Skip to main content

Schrödinger type operators on generalized Morrey spaces

Abstract

In this paper we introduce a class of generalized Morrey spaces associated with the Schrödinger operator \(L=-\Delta+V\). Via a pointwise estimate, we obtain the boundedness of the operators \(V^{\beta_{2}}(-\Delta +V)^{-\beta_{1}}\) and their dual operators on these Morrey spaces.

Introduction

The investigation of Schrödinger operators on the Euclidean space \(\mathbb{R}^{n}\) with nonnegative potentials which belong to the reverse Hölder class has attracted attention of many authors. Shen [1] studied the Schrödinger operator \(L=-\Delta+ V\), assuming the nonnegative potential V belongs to the reverse Hölder class \(B_{q}\), \(q\geq\frac{n}{2}\). In [1], Shen proved the \(L^{p}\)-boundedness of the operators \((-\Delta+V)^{i\gamma}\), \(\nabla^{2}(-\Delta+V)^{-1}\), \(\nabla (-\Delta+V)^{-1/2}\) and \(\nabla(-\Delta+V)^{-1}\nabla\). For further information, we refer the reader to Guo et al. [2], Liu [3], Liu et al. [4, 5], Tang and Dong [6], Yang et al. [7, 8] and the references therein.

The purpose of this paper is to generalize the results of Shen [1] and Sugano [9] to a class of Morrey spaces associated with L, denoted by \(L_{\alpha,\theta,V}^{p,q,\lambda}(\mathbb {R}^{n})\). See Definition 2.8 below. The significance of these spaces is that for particular choices of the parameters p, q, λ, θ and α, one obtains many classical function spaces (see Table 1).

Table 1 Special cases of \(\pmb{L^{p,q,\lambda}_{\alpha,\beta, V}}\)

In Section 3, let T be one of the Schrödinger type operators \(\nabla(-\Delta+V)^{-1}\nabla\), \(\nabla(-\Delta +V)^{-1/2}\) and \((-\Delta+V)^{-1/2}\nabla\). With the help of the \(L^{p}\)-boundedness of T, it is easy to verify that T is bounded on \(L_{\alpha,\theta, V}^{p,q, \lambda}(\mathbb{R}^{n})\). For \(b\in \mathit{BMO}(\mathbb{R}^{n})\), we can also obtain the boundedness of the commutator \([b, T]\) on \(L_{\alpha,\theta, V}^{p,q, \lambda}(\mathbb {R}^{n})\). See Theorems 3.2 and 3.3. For \(\theta=0\), \(p=q\) and \(0<\lambda<1\), \(L_{\alpha,0, V}^{p,p, \lambda }(\mathbb{R}^{n})\) becomes the spaces \(L_{\alpha,V}^{p,\lambda }(\mathbb{R}^{n})\) introduced by Tang and Dong [6]. Hence, the results are generalizations of Theorems 1 and 2 in [6].

In recent years, the fractional integral operator \(I_{\alpha}=(-\Delta +V)^{-\alpha}\) has been studied extensively. We refer to Duong and Yan [14], Jiang [15], Tang and Dong [6] and Yang et al. [7] for details. Suppose that \(V\in B_{s}\), \(s\geq\frac {n}{2}\). For \(0\leq\beta_{2}\leq\beta_{1}<\frac{n}{2}\), let

$$ \textstyle\begin{cases} T_{\beta_{1},\beta_{2}}=:V^{\beta_{2}}(- \Delta+V)^{-\beta_{1}}, \\ T^{\ast}_{\beta_{1},\beta_{2}}=:(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}. \end{cases} $$

Sugano [9] obtained the weighted estimates for \(T_{\beta_{1}, \beta_{2}}\), \(T^{\ast}_{\beta_{1},\beta_{2}}\), \(0<\beta_{2}\leq\beta_{1}<1\). If \(\beta_{2}=0\), we can see that \(T_{\beta_{1},0}=I_{\beta_{1}}\). So \(T_{\beta_{1},\beta_{2}}\) and \(T_{\beta_{1},\beta_{2}}^{\ast}\) can be seen as generalizations of \(I_{\alpha}\). Moreover, for \((\beta _{1}, \beta_{2})=(1,1)\) and \((1/2,1/2)\), \(T_{1,1}^{\ast}=(-\Delta +V)^{-1}V\) and \(T_{1/2,1/2}^{\ast}=(-\Delta+V)^{-1/2}V^{1/2}\), respectively, which are studied by Shen [1] thoroughly. In Section 4, assume that \(1< p_{1}<\infty\), \(1< p_{2}<{s}/{\beta_{2}}\) and \(1< q<\infty\). If the index \((q, \beta _{1},\beta_{2},\lambda,\alpha,\theta)\) satisfies

$$ \textstyle\begin{cases} {1}/{p_{2}}={1}/{p_{1}}-{2( \beta_{1}-\beta_{2})}/{n}, \\ \alpha\in(-\infty,0] \quad \mbox{and} \quad \lambda\in(0,n), \\ {\lambda}/{q}-{1}/{p_{1}}+{2\beta_{1}}/{n}< \theta< {\lambda }/{q}+1-{1}/{p_{1}}, \end{cases} $$

we prove that \(T_{\beta_{1},\beta_{2}}\) is bounded from \(L^{p_{1},q,\lambda}_{\alpha,\theta, V}(\mathbb{R}^{n})\) to \(L^{p_{2},q,\lambda}_{\alpha,\theta,V}(\mathbb{R}^{n})\). Specially, we know that \((-\Delta+V)^{-1}V\) and \((-\Delta +V)^{-1/2}V^{1/2}\) are bounded on \(L_{\alpha,\theta, V}^{p,q, \lambda }(\mathbb{R}^{n})\). See Theorems 4.7 and 4.8 for details.

In the research of harmonic analysis and partial differential equations, the commutators play an important role. If T is a Calderón-Zygmund operator, \(b\in \mathit{BMO}(\mathbb{R}^{n})\), the \(L^{p}\)-boundedness of \([b,T ]\) was first discovered by Coifman et al. [16]. Later, Strömberg [14] gave a simple proof, adopting the idea of relating commutators with the sharp maximal operator of Fefferman and Stein. In 2008, Guo et al. [2] introduced a condition \(H(m)\) and obtained \(L^{p}\)-boundedness of the commutator of Riesz transforms associated with L, where \(b\in \mathit{BMO}(\mathbb{R}^{n})\). For further information, we refer to Liu [17], Liu et al. [4, 5], Yang et al. [8] and the references therein.

In Section 5, by the boundedness of \(I_{\alpha}\) and \((-\Delta+V)^{-\beta}V^{\beta}\), we can deduce that the commutators \([b, T_{\beta_{1},\beta_{2}}]\) and \([b, T^{\ast}_{\beta_{1},\beta_{2}}]\) are bounded from \(L^{p_{1}}(\mathbb{R}^{n})\) to \(L^{p_{2}}(\mathbb {R}^{n})\) (see Theorem 5.1). Theorem 5.1 together with Lemmas 4.1 and 2.7 can be used to prove that the commutators \([b, T_{\beta_{1},\beta_{2}}]\) and \([b, T^{\ast}_{\beta_{1},\beta_{2}}]\) are bounded from \(L_{\alpha,\theta,V}^{p_{1},q,\lambda}(\mathbb{R}^{n})\) to \(L_{\alpha,\theta,V}^{p_{2},q,\lambda}(\mathbb{R}^{n})\), respectively (see Theorems 5.2 and 5.3).

