert + C_{j} \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}. \end{aligned}$$
(3.6)

Combining with (3.4), (3.5), and (3.6), then (3.3) is proved. □

Finally, we present a relationship between essential supremum and essential infimum.

Lemma 3.4

[31]

Let f be a real-valued nonnegative function and measurable on E. Then

$$ \Bigl(\mathop{\operatorname{ess\, inf}} _{x\in E} f(x) \Bigr)^{-1}=\mathop{\operatorname{ess\, sup}} _{x\in E} \frac {1}{f(x)}. $$

4 A local Guliyev-type estimates

In the following theorem we get Guliyev-type local estimate (see, for example, [5, 25]) for the operator \(T_{\Omega,\alpha}^{A,m}\).

Theorem 4.1

Let \(\Omega\in L_{s}({\mathbb{S}}^{n-1})\), \(1\le s' < p < n/\alpha\), and let \(1/q = 1/p - \alpha/n\). Let A be a function defined on \({\mathbb{R}^{n}}\). Suppose that it has derivatives of order \(m-1\) in \(\mathit{BMO}({\mathbb{R}^{n}})\), then the inequality

$$ \bigl\Vert T_{\Omega,\alpha}^{A,m}(f)\bigr\Vert _{L_{q}(B(x_{0},r))} \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast} r^{\frac{n}{q}} \int _{2r}^{\infty } \|f\|_{L_{p}(B(x_{0},t))} t^{-\frac{n}{q}-1} \,dt $$
(4.1)

holds for any ball \(B(x_{0},r)\), and for all \(f\in L_{p}^{\mathrm {loc}}({\mathbb{R}^{n}})\), where the constant C is independent of f, r, and \(x_{0}\).

Proof

We write f as \(f=f_{1}+f_{2}\), where \(f_{1}(y)=f(y)_{\chi _{B(x_{0},2r)}(y)}\), \(\chi_{B(x_{0},2r)}\) denotes the characteristic function of \(B(x_{0},2r)\). Then

$$ \bigl\Vert T_{\Omega,\alpha}^{A,m}(f)\bigr\Vert _{L_{q}(B(x_{0},r))}\le \bigl\Vert T_{\Omega,\alpha }^{A,m}(f_{1})\bigr\Vert _{L_{q}(B(x_{0},r))}+ \bigl\Vert T_{\Omega,\alpha}^{A,m}(f_{2}) \bigr\Vert _{L_{q}(B(x_{0},r))}. $$

Since \(f_{1}\in L_{p}({\mathbb{R}^{n}})\), by the boundedness of \(T^{A}_{\Omega ,\alpha}\) from \(L_{p}({\mathbb{R}^{n}})\) to \(L_{q}({\mathbb{R}^{n}})\) (Theorem A) we get

$$\begin{aligned} \bigl\Vert T_{\Omega,\alpha}^{A,m}(f_{1})\bigr\Vert _{L_{q}(B(x_{0},r))}&\le\bigl\Vert T_{\Omega ,\alpha}^{A,m}(f_{1}) \bigr\Vert _{L_{q}({\mathbb{R}^{n}})} \\ & \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A \bigr\Vert _{\ast}\|f_{1}\| _{L_{p}({\mathbb{R}^{n}})} \\ & = C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\|f\|_{L_{p}(B(x_{0},2r))}. \end{aligned}$$

Moreover,

$$\begin{aligned} \|f\|_{L_{p}(B(x_{0},2r))} &\le C r^{\frac{n}{s'}-\alpha}\|f\| _{L_{p}(B(x_{0},2r))}\int _{2r}^{\infty} \frac{dt}{t^{n-\alpha+1}} \\ & \le C r^{\frac{n}{q}}\|1\|_{L_{\frac{s'p}{p-s'}}(B(x_{0},r))} \int_{2r}^{\infty} \|f\|_{L_{p}(B(x_{0},t))} \frac{dt}{t^{n-\alpha+1}} \\ & \le C r^{\frac{n}{q}}\int_{2r}^{\infty}\|f \|_{L_{p}(B(x_{0},t))} \|1\|_{L_{\frac{s'p}{p-s'}}(B(x_{0},t))}\frac{dt}{t^{n-\alpha+1}}. \end{aligned}$$