Remark 1.1

Unlike the setting of the Lebesgue spaces, it is well known that the dual of \(L^{p,\lambda}(\mathbb{R}^{n})\) is not \(L^{p',-\lambda }(\mathbb{R}^{n})\). Hence, after obtaining Theorem 4.7, we cannot deduce Theorem 4.8 via the method of duality used by Guo et al. [2].

Preliminaries

Schrödinger operator and the auxiliary function

In this paper, we consider the Schrödinger differential operator \(L=-\Delta +V\) on \(\mathbb{R}^{n}\), \(n\geq3\), where V is a nonnegative potential belonging to the reverse Hölder class \(B_{s}\), \(s\geq\frac {n}{2}\), which is defined as follows.

Definition 2.1

Let V be a nonnegative function.

  1. (i)

    We say \(V\in B_{s}\), \(s>1\), if there exists \(C>0\) such that for every ball \(B\subset\mathbb{R}^{n}\), the reverse Hölder inequality

    $$\biggl(\frac{1}{|B|}\int_{B}V^{s}(x)\, dx \biggr)^{\frac{1}{s}}\lesssim \biggl(\frac{1}{|B|}\int_{B}V(x) \, dx \biggr) $$

    holds.

  2. (ii)

    We say \(V\in B_{\infty}\) if there exists a constant C such that for every ball \(B\subset\mathbb{R}^{n}\),

    $$\|V\|_{L^{\infty}(B)}=\frac{1}{|B|}\int_{B}V(x)\, dx. $$

Remark 2.2

Assume \(V\in B_{s}\), \(1< s<\infty\). Then \(V(y)\, dy\) is a doubling measure. Namely, there exists a constant \(C_{0}\) such that for any \(r>0\) and \(y\in\mathbb{R}^{n}\),

$$ \int_{B(x,2r)}V(y)\, dy\lesssim C_{0} \int_{B(x,r)}V(y)\, dy. $$
(2.1)

Definition 2.3

(Shen [1])

For \(x\in\mathbb{R}^{n}\), the function \(m_{V}(x)\) is defined as

$$ \frac{1}{m_{V}(x)}=:\sup \biggl\{ r>0 :\frac{1}{r^{n-2}}\int_{B(x,r)}V(y) \, dy\leq1 \biggr\} . $$

Remark 2.4

The function \(m_{V}\) reflects the scale of V essentially, but behaves better. It is deeply studied in Shen [1] and plays a crucial role in our proof. We list a property of \(m_{V}\) which will be used in the sequel and refer the reader to Guo et al. [2] for the details.

We state some notations and properties of \(m_{V}\).

Lemma 2.5

(Lemma 1.4 in [1])

Suppose that \(V \in B_{s}\) with \(s\geq\frac {n}{2}\). Then there exist positive constants C and \(k_{0}\) such that

  1. (a)

    if \(|x-y|\leq\frac{C}{m_{V}(x)}\), \(m_{V}(x)\sim m_{V}(y)\);

  2. (b)

    \(m_{V}(y)\lesssim(1+|x-y| m_{V}(x))^{k_{0}}m_{V}(x)\);

  3. (c)

    \(m_{V}(y)\geq{Cm_{V}(x)}/\{1+|x-y|m_{V}(x)\}^{k_{0}/(k_{0}+1)}\).

Lemma 2.6

(Lemma 1.2 in [1])

Suppose that \(V\in B_{s}\), \(s>\frac{n}{2}\). There exists a constant C such that for \(0< r< R<\infty\),

$$\frac{1}{r^{n-2}}\int_{B(x,r)}V(y)\, dy\lesssim \biggl( \frac{R}{r} \biggr)^{\frac{n}{s}-2}\cdot\frac{1}{R^{n-2}}\int _{B(x,R)}V(y)\, dy. $$

Lemma 2.7

(Lemma 2.3 in [2])

Suppose \(V\in B_{s}\), \(s>\frac{n}{2}\). Then, for any \(N>\log_{2}C_{0}+1\), there exists a constant \(C_{N}\) such that for any \(x\in\mathbb{R}^{n}\) and \(r>0\),

$$\frac{1}{(1+rm_{V}(x))^{N}}\int_{B(x,r)}V(y)\, dy\lesssim C_{N}r^{n-2}. $$

Generalized Morrey spaces associated with L

Suppose that \(V\in B_{s}\), \(s>1\). Let \(L=-\Delta+V\) be the Schrödinger operator. Now we introduce a class of generalized Morrey spaces associated with L. For \(k\in\mathbb{Z}\), let \(E_{k}=B(x_{0},2^{k}r)\backslash B(x_{0},2^{k-1}r)\) and \(\chi_{k}\) be the characteristic function of \(E_{k}\).

Definition 2.8

Suppose that \(V\in B_{s}\), \(s>1\). Let \(p\in[1,+\infty)\), \(q\in [1,+\infty)\), \(\alpha\in(-\infty,+\infty)\) and \(\lambda\in (0,n)\), \(\theta\in(-\infty,+\infty)\). For \(f\in L_{\mathrm{loc}}^{q}(\mathbb {R}^{n})\), we say \(f\in L_{\alpha,\theta,V}^{p,q,\lambda}(\mathbb {R}^{n})\) provided that

$$\|f\|^{q}_{L_{\alpha,\theta,V}^{p,q,\lambda}(\mathbb{R}^{n})}=\sup_{B(x_{0},r)\subset\mathbb{R}^{n}} \frac{(1+rm_{V}(x_{0}))^{\alpha }}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \|\chi_{k}f\| ^{q}_{L^{p}(\mathbb{R}^{n})}< \infty, $$

where \(B(x_{0},r)\) denotes a ball centered at \(x_{0}\) and with radius r.

Proposition 2.9

  1. (i)

    For \(\alpha_{1}>\alpha_{2}\), \(L_{\alpha_{1},\theta, V}^{p,q,\lambda}(\mathbb{R}^{n})\subseteq L_{\alpha_{2},\theta, V}^{p,\lambda,q}(\mathbb{R}^{n})\).

  2. (ii)

    If \(\theta=0\), \(p=q\) and \(\alpha<0\), \(L^{p,\lambda }(\mathbb{R}^{n}) \subset L_{\alpha,\theta,V}^{p,q, \lambda }(\mathbb{R}^{n})\).

  3. (iii)

    If \(\theta=0\), \(p=q\) and \(\alpha>0\), \(L_{\alpha,\theta ,V}^{p,q, \lambda}(\mathbb{R}^{n}) \subset L^{p,\lambda}(\mathbb{R}^{n})\).

Calderón-Zygmund operators

We say that an operator T taking \(C_{c}^{\infty}(\mathbb{R}^{n})\) into \(L_{\mathrm{loc}}^{1}(\mathbb {R}^{n})\) is called a Calderón-Zygmund operator if

  1. (a)

    T extends to a bounded linear operator on \(L^{2}(\mathbb {R}^{n})\);

  2. (b)

    there exists a kernel K such that for every \(f\in L_{\mathrm{loc}}^{1}(\mathbb{R}^{n})\),

    $$Tf(x)=\int_{\mathbb{R}^{n}}K(x,y)f(y)\, dy \quad \mbox{a.e. on }\{ \operatorname{supp}f\}^{c}; $$
  3. (c)

    the kernel \(K(x,y)\) satisfies the Calderón-Zygmund estimate

    $$\begin{aligned}& \bigl\vert K(x,y)\bigr\vert \leq\frac{C}{|x-y|^{n}}; \\& \bigl\vert K(x+h,y)-K(x,y)\bigr\vert +\bigl\vert K(x,y+h)-K(x,y)\bigr\vert \leq\frac{C|h|^{\delta }}{|x-y|^{n+\delta}} \end{aligned}$$

for \(x,y\in\mathbb{R}^{n}\), \(|h|<\frac{|x-y|}{2}\) and for some \(\delta>0\).

Shen [1] obtained the following result.

Theorem 2.10

(Theorem 0.8 in [1])

Suppose \(V\in B_{n}\). Then

$$\nabla(-\Delta+V)^{-1}\nabla,\qquad \nabla(-\Delta+V)^{-\frac {1}{2}} \quad \textit{and}\quad (-\Delta+V)^{-\frac{1}{2}}\nabla $$

are Calderón-Zygmund operators.

Corollary 2.11

Suppose that \(V\in B_{n}\) and \(b\in \mathit{BMO}(\mathbb{R}^{n})\). The commutator \([b, T]\) is bounded on \(L^{p}(\mathbb{R}^{n})\).

In particular, let K denote the kernel of one of the above operators. Then K satisfies the following estimate:

$$ \bigl\vert K(x,y)\bigr\vert \leq\frac{C_{N}}{(1+| x-y| m_{V}(x))^{N}} \frac{1}{|x-y|^{n}} $$
(2.2)

for any \(N\in\mathbb{N}\). See (6.5) of Shen [1] for details.

Suppose \(V\in B_{s}\) for \(s\geq\frac{n}{2}\). Let \(L=-\Delta+V\). The semigroup generated by L is defined as

$$ T_{t}f(x)=e^{-tL}f(x)=\int _{\mathbb{R}^{n}}K_{t}(x,y)f(y)\, dy,\quad f\in L^{2}\bigl(\mathbb{R}^{n}\bigr), t>0, $$
(2.3)

where \(K_{t}\) is the kernel of \(e^{-tL}\).

Lemma 2.12

([18])

Let \(K_{t}(x,y)\) be as in (2.3). For every nonnegative integer k, there is a constant \(C_{k}\) such that

$$0\leq K_{t}(x,y)\leq C_{k}t^{-\frac{n}{2}}\exp\bigl(-{| x-y | ^{2}}/{5t}\bigr) \bigl(1+\sqrt{t} m_{V}(x)+\sqrt{t} m_{V}(y)\bigr)^{-k}. $$

Some notations

Throughout the paper, c and C will denote unspecified positive constants, possibly different at each occurrence. The constants are independent of the functions. \(\mathsf{U}\approx \mathsf{V}\) represents that there is a constant \(c>0\) such that \(c^{-1}\mathsf{V}\le\mathsf {U}\le c\mathsf{V}\) whose right inequality is also written as \(\mathsf{U}\lesssim\mathsf{V}\). Similarly, if \(\mathsf{V}\ge c\mathsf{U}\), we denote \(\mathsf{V}\gtrsim\mathsf{U}\).

Riesz transforms and the commutators on \(L^{p,q,\lambda }_{\alpha,\theta,V}(\mathbb{R}^{n})\)

Throughout this paper, for \(p\in(1, \infty)\), denote by \(p'\) the conjugate of p, that is, \(\frac{1}{p}+\frac{1}{p'}=1\). Let \(V\in B_{n}\). In this section, we assume that T is one of the Schrödinger type operators \(\nabla(-\Delta+V)^{-1}\nabla\), \(\nabla(-\Delta +V)^{-1/2}\) and \((-\Delta+V)^{-1/2}\nabla\). We study the boundedness on \(L^{p,q,\lambda}_{\alpha,\theta ,V}(\mathbb{R}^{n})\) of T and its commutator \([b, T]\) with \(b\in \mathit{BMO}(\mathbb{R}^{n})\). The bounded mean oscillation space \(\mathit{BMO}(\mathbb {R}^{n})\) is defined as follows.

Definition 3.1

A locally integrable function b is said to belong to \(\mathit{BMO}(\mathbb {R}^{n})\) if

$$ \|b\|_{\mathit{BMO}}=:\sup_{B}\frac{1}{|B|}\int _{B}\bigl\vert b(x)-b_{B}\bigr\vert \, dx< \infty, $$

where the supremum is taken over all balls B in \(\mathbb{R}^{n}\). Here \(b_{B}=\frac{1}{|B|}\int_{B}b(x)\, dx\) stands for the mean value of b over the ball B and \(|B|\) means the measure of B.

We first prove that T is bounded on \(L^{p,q,\lambda}_{\alpha,\theta ,V}(\mathbb{R}^{n})\).

Theorem 3.2

Suppose that \(\alpha\in(-\infty,0]\), \(\lambda\in(0,n)\) and \(1< q<\infty\). If \(1< p<\infty\), \(\frac{\lambda}{q}-\frac{1}{p}<\theta<\frac{\lambda }{q}+1-\frac{1}{p}\), then the operators T are bounded on \(L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb{R}^{n})\).

Proof

For any ball \(B(x_{0},r)\), write

$$f(y)=\sum^{\infty}_{j=-\infty}f(y) \chi_{j}(y)=\sum^{\infty }_{j=-\infty}f_{j}(y), $$

where \(E_{j}=B(x_{0},2^{j}r)\backslash B(x_{0},2^{j-1}r)\). Hence, we have

$$\begin{aligned}& {\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}} {r^{\lambda n}}\sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \|\chi_{k}Tf\|^{q}_{L^{p}(\mathbb {R}^{n})} \\& \quad \lesssim{\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}} {r^{-\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\| \chi_{k}Tf_{j}\|_{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {}+ {\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}} {r^{-\lambda n}}\sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\| \chi_{k}Tf_{j}\| _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {}+ {\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}} {r^{-\lambda n}}\sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\| \chi_{k}Tf_{j}\| _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\& \quad = A_{1}+A_{2}+A_{3}. \end{aligned}$$

For \(A_{2}\), by Theorem 2.10, we have

$$\begin{aligned} A_{2} \lesssim& \bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|Tf_{j}\| _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|f_{j}\| _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim& \|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta, V}}. \end{aligned}$$