Thus

$$\begin{aligned}& \bigl\Vert T_{\Omega,\alpha}^{A,m}(f_{1}) \bigr\Vert _{L_{q}(B(x_{0},r))} \\& \quad \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}r^{\frac{n}{q}} \int_{2r}^{\infty} \|f\|_{L_{p}(B(x_{0},t))} t^{-\frac{n}{q}} \frac{dt}{t}. \end{aligned}$$
(4.2)

Let \(\triangle_{i}=(B(x_{0},2^{j+1}r))\setminus(B(x_{0},2^{j}r))\), and let \(x\in B(x_{0},r)\). By Lemma 3.3 we get

$$\begin{aligned} \bigl\vert T_{\Omega,\alpha}^{A,m} (f_{2}) (x)\bigr\vert \le&\biggl\vert \int_{(B(x_{0},2r))^{c}} \frac{R_{m}(A;x,y)}{|x-y|^{n-\alpha+m-1}}\Omega(x-y)f(y)\,dy\biggr\vert \\ \le& C \sum_{j=1}^{\infty}\int _{\triangle_{i}}\frac{|\Omega (x-y)f(y)|}{|x-y|^{n-\alpha}} \\ &{} \times \biggl(j \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast} +\sum _{|\gamma|=m-1}\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert \biggr)\,dy \\ \le& C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A \bigr\Vert _{\ast}\sum_{j=1}^{\infty}j \int_{\triangle_{i}}\frac{|\Omega(x-y)f(y)|}{|x-y|^{n-\alpha}}\,dy \\ &{} + C \sum_{|\gamma|=m-1} \sum _{j=1}^{\infty} \int_{\triangle_{i}} \frac{|\Omega(x-y)f(y)|}{|x-y|^{n-\alpha}}\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\vert \,dy \\ =&I_{1}+I_{2}. \end{aligned}$$
(4.3)

By Hölder’s inequality we have

$$ \int_{\triangle_{i}}\frac{|\Omega(x-y)f(y)|}{|x-y|^{n-\alpha}} \,dy\le \biggl(\int _{\triangle_{i}}\bigl\vert \Omega(x-y)\bigr\vert ^{s}\, dy \biggr)^{\frac{1}{s}} \biggl(\int_{\triangle_{i}} \frac{|f(y)|^{s'}}{|x-y|^{(n-\alpha )s'}} \,dy \biggr)^{\frac{1}{s'}}. $$

When \(x \in B(x_{0},s)\) and \(y\in\triangle_{i}\), then by a direct calculation, we can see that \(2^{j-1}r\le|y-x|<2^{j+1}r\). Hence

$$ \biggl(\int_{\triangle_{i}}\bigl\vert \Omega(x-y)\bigr\vert ^{s}\, dy \biggr)^{\frac{1}{s}}\le C \|\Omega\|_{L^{s}({\mathbb{S}}^{n-1})} \bigl\vert B\bigl(x_{0},2^{j+1}r\bigr)\bigr\vert ^{\frac{1}{s}}. $$
(4.4)

We also note that if \(x\in B(x_{0},r)\), \(y\in B(x_{0},2r)^{c}\), then \(\frac {1}{2} |x_{0}-y| \le|x-y| \le\frac{3}{2} |x_{0}-y|\). Consequently

$$ \biggl(\int_{\triangle_{i}} \frac{|f(y)|^{s'}}{|x-y|^{(n-\alpha )s'}}\,dy \biggr)^{\frac{1}{s'}}\le \frac{1}{|B(x_{0},2^{j+1}r)|^{1-\alpha/n}} \biggl(\int_{B(x_{0},2^{j+1}r)} \bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac{1}{s'}}. $$
(4.5)