We first estimate the term \(E_{1}\). Note that if \(x\in E_{k}\), \(y\in E_{j}\) and \(j\leq k-2\), then \(|x-y|\sim2^{k}r\). By Lemma 2.5 and (2.2), we can get

$$\begin{aligned} \|\chi_{k}Tf_{j}\|_{L^{p}(\mathbb{R}^{n})} \lesssim& \biggl(\int _{E_{k}}\biggl\vert \int_{\mathbb{R}^{n}} \frac {1}{(1+| x-y| m_{V}(x))^{N}}\frac{1}{|x-y|^{n}}\bigl\vert f_{j}(y)\bigr\vert \, dy\biggr\vert ^{p}\, dx \biggr)^{\frac{1}{p}} \\ \lesssim&\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n}}|E_{k}|^{\frac{1}{p}} \int_{E_{j}}\bigl\vert f(y)\bigr\vert \, dy \\ \lesssim&\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}|E_{k}|^{\frac {1}{p}-1}|E_{j}|^{\frac{1}{p'}} \biggl(\int_{E_{j}}\bigl\vert f(y)\bigr\vert ^{p} \, dy \biggr)^{\frac{1}{p}}, \end{aligned}$$

where \(\frac{1}{p}+\frac{1}{p'}=1\). Since \(- \frac{1}{p}+ \frac{\lambda}{q} <\theta<(1- \frac{1}{p})+ \frac{\lambda}{q}\), we obtain

$$\begin{aligned} A_{1} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\frac {|E_{k}|^{\frac{1}{p}-1}|E_{j}|^{\frac{1}{p'}}\|\chi_{j}f\| _{L^{p}(\mathbb{R}^{n})}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}} \Biggr)^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\frac {2^{\frac{n(j-k)}{p'}}(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha }{q}}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}} \\ &\Biggl.\Biggl.{}\times\bigl(2^{j}r\bigr)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta } \bigl(1+2^{j}rm_{V}(x_{0})\bigr)^{\frac{\alpha}{q}} \bigl(2^{j}r\bigr)^{-\frac{\lambda n}{q}}\bigl(|E_{j}|^{\theta q} \|\chi_{j}f\|^{q}_{L^{p}(\mathbb {R}^{n})}\bigr)^{\frac{1}{q}} \Biggr)\Biggr.^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{k-2}_{j=-\infty }2^{\frac{n(j-k)}{p'}}|E_{k}|^{\theta-\frac{\lambda }{q}}|E_{j}|^{\frac{\lambda}{q}-\theta} \Biggr)^{q}\|f\| ^{q}_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb{R}^{n})} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{k-2}_{j=-\infty }2^{(j-k)n(1-\frac{1}{p}+\frac{\lambda}{q}-\theta)} \Biggr)^{q}\|f\| ^{q}_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb{R}^{n})} \\ \lesssim&\|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb{R}^{n})}. \end{aligned}$$

For \(A_{3}\), we can see that when \(x\in E_{k}\), \(y\in E_{j}\), then \(|x-y|\sim2^{j}r\) for \(j\geq k+2\). Similar to \(E_{1}\), we have

$$\begin{aligned} \|\chi_{k}Tf_{j}\|_{L^{p}(\mathbb{R}^{n})} \lesssim& \frac {1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{j}r)^{n}}|E_{k}|^{\frac{1}{p}}\int _{E_{j}}\bigl\vert f(y)\bigr\vert \,dy \\ \lesssim&\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{j}r)^{n}}|E_{k}|^{\frac{1}{p}}|E_{j}|^{\frac{1}{p'}} \biggl(\int_{E_{j}}\bigl\vert f(y)\bigr\vert ^{p} \,dy \biggr)^{\frac{1}{p}} \\ \lesssim&\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}|E_{k}|^{\frac {1}{p}}|E_{j}|^{-\frac{1}{p}} \|\chi_{j}f\|_{L^{p}(\mathbb{R}^{n})}. \end{aligned}$$

Since \(-\frac{1}{p}+\frac{\lambda}{q}<\theta<(1-\frac{1}{p})+\frac {\lambda}{q}\), choosing N large enough, we obtain

$$\begin{aligned} A_{3} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\frac {|E_{k}|^{\frac{1}{p}}|E_{j}|^{-\frac{1}{p}}\|\chi_{j}f\| _{L^{p}(\mathbb{R}^{n})}}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}} \Biggr)^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times\Biggl\{ \sum^{\infty}_{j=k+2}\frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha}{q}}(2^{j}r)^{\frac{\lambda n}{q}}|E_{j}|^{-\alpha}}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}} \\ &\Biggl.\Biggl.{}\times2^{(k-j)\frac{n}{p}}\bigl(1+2^{j}rm_{V}(x_{0}) \bigr)^{\frac{\alpha }{q}}\bigl(2^{j}r\bigr)^{-\frac{\lambda n}{q}} \bigl(|E_{j}|^{\theta q}\|\chi_{j}f\| ^{q}_{L^{p}(\mathbb{R}^{n})}\bigr)^{\frac{1}{q}} \Biggr\} \Biggr.^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{\infty }_{j=k+2}2^{(k-j)\frac{n}{p}}|E_{j}|^{\frac{\lambda}{q}-\theta } \Biggr)^{q}\|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb {R}^{n})} \\ \lesssim&\|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb{R}^{n})}. \end{aligned}$$

Let \(N=[-\frac{\alpha}{q}+1](k_{0}+1)\). Finally, \(\|Tf\|_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb {R}^{n})}\lesssim\|f\|_{L^{p,q,\lambda}_{\alpha,\theta, V}(\mathbb {R}^{n})}\). This completes the proof of Theorem 3.2. □

Suppose that \(b\in \mathit{BMO}(\mathbb{R}^{n})\) and \(V\in B_{n}\). Let T be one of the Schrödinger type operators \(\nabla(-\Delta+V)^{-1}\nabla \), \(\nabla(-\Delta+V)^{-1/2}\) and \((-\Delta+V)^{-1/2}\nabla\). The commutator \([b, T]\) is defined as

$$[b,T]f=bT(f)-T(bf). $$

Theorem 3.3

Suppose that \(V\in B_{n}\) and \(b\in \mathit{BMO}(\mathbb{R}^{n})\). Let \(1< p<\infty\), \(1< q<\infty\), \(\alpha\in(-\infty, 0]\), \(\lambda\in(0,n)\). If the index \((p,q,\theta,\lambda)\) satisfies \(\frac{\lambda }{q}-\frac{1}{p}<\theta<\frac{\lambda}{q}+1-\frac{1}{p}\), then

$$\bigl\Vert [b,T]f\bigr\Vert _{L^{p,q,\lambda}_{\alpha,\theta,V}}\leq C\|f\| _{L^{p,q,\lambda}_{\alpha,\theta,V}}\|b \|_{\mathit{BMO}}. $$

Proof

For any ball \(B=B(x_{0},r)\), we can get

$$f(y)=\sum^{\infty}_{j=-\infty}f(y) \chi_{E_{j}}(y)=\sum^{\infty }_{j=-\infty}f_{j}(y), $$

where \(E_{j}=B(x_{0},2^{j}r)\backslash B(x_{0},2^{j-1}r)\). Hence, we have

$$\begin{aligned}& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \bigl\Vert \chi_{k}[b,T]f\bigr\Vert ^{q}_{L^{p}(\mathbb{R}^{n})} \\& \quad \lesssim\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\bigl\Vert \chi_{k}[b,T]f_{j}\bigr\Vert _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {} +\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\bigl\Vert \chi_{k}[b,T]f_{j}\bigr\Vert _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {} +\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\bigl\Vert \chi_{k}[b,T]f_{j}\bigr\Vert _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\& \quad =: B_{1}+B_{2}+B_{3}. \end{aligned}$$