Then

$$ I_{1}\le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\sum _{j=1}^{\infty} j \bigl(2^{j+1} r \bigr)^{\alpha-n} \biggl(\int_{B(x_{0},2^{j+1}r)}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac{1}{s'}}. $$
(4.6)

Since \(s' < p\), it follows from Hölder’s inequality that

$$ \biggl(\int_{B(x_{0},2^{j+1}r)}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac{1}{s'}}\le C \| f\|_{L_{p}(B(x_{0},2^{j+1}r))} \|1 \|_{L_{\frac{s'p}{p-s'}}(B(x_{0},2^{j+1}r))}. $$
(4.7)

Then

$$\begin{aligned} I_{1} & \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\sum_{j=1}^{\infty} j \bigl(2^{j+1} r\bigr)^{\alpha-n} \biggl(\int_{B(x_{0},2^{j+1}s)} \bigl\vert f(y)\bigr\vert ^{q'}\,dy \biggr)^{\frac{1}{q'}} \\ & \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A \bigr\Vert _{\ast}\sum_{j=1}^{\infty} \biggl(1+\ln{\frac{2^{j+1}r}{r}} \biggr) \bigl(2^{j+1}r \bigr)^{\alpha-n}\|f\|_{L_{p}(B(x_{0},2^{j+1}r))} \|1\|_{L_{\frac{s'p}{p-s'}}(B(x_{0},2^{j+1}r))} \\ & \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A \bigr\Vert _{\ast}\sum_{j=1}^{\infty} \int_{2^{j+1}r}^{2^{j+2}l} \biggl(1+\ln\frac{t}{r} \biggr)\|f\|_{L_{p}(B(x_{0},t))} \|1\|_{L_{\frac{s'p}{p-s'}}(B(x_{0},t))}\frac{dt}{r^{1-\alpha+n/s'}} \\ & \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A \bigr\Vert _{\ast}\int_{2r}^{\infty} \biggl(1+\ln\frac{t}{r} \biggr)\|f\|_{L_{p}(B(x_{0},t))} \|1\|_{L_{\frac{s'p}{p-s'}}(B(x_{0},t))} \frac{dt}{t^{1-\alpha+n/s'}}. \end{aligned}$$

Then

$$ I_{1}\le C \int_{2r}^{\infty} \biggl(1+\ln\frac{t}{r} \biggr)\|f\| _{L_{p}(B(x_{0},t))} t^{-\frac{n}{q}-1} \,dt. $$
(4.8)

On the other hand, by Hölder’s inequality and (4.4), (4.5), we have

$$\begin{aligned}& \int_{\triangle_{i}}\frac{|\Omega(x-y)f(y)|}{|x-y|^{n-\alpha }}\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert \,dy \\& \quad \le \biggl(\int_{\triangle_{i}}\bigl\vert \Omega(x-y)\bigr\vert ^{s}\, dy \biggr)^{\frac {1}{s}} \biggl(\int _{\triangle_{i}}\frac{|D^{\gamma}A(y)- (D^{\gamma}A)_{B(x_{0},r)}f(y)|^{s'}}{|x-y|^{(n-\alpha)s'}}\,dy \biggr)^{\frac{1}{s'}} \\& \quad \le C \sum_{|\gamma|=m-1}\sum _{j=1}^{\infty }\bigl(2^{j+1}r \bigr)^{\alpha-n} \biggl(\int_{B(x_{0},2^{j+1}r)} \bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert ^{s'}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac{1}{s'}}. \end{aligned}$$

Applying Hölder’s inequality we get

$$\begin{aligned}& \biggl(\int_{B(x_{0},2^{j+1}r)}\bigl\vert D^{\gamma}A(y)- \bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert ^{s'}\bigl\vert f(y)\bigr\vert ^{s'}\,dy \biggr)^{\frac{1}{s'}} \\& \quad \le C \|f\|_{L_{p}(B(x_{0},2^{j+1}r))}\bigl\Vert D^{\gamma}A(\cdot)- \bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\Vert _{L^{\frac{ps'}{p-s'}}(B(x_{0},2^{j+1}r))}. \end{aligned}$$