For \(B_{2}\), by Corollary 2.11, we have

$$\begin{aligned} B_{2} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\bigl\Vert [b,T]f_{j}\bigr\Vert _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|f_{j}\| _{L^{p}(\mathbb{R}^{n})} \Biggr)^{q}\|b\|^{q}_{\mathit{BMO}} \\ \lesssim& \|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

Denote by \(b_{2^{k}r}\) the mean value of b on the ball \(B(x_{0}, 2^{k}r)\). For \(B_{1}\), by Lemma 2.5 and (2.2), we have

$$\begin{aligned}& \bigl\Vert \chi_{k}[b,T]f_{j}\bigr\Vert _{L^{p}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n}} \\& \qquad {}\times\biggl[\int _{E_{k}} \biggl(\int_{E_{j}}\bigl\vert b(x)-b(y)\bigr\vert \bigl\vert f(y)\bigr\vert \,dy \biggr)^{p} \,dx \biggr]^{\frac{1}{p}} \\& \quad \lesssim \frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n}} \biggl[ \biggl(\int _{E_{k}}\bigl\vert b(x)-b_{2^{k}r}\bigr\vert ^{p}\,dx \biggr)^{\frac{1}{p}}\int_{E_{j}}\bigl\vert f(y)\bigr\vert \,dy \\& \qquad {}+|E_{k}|^{\frac{1}{p}}\int_{E_{j}}\bigl\vert b(y)-b_{2^{k}r}\bigr\vert \bigl\vert f(y)\bigr\vert \,dy \biggr] \\& \quad \lesssim \frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n}} \biggl[|E_{k}|^{\frac{1}{p}}|E_{j}|^{1-\frac{1}{p}} \| b\|_{\mathit{BMO}}\|f_{j}\|_{L^{p}(\mathbb{R}^{n})} \\& \qquad {} +|E_{k}|^{\frac{1}{p}}\|f_{j}\|_{L^{p}(\mathbb{R}^{n})} \biggl(\int_{E_{j}}\bigl\vert b(y)-b_{2^{k}r}\bigr\vert ^{p'}\,dx \biggr)^{\frac{1}{p'}} \biggr] \\& \quad \lesssim \frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac{|E_{j}|^{1-\frac {1}{p}}}{|E_{k}|^{1-\frac{1}{p}}}(k-j)\|f_{j} \|_{L^{p}(\mathbb {R}^{n})}\|b\|_{\mathit{BMO}}, \end{aligned}$$

where in the third inequality, we have used John-Nirenberg’s inequality [19]. Since \(- \frac{1}{p}+ \frac{\lambda}{q} <\theta<(1- \frac{1}{p})+ \frac{\lambda}{q}\), we obtain

$$\begin{aligned} B_{1} \lesssim& \frac{(1+rm_{V}(x_{0}))^{\alpha}}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\frac {(k-j)\|f_{j}\|_{L^{p}(\mathbb{R}^{n})}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}} \frac{|E_{j}|^{1-\frac{1}{p}}}{|E_{k}|^{1-\frac{1}{p}}} \Biggr)^{q}\| b\|^{q}_{\mathit{BMO}} \\ \lesssim& \frac{(1+rm_{V}(x_{0}))^{\alpha}}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl[\sum^{k-2}_{j=-\infty}\frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha }{q}}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\|b \|^{q}_{\mathit{BMO}} \\ &\Biggl.\Biggl.{}\times(k-j) \bigl(2^{j}r\bigr)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta} \frac {|E_{j}|^{1-\frac{1}{p}}}{|E_{k}|^{1-\frac{1}{p}}} \Biggr]\Biggr.^{q}\|f\| ^{q}_{L_{\alpha,\theta,V}^{p,q,\lambda}} \\ \lesssim& \frac{(1+rm_{V}(x_{0}))^{\alpha}}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{k-2}_{j=-\infty }(k-j)2^{(k-j)n(\theta-\frac{\alpha}{q}+\frac{1}{p}-1)} \Biggr)^{q} \|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta,V}}\|b \|^{q}_{\mathit{BMO}} \\ \lesssim& \|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

For \(B_{3}\), similar to \(B_{1}\), we have

$$\begin{aligned}& \bigl\Vert \chi_{k}[b,T]f_{j}\bigr\Vert _{L^{p}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{j}r)^{n}} \biggl(\int _{E_{k}}\biggl\vert \int_{E_{j}}\bigl\vert \bigl(b(x)-b(y)\bigr)f(y)\bigr\vert \,dy\biggr\vert ^{p}\,dx \biggr)^{\frac{1}{p}} \\& \quad \lesssim\frac {j-k}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}|E_{k}|^{\frac {1}{p}}|E_{j}|^{-\frac{1}{p}} \|f_{j}\|_{L^{p}(\mathbb{R}^{n})}\|b\|_{\mathit{BMO}}. \end{aligned}$$

Since \(-\frac{1}{p}+\frac{\lambda}{q}<\theta<(1-\frac{1}{p})+\frac {\lambda}{q}\), choosing N large enough, we obtain

$$\begin{aligned} B_{3} \lesssim& \bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\frac {|E_{k}|^{\frac{1}{p}}|E_{j}|^{-\frac{1}{p}}(j-k)\|f_{j}\|_{L^{p} (\mathbb{R}^{n})}}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}} \Biggr)^{q}\|b\| ^{q}_{\mathit{BMO}} \\ \lesssim& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl[\sum^{\infty}_{j=k+2}\frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha }{q}}}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}} \\ &\Biggl.\Biggl.{}\times(j-k) \bigl(2^{j}r\bigr)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta }|E_{k}|^{\frac{1}{p}}|E_{j}|^{-\frac{1}{p}} \Biggr]\Biggr.^{q}\|f\| ^{q}_{L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb{R}^{n})}\|b\| ^{q}_{\mathit{BMO}} \\ \lesssim& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{\infty }_{j=k+2}2^{(k-j)n(\frac{1}{p}-\frac{\lambda}{q}+\theta)} \Biggr)^{q} \|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb{R}^{n})}\|b\| ^{q}_{\mathit{BMO}} \\ \lesssim& \|f\|^{q}_{L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb {R}^{n})}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

Let \(N=[-\frac{\alpha}{q}+1](k_{0}+1)\). We finally get

$$\bigl\Vert [b,T]f\bigr\Vert _{L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb {R}^{n})}\lesssim\|f\|_{L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb {R}^{n})}\|b \|_{\mathit{BMO}}. $$

 □

Schrödinger type operators on \(L^{p,q,\lambda}_{\alpha ,\theta,V}(\mathbb{R}^{n})\)

Let \(L=-\Delta+V\) be the Schrödinger operator, where \(V\in B_{s}\), \(s>n/2\). For \(0<\beta<\frac{n}{2}\), the fractional integral operator associated with L is defined by

$$L^{-\beta}(f) (x)=\int^{\infty}_{0}e^{-tL}(f) (x)t^{\beta-1}\, dt. $$

Denote by \(K_{\beta}(x,y)\) the kernel of \(L^{-\beta}\). By Lemma 2.12, Bui [20] obtained the following pointwise estimate.

Lemma 4.1

(Proposition 3.3 in [20])

Let \(0<\beta<\frac{n}{2}\). For \(N\in\mathbb{N}\), there is a constant \(C_{N}\) such that

$$\begin{aligned} K_{\beta}(x,y) =&\int_{0}^{\infty}K_{t}(x,y)t^{\beta-1} \, dt \\ \leq&\frac {C_{N}}{(1+| x-y| m_{V}(x))^{N}}\frac{1}{|x-y|^{n-2\beta}}, \end{aligned}$$
(4.1)

where \(K_{t}(\cdot, \cdot)\) is the kernel of the semigroup \(e^{-tL}\).

Definition 4.2

Let \(f\in L_{\mathrm{loc}}^{q}(\mathbb{R}^{n})\). Denote by \(|B|\) the Lebesgue measure of the ball \(B\subset\mathbb{R}^{n}\). The fractional Hardy-Littlewood maximal function \(M_{\sigma,\gamma}\) is defined by

$$M_{\sigma,\gamma}f(x)=\sup_{x\in B} \biggl(\frac{1}{|B|^{1-\frac {\sigma\gamma}{n}}} \int_{B}\bigl\vert f(y)\bigr\vert ^{\gamma}\,dy \biggr)^{\frac {1}{\gamma}}. $$

Lemma 4.3

([16])

Suppose \(1<\gamma<p_{1}<\frac{n}{\sigma}\) and \(\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{\sigma}{n}\). Then

$$\|M_{\sigma,\gamma}f\|_{L^{p_{2}}(\mathbb{R}^{n})}\lesssim\|f\| _{L^{p_{1}}(\mathbb{R}^{n})}. $$

As a generalization of the fractional integral associated with L, the operators \(V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\), \(0\leq\beta _{2}\leq\beta_{1}\leq1\), have been studied by Sugano [9] systematically. Applying the method of Sugano [9] together with Lemma 4.1, we can obtain the following result for \(V^{\beta _{2}}(-\Delta+V)^{-\beta_{1}}\), \(0\leq\beta_{2}\leq\beta_{1}\leq n/2\). We omit the proof.

Theorem 4.4

Suppose that \(V\in B_{\infty}\). Let \(1<\beta_{2}\leq\beta_{1}<\frac {n}{2}\). Then

$$\bigl\vert V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f(x)\bigr\vert \lesssim M_{2(\beta _{1}-\beta_{2}),1}f(x). $$

In a similar way, by (4.1), we can get the following estimate for the operators \((-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}\), \(0\leq\beta_{2}\leq\beta_{1}<\frac{n}{2}\).

Theorem 4.5

Suppose that \(V\in B_{s}\) for \(s>\frac{n}{2}\). Let \(0\leq\beta _{2}\leq\beta_{1}<\frac{n}{2}\). Then

$$\bigl\vert (-\Delta+V)^{-\beta_{1}}\bigl(V^{\beta_{2}}f\bigr) (x)\bigr\vert \lesssim M_{2(\beta_{1}-\beta_{2})}(f)(x), $$

where \((\frac{s}{\beta_{2}})'\) is the conjugate of \((\frac{s}{\beta_{2}})\).

Proof

Let \(r={1}/{m_{V}(x)}\). By Lemma 4.1 and Hölder’s inequality, we have

$$\begin{aligned} \begin{aligned} &\bigl\vert (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}(x)f(x)\bigr\vert \\ &\quad \lesssim\sum^{\infty}_{k=-\infty}\int _{2^{k-1}r \leq|x-y|\leq 2^{k}r}\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}}V(y)^{\beta_{2}} \bigl\vert f(y)\bigr\vert \,dy \\ &\quad \lesssim\sum^{\infty}_{k=-\infty} \frac{(2^{k}r)^{2\beta _{2}}}{(1+2^{k})^{N}} \biggl(\frac{1}{(2^{k}r)^{n}}\int_{B(x,2^{k}r)}V(y)\,dy \biggr)^{\beta _{2}}M_{2(\beta_{1}-\beta_{2}),(\frac{s}{\beta_{2}})'}(f) (x). \end{aligned} \end{aligned}$$

For \(k\geq1\), because \(V(y)\,dy\) is a doubling measure, we have

$$\begin{aligned} \frac{(2^{k}r)^{2}}{(2^{k}r)^{n}}\int_{B(x,2^{k}r)}V(y)\,dy \lesssim& C_{0}^{k}\cdot2^{(2-n)k} \frac{r^{2}}{r^{n}}\int _{B(x,r)}V(y)\,dy \\ \lesssim&\bigl(2^{k}\bigr)^{k_{0}}, \end{aligned}$$

where \(k_{0}=2-n+\log_{2}C_{0}\). For \(k\leq0\), Lemma 2.6 implies that

$$\begin{aligned} \frac{(2^{k}r)^{2}}{(2^{k}r)^{n}}\int_{B(x,2^{k}r)}V(y)\,dy \lesssim & \biggl( \frac{r}{2^{k}r} \biggr)^{\frac{n}{s}-2}\frac{r^{2}}{r^{n}}\int _{B(x,r)}V(y)\,dy \\ \lesssim&\bigl(2^{k}\bigr)^{2-\frac{n}{s}}. \end{aligned}$$

Taking N large enough, we get

$$\bigl\vert (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f(x)\bigr\vert \lesssim M_{2(\beta _{1}-\beta_{2}),(\frac{s}{\beta_{2}})'}f(x). $$

 □

By Theorem 4.5 and the duality, we can obtain the following.

Corollary 4.6

Suppose \(V\in B_{s}\) for \(s>\frac{n}{2}\).

  1. (1)

    If \(1<(\frac{s}{\beta_{2}})'<p_{1}<\frac{n}{2\beta _{1}-2\beta_{2}}\) and \(\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta _{1}-2\beta_{2}}{n}\), then

    $$\bigl\Vert (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})}\lesssim\|f\|_{L^{p_{1}}(\mathbb{R}^{n})}, $$

    where \(\frac{s}{\beta_{2}}+(\frac{s}{\beta_{2}})'=1\).

  2. (2)

    If \(1< p_{2}<\frac{s}{\beta_{2}}\) and \(\frac {1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta_{2}}{n}\), then

    $$\bigl\Vert V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})}\lesssim\|f\|_{L^{p_{1}}(\mathbb{R}^{n})}. $$

Theorem 4.7

Suppose that \(V\in B_{s}\), \(s\geq\frac{n}{2}\), \(\alpha\in(-\infty ,0]\), \(\lambda\in(0,n)\). Let \(1< q<\infty\), \(1<\beta_{2}\leq\beta_{1}<\frac{n}{2}\) and \(1< p_{2}<\frac{s}{\beta _{2}}\) with \(\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2\beta _{1}-2\beta_{2}}{n}\). If \(\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac {2\beta_{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}\), then

$$\bigl\Vert V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f\bigr\Vert _{L^{p_{2},q,\lambda }_{\alpha,\theta, V}}\lesssim\|f\|_{L^{p_{1},q,\lambda}_{\alpha ,\theta, V}}. $$