Consequently,

$$\begin{aligned} I_{2} \le& C \sum_{|\gamma|=m-1}\sum _{j=1}^{\infty} \int_{2^{j+1}r}^{2^{j+2}r} \bigl(2^{j+1}r\bigr)^{\alpha-n} \|f\|_{L_{p}(B(x_{0},t))} \\ &{} \times\bigl\Vert D^{\gamma}A(\cdot)-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\Vert _{L^{\frac{ps'}{p-s'}}(B(x_{0},t))}\,dt \\ \le& C \sum_{|\gamma|=m-1}\int_{2r}^{\infty}\|f\|_{L_{p}(B(x_{0},t))} \\ &{} \times\bigl\Vert D^{\gamma}A(\cdot)-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\Vert _{L^{\frac {ps'}{p-s'}}(B(x_{0},t))} \frac{dt}{t^{1-\alpha+n/s'}}. \end{aligned}$$

Then it follows from Lemma 3.1 that

$$\begin{aligned}& \bigl\Vert D^{\gamma}A(\cdot)-\bigl(D^{\gamma}A \bigr)_{B(x_{0},r)}\bigr\Vert _{L^{\frac {ps'}{p-s'}}(B(x_{0},t))} \\& \quad \le \biggl(\int_{B(x_{0},t)}\bigl\vert D^{\gamma}A(y)-\bigl(D^{\gamma}A\bigr)_{B(x_{0},r)}\bigr\vert ^{\frac{p s'}{p-s'}} \,dy \biggr)^{\frac{p-s'}{p s'}} \\& \quad \le C \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast} \biggl(1+\ln\frac{t}{r} \biggr)r^{\frac {n(p-s')}{p s'}} \\& \quad \le C \bigl\Vert D^{\gamma}A\bigr\Vert _{\ast} \biggl(1+\ln\frac{t}{r} \biggr)r^{\frac {n}{s'}-\alpha}r^{-\frac{n}{q}}. \end{aligned}$$

Then

$$ I_{2} \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\int_{2r}^{\infty} \biggl(1+\ln\frac{t}{r} \biggr)\|f\|_{L_{p}(B(x_{0},t))} t^{-\frac{n}{q}-1} \,dt. $$
(4.9)

Combining the estimates of \(I_{1}\) and \(I_{2}\), we have

$$\begin{aligned}& \sup_{x\in B(x_{0},r)}\bigl\vert T_{\Omega,\alpha}^{A,m}(f_{2}) (x)\bigr\vert \\& \quad \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\int_{2r}^{\infty} \biggl(1+\ln\frac{t}{r} \biggr)\|f\|_{L_{p}(B(x_{0},t))} t^{-\frac {n}{q}-1} \,dt. \end{aligned}$$

Then we get

$$\begin{aligned}& \bigl\Vert T_{\Omega,\alpha}^{A,m}(f_{2}) \bigr\Vert _{L_{q}(B(x_{0},r))} \\& \quad \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}r^{\frac {n}{q}}\int_{2r}^{\infty} \|f\|_{L_{p}(B(x_{0},t))}t^{-\frac{n}{q}-1} \,dt. \end{aligned}$$
(4.10)

This completes the proof of Theorem 4.1. □

5 Proof of Theorem 1.1

Since \(f\in M_{p,\varphi_{1}}({\mathbb{R}^{n}})\), by Lemma 3.4 and the non-decreasing, with respect to t, of the norm \(\|f\| _{L_{p}(B(x_{0},t))}\), we get

$$\begin{aligned}& \frac{\|f\|_{L_{p}(B(x_{0},t))}}{{\operatorname{ess\, inf}}_{0< t< \tau< \infty } \varphi _{1}(x_{0},\tau) \tau^{\frac{n}{p}}} \\& \quad \le\mathop{\operatorname{ess\, sup}}_{0< t< \tau< \infty } \frac{\| f\|_{L_{p}(B(x_{0},t))}}{\varphi _{1}(x_{0},\tau) \tau^{\frac{n}{p}}} \\& \quad \le\sup_{\tau>0} \frac{\|f\|_{L_{p}(B(x_{0},\tau))}}{\varphi _{1}(x_{0},\tau) \tau^{\frac{n}{p}}} \\& \quad \le\|f\|_{M_{p,\varphi_{1}}}. \end{aligned}$$