Proof

For any ball \(B(x_{0},r)\), write

$$f(y)=\sum^{\infty}_{j=-\infty}f(y) \chi_{E_{j}}(y)=\sum^{\infty }_{j=-\infty}f_{j}(y), $$

where \(E_{j}=B(x_{0},2^{j}r)\backslash B(x_{0},2^{j-1}r)\). Hence, we have

$$\begin{aligned}& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \bigl\Vert \chi_{k}V^{\beta_{2}}(-\Delta+V)^{-\beta _{1}}f\bigr\Vert ^{q}_{L^{p_{2}}(\mathbb{R}^{n})} \\ & \quad \lesssim\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\bigl\Vert \chi_{k}V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\ & \qquad {}+\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\bigl\Vert \chi_{k}V^{\beta _{2}}(-\Delta+V)^{-\beta_{1}}f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})} \Biggr)^{q} \\ & \qquad {}+\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\bigl\Vert \chi_{k}V^{\beta _{2}}(-\Delta+V)^{-\beta_{1}}f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})} \Biggr)^{q} \\ & \quad =M_{1}+M_{2}+M_{3}. \end{aligned}$$

We first estimate \(M_{2}\). For \(1< p_{2}<\frac{s}{\beta_{2}}\), by (2) of Corollary 4.6, we can get

$$ M_{2}\lesssim\frac{(1+rm_{V}(x_{0}))^{\alpha}}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \lesssim\|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}. $$

Now we deal with the terms \(M_{1}\) and \(M_{3}\). We choose N large enough such that

$$(N/k_{0}+1)-(\log_{2}C_{0}+1) \beta_{2}+{\alpha}/{q}>0 $$

and take positive \(N_{1}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta_{2}\). For \(M_{1}\), note that if \(x\in E_{k}\), \(y\in E_{j}\) and \(j\leq k-2\), then \(|x-y|\sim2^{k}r\). By Lemmas 4.1 and 2.7, we use Hölder’s inequality to obtain

$$\begin{aligned}& \bigl\Vert \chi_{k}V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f_{j} \bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\ & \quad \lesssim \biggl(\int_{E_{k}}\biggl\vert V^{\beta_{2}}(x)\int_{E_{j}}\frac {1}{(1+| x-y| m_{v}(x))^{N}} \frac{1}{|x-y|^{n-2{\beta _{1}}}}f(y)\,dy\biggr\vert ^{p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}} \\ & \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}}\int_{E_{j}} \bigl\vert f(y)\bigr\vert \,dy \biggl(\int_{E_{k}}\bigl\vert V(x)\bigr\vert ^{\beta_{2} p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}} \\ & \quad \lesssim\frac{|E_{j}|^{1-\frac{1}{p_{1}}}|E_{k}|^{\frac {1}{p_{2}}}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}}\|f_{j} \|_{L^{p_{1}}(\mathbb{R}^{n})} \biggl(\frac{1}{|E_{k}|}\int_{E_{k}}V(x)^{s} \,dx \biggr)^{\frac{\beta _{2}}{s}} \\ & \quad \lesssim\frac{|E_{j}|^{1-\frac{1}{p_{1}}}|E_{k}|^{\frac {1}{p_{2}}}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}}\|f_{j} \|_{L^{p_{1}}(\mathbb{R}^{n})} \biggl(\frac{1}{|B_{k}|}\int_{B_{k}}V(x)\,dx \biggr)^{\beta_{2}} \\ & \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N_{1}}}\frac {1}{(2^{k}r)^{n-2\beta_{1}+2\beta_{2}}}|E_{k}|^{\frac {1}{p_{2}}}|E_{j}|^{1-\frac{1}{p_{1}}} \|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where \(\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2\beta_{1}-2\beta _{2}}{n}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2\beta _{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}\), we obtain

$$\begin{aligned} M_{1} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac {1}{(1+2^{k}rm_{V}(x_{0}))^{N_{1}}}\frac{1}{(2^{k}r)^{n-2\beta _{1}+2\beta_{2}}}|E_{k}|^{\frac{1}{p_{2}}}|E_{j}|^{1-\frac {1}{p_{1}}} \|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha }{q}}}{(1+2^{k}rm_{V}(x_{0}))^{N_{1}}}\frac{(2^{j}r)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta}}{(2^{k}r)^{n-2\beta_{1}+2\beta _{2}}}|E_{k}|^{\frac{1}{p_{2}}}|E_{j}|^{1-\frac{1}{p_{1}}} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},\lambda,q}_{\alpha,v,\theta}} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{k-2}_{j=-\infty }2^{(j-k)n(\frac{\lambda}{q}-\theta-\frac{1}{p_{1}}+1)} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},\lambda,q}_{\alpha,v,\theta}} \\ \lesssim&\|f\|^{q}_{L^{p_{1},\lambda,q}_{\alpha,v,\theta}}. \end{aligned}$$

For \(M_{3}\), note that when \(x\in E_{k}\), \(y\in E_{j}\) and \(j\geq k+2\), then \(|x-y|\sim2^{j}r\). Similar to \(E_{1}\), we have

$$\begin{aligned}& \bigl\Vert \chi_{k}V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f_{j} \bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{j}r)^{n-2{\beta_{1}}}}\int_{E_{j}} \bigl\vert f(y)\bigr\vert \,dy \biggl(\int_{E_{k}}\bigl\vert V(x)\bigr\vert ^{\beta_{2} p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}} \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N_{1}}}|E_{j}|^{\frac {2\beta_{1}}{n}-\frac{1}{p_{1}}}|E_{k}|^{\frac{1}{p_{2}}-\frac {2\beta_{2}}{n}} \|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where \(\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2\beta_{1}-2\beta _{2}}{n}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2\beta _{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}\), we obtain

$$\begin{aligned} M_{3} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{\infty}_{j=k+2} \frac {1}{(1+2^{j}rm_{V}(x_{0}))^{N_{1}}}|E_{j}|^{\frac{2\beta _{1}}{n}-\frac{1}{p_{1}}}|E_{k}|^{\frac{1}{p_{2}}-\frac{2\beta _{2}}{n}} \|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{\infty}_{j=k+2} \frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha}{q}}(2^{j}r)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta}}{(1+2^{j}rm_{V}(x_{0}))^{N_{1}}} \frac{|E_{k}|^{\frac{1}{p_{2}}-\frac{2\beta _{2}}{n}}}{|E_{j}|^{\frac{2\beta_{1}}{n}-\frac{1}{p_{1}}}} \Biggr)^{q} \|f \|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{\infty }_{j=k+2}2^{(k-j)n(\theta-\frac{\lambda}{q}+\frac{1}{p_{1}}+\frac {2\beta_{1}}{n})} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim&\|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}. \end{aligned}$$

Choosing N large enough, we obtain

$$\bigl\Vert V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}f\bigr\Vert _{L^{p_{2},q,\lambda }_{\alpha,\theta,V}} \lesssim\|f\|_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}. $$

 □

Theorem 4.8

Suppose that \(V\in B_{s}\), \(s\geq\frac{n}{2}\), \(\alpha\in(-\infty ,0]\), \(\lambda\in(0,n)\) and \(1< q<\infty\). Let \(0<\beta_{2}\leq\beta_{1}<\frac{n}{2}\), \(\frac{s}{s-\beta _{2}}< p_{1}<\frac{n}{2\beta_{1}-2\beta_{2}}\) with \(\frac {1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta_{2}}{n}\). If \(\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac {1}{p_{2}}+1-\frac{2\beta_{1}}{n}\), then

$$\bigl\Vert (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f\bigr\Vert _{L^{p_{2},q,\lambda }_{\alpha,\theta,V}} \lesssim\|f\|_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}. $$