Since \((\varphi_{1},\varphi_{2})\) satisfies (1.3), we have

$$\begin{aligned}& \int_{r}^{\infty } \biggl(1+\ln\frac{t}{r} \biggr)\|f\|_{L_{p}(B(x_{0},t))} t^{-\frac{n}{q}-1} \,dt \\& \quad = \int_{r}^{\infty }\frac{\|f\|_{L_{p}(B(x_{0},t))}}{ {\operatorname{ess\, inf}}_{t< \tau< \infty } \varphi_{1}(x_{0},\tau) \tau^{\frac{n}{p}}} \biggl(1+ \ln\frac{t}{r} \biggr) \frac{ {\operatorname{ess\, inf}}_{t< \tau< \infty } \varphi _{1}(x_{0},\tau)\tau^{\frac {n}{p}}}{t^{\frac{n}{q}}}\frac{dt}{t} \\& \quad \le\|f\|_{M_{p,\varphi_{1}}}\int_{r}^{\infty } \biggl(1+\ln\frac {t}{r} \biggr) \frac{ {\operatorname{ess\, inf}}_{t< \tau< \infty } \varphi _{1}(x_{0},\tau)\tau^{\frac {n}{p}}}{t^{\frac{n}{q}}}\frac{dt}{t} \\& \quad \le C \|f\|_{M_{p,\varphi_{1}}}\varphi_{2}(x_{0},t). \end{aligned}$$

Then by (4.1) we get

$$\begin{aligned}& \bigl\Vert T_{\Omega,\alpha}^{A,m}(f)\bigr\Vert _{M_{q,\varphi_{2}}} \\& \quad = \sup_{x_{0}\in{\mathbb{R}^{n}},t>0}\frac{1}{\varphi _{2}(x_{0},t)} \biggl( \frac{1}{|B(x_{0},t)|}\int_{B(x_{0},t)} \bigl\vert T_{\Omega,\alpha}^{A,m}(f) (y)\bigr\vert ^{q} \,dy \biggr)^{1/q} \\& \quad \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast} \sup_{x_{0}\in{\mathbb{R}^{n}},t>0}\frac{1}{\varphi_{2}(x_{0},t)} \int_{r}^{\infty } \biggl(1+\ln\frac{t}{r} \biggr) \|f\|_{L_{p}(B(x_{0},t))} t^{-\frac{n}{q}-1} \,dt \\& \quad \le C \sum_{|\gamma|=m-1}\bigl\Vert D^{\gamma}A\bigr\Vert _{\ast}\|f\| _{M_{p,\varphi_{1}}}. \end{aligned}$$

References

  1. Morrey, CB: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126-166 (1938)

    Article  MathSciNet  Google Scholar 

  2. Burenkov, V, Guliyev, VS: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces. Potential Anal. 30(3), 211-249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Di Fazio, G, Ragusa, MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112, 241-256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fan, D, Lu, S, Yang, D: Boundedness of operators in Morrey spaces on homogeneous spaces and its applications. Acta Math. Sin. New Ser. 14, suppl., 625-634 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Guliyev, VS: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009, Article ID 503948 (2009)

    Article  MathSciNet  Google Scholar 

  6. Palagachev, DK, Softova, LG: Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal. 20, 237-263 (2004)

    Article  MathSciNet  Google Scholar 

  7. Ragusa, MA: Embeddings for Morrey-Lorentz spaces. J. Optim. Theory Appl. 154(2), 491-499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ragusa, MA: Necessary and sufficient condition for a VMO function. Appl. Math. Comput. 218(24), 11952-11958 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sawano, Y, Gunawan, H, Guliyev, V, Tanaka, H: Morrey spaces and related function spaces. J. Funct. Spaces 2014, Article ID 867192 (2014)

    MathSciNet  Google Scholar 

  10. Mizuhara, T: Boundedness of some classical operators on generalized Morrey spaces. In: Igari, S (ed.) Harmonic Analysis. ICM 90 Satellite Proceedings, pp. 183-189. Springer, Tokyo (1991)

    Google Scholar 

  11. Ding, Y: A note on multilinear fractional integrals with rough kernel. Adv. Math. 30, 238-246 (2001)

    MATH  Google Scholar 

  12. Ding, Y, Lu, S: Higher order commutators for a class of rough operators. Ark. Mat. 37, 33-44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, Q, Yang, D: On fractional multilinear singular integrals. Math. Nachr. 239/240, 215-235 (2002)

    Article  Google Scholar 

  14. Chiarenza, F, Frasca, M, Longo, P: Interior \(W^{2,p}\)-estimates for nondivergence elliptic equations with discontinuous coefficients. Ric. Mat. 40(1), 149-168 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Chiarenza, F, Frasca, M, Longo, P: \(W^{2,p}\)-Solvability of Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336(2), 841-853 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Guliyev, VS, Softova, L: Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients. Potential Anal. 38(4), 843-862 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pérez, C, Trujillo-González, R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 65, 672-692 (2002)

    Article  MATH  Google Scholar 

  18. Guliyev, VS: Generalized local Morrey spaces and fractional integral operators with rough kernel. J. Math. Sci. (N.Y.) 193(2), 211-227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chiarenza, F, Frasca, M: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. (7) 7, 273-279 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Giaquinta, M: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  21. Kufner, A, John, O, Fuçik, S: Function Spaces. Noordhoff, Leyden; Academia, Prague (1977)

    MATH  Google Scholar 

  22. Ding, Y, Yang, DS, Zhou, Z: Boundedness of sublinear operators and commutators on \(L^{p,\omega}(\mathbb{R}^{n})\). Yokohama Math. J. 46, 15-27 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Wang, H: Boundedness of intrinsic square functions on generalized Morrey spaces. Georgian Math. J. 21(3), 351-367 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Nakai, E: Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95-103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guliyev, VS: Integral operators on function spaces on the homogeneous groups and on domains in \({\mathbb{R}^{n}}\). Doctoral dissertation, Mat. Inst. Steklov, Moscow (1994) (in Russian)

  26. Guliyev, VS: Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications. Baku, Elm. (1999) (Russian)

  27. Akbulut, A, Guliyev, VS, Mustafayev, R: Boundedness of the maximal operator and singular integral operator in generalized Morrey spaces. Math. Bohem. 137(1), 27-43 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Guliyev, VS, Aliyev, SS, Karaman, T, Shukurov, PS: Boundedness of sublinear operators and commutators on generalized Morrey space. Integral Equ. Oper. Theory 71(3), 327-355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Janson, S: On functions with conditions on the mean oscillation. Ark. Mat. 14(2), 189-196 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, Y, Lu, S: Strongly singular Calderón-Zygmund operators and their commutators. Jordan J. Math. Stat. 1(1), 31-49 (2008)

    MATH  Google Scholar 

  31. Cohen, J, Gosselin, J: A BMO estimate for multilinear singular integrals. Ill. J. Math. 30, 445-464 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their careful reading, comments, and suggestions, which helped us improve the presentation of this paper. The research of A Akbulut was partially supported by a grant of Ahi Evran University Scientific Research Projects PYO.FEN.4003.13.004 and PYO.FEN.4001.14.006. The research of Z Safarov was partially supported by a grant of Presidium Azerbaijan National Academy of Science 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbulut.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

This work was carried out in collaboration between all authors. AA and VHH raised these interesting problems in the research. AA, VHH, and ZVS proved the theorems, interpreted the results, and wrote the article. All authors defined the research theme, and read and approved the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbulut, A., Hamzayev, V.H. & Safarov, Z.V. Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces. J Inequal Appl 2015, 234 (2015). https://doi.org/10.1186/s13660-015-0751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0751-z

MSC

Keywords