Proof

For any ball \(B(x_{0}, r)\), let \(E_{j}=B(x_{0},2^{j}r)\backslash B(x_{0},2^{j-1}r)\). We can decompose f as follows:

$$f(y)=\sum^{\infty}_{j=-\infty}f(y) \chi_{E_{j}}(y)=\sum^{\infty }_{j=-\infty}f_{j}(y). $$

Similar to the proof of Theorem 4.7, we have

$$\begin{aligned}& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \bigl\Vert \chi_{k}(-\Delta+V)^{-\beta_{1}}V^{\beta _{2}}f\bigr\Vert ^{q}_{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty}\bigl\Vert \chi_{k}(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {}+C\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\bigl\Vert \chi_{k}(-\Delta +V)^{-\beta_{1}}V^{\beta_{2}}f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})} \Biggr)^{q} \\& \qquad {}+C\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\bigl\Vert \chi_{k}(-\Delta +V)^{-\beta_{1}}V^{\beta_{2}}f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})} \Biggr)^{q} \\& \quad =L_{1}+L_{2}+L_{3}. \end{aligned}$$

For \(L_{2}\), because \(1<\frac{s}{s-\beta_{2}}<p_{1}<\frac{n}{2\beta _{1}-\beta_{2}}\), we use Corollary 4.6 to obtain

$$ L_{2}\lesssim\frac{(1+rm_{V}(x_{0}))^{\alpha}}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \lesssim\|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}. $$

For \(L_{1}\), we can see that if \(x\in E_{k}\) and \(y\in E_{j}\), then \(|x-y|\sim2^{k}r\) for \(j\leq k-2\). By Hölder’s inequality and the fact that \(V\in B_{s}\), we deduce from Lemmas 4.1 and 2.7 that

$$\begin{aligned}& \bigl\Vert \chi_{k}(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f_{j} \bigr\Vert ^{q}_{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {|E_{k}|^{\frac{1}{p_{2}}}}{(2^{k}r)^{n-2{\beta_{1}}}}\int_{E_{j}}V(x)^{\beta_{2}} \bigl\vert f(y)\bigr\vert \,dy \\& \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {|E_{k}|^{\frac{1}{p_{2}}}}{(2^{k}r)^{n-2{\beta _{1}}}}|E_{j}|^{1-\frac{1}{p_{1}}} \biggl(\frac{1}{|B_{j}|}\int_{B_{j}}V(x)\,dx \biggr)^{\beta_{2}}\| f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N_{2}}}\frac {|E_{k}|^{\frac{1}{p_{2}}}}{(2^{k}r)^{n-2{\beta_{1}}}} |E_{j}|^{1-\frac{1}{p_{1}}} \bigl(2^{j}r\bigr)^{-2\beta_{2}}\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where \(\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta _{2}}{n}\) and \(N_{2}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta_{2}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac {1}{p_{2}}+1-\frac{2\beta_{1}}{n}\), we obtain

$$\begin{aligned} L_{1} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac {1}{(1+2^{k}rm_{V}(x_{0}))^{N_{2}}} \frac{|E_{k}|^{\frac{1}{p_{2}}}}{(2^{k}r)^{n-2{\beta _{1}}}}|E_{j}|^{1-\frac{1}{p_{1}}} \bigl(2^{j}r\bigr)^{-2\beta_{2}}\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac{(1+2^{j}rm_{V}(x_{0}))^{-\frac {\alpha}{q}}}{(1+2^{k}rm_{V}(x_{0}))^{N_{2}}} \frac{(2^{j}r)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta }}{(2^{k}r)^{n-2{\beta_{1}}}}\frac{|E_{k}|^{\frac {1}{p_{2}}}|E_{j}|^{1-\frac{1}{p_{1}}}}{(2^{j}r)^{2\beta_{2}}} \Biggr)^{q}\|f \|^{q}_{L^{p_{1},\lambda,q}_{\alpha,V,\theta}} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{k-2}_{j=-\infty }2^{(k-j)n(\theta-\frac{\lambda}{q}+\frac{1}{p_{2}}-1+\frac{2\beta _{1}}{n})} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},\lambda,q}_{\alpha,\theta,V}} \\ \lesssim&\|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha, V,\theta}}. \end{aligned}$$

For \(L_{3}\), note that when \(x\in E_{k}\), \(y\in E_{j}\) and \(j\geq k+2\), then \(|x-y|\sim2^{j}r\). Similar to \(E_{1}\), we have

$$\begin{aligned}& \bigl\Vert \chi_{k}(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f_{j} \bigr\Vert ^{q}_{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {|E_{k}|^{\frac{1}{p_{2}}}}{(2^{j}r)^{n-2{\beta_{1}}}}\int_{E_{j}}V(x)^{\beta_{2}} \bigl\vert f(y)\bigr\vert \,dy \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N_{2}}}\frac {|E_{k}|^{\frac{1}{p_{2}}}}{(2^{j}r)^{n-2{\beta _{1}}}}|E_{j}|^{1-\frac{1}{p_{1}}} \bigl(2^{j}r\bigr)^{-2\beta_{2}} \|f_{j} \|_{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where \(\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta _{2}}{n}\) and \(N_{2}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta_{2}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda }{q}-\frac{1}{p_{2}}+1-\frac{2\beta_{1}}{n}\), we obtain

$$\begin{aligned} L_{3} \lesssim&\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{\infty}_{j=k+2} \frac {1}{(1+2^{j}rm_{V}(x_{0}))^{N_{2}}}\frac{|E_{k}|^{\frac {1}{p_{2}}}}{(2^{j}r)^{n-2{\beta_{1}}}}|E_{j}|^{1-\frac {1}{p_{1}}} \bigl(2^{j}r\bigr)^{-2\beta_{2}}\|f_{j}\|_{L^{p_{1}}(\mathbb {R}^{n})} \Biggr)^{q} \\ \lesssim&\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{\infty }_{j=k+2}2^{(k-j)n(\theta-\frac{\lambda}{q}+\frac{1}{p_{2}})} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim&\|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}. \end{aligned}$$

Let N be large enough. We finally get \(\|(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}f\|_{L^{p_{2},q,\lambda }_{\alpha,\theta,V}}\lesssim\|f\|_{L^{p_{1},q,\lambda}_{\alpha ,\theta,V}}\). □

Boundedness of the commutators on \(L^{p,q,\lambda}_{\alpha ,\theta,V}(\mathbb{R}^{n})\)

In this section, let \(b\in \mathit{BMO}(\mathbb{R}^{n})\). We consider the boundedness of commutators \([b, (-\Delta+V)^{-\beta_{1}}V^{\beta _{2}}]\) and its duality on the generalized Morrey spaces \(L^{p,q,\lambda}_{\alpha,\theta,V}(\mathbb{R}^{n})\). For this purpose, we prove the commutator \([b, (-\Delta+V)^{-\beta_{1}}V^{\beta _{2}}]\) is bounded from \(L^{p_{1}}(\mathbb{R}^{n})\) to \(L^{p_{2}}(\mathbb{R}^{n})\). For the sake of simplicity, we denote by \(b_{2^{k}r}\) the mean value of b on the ball \(B(x_{0}, 2^{k}r)\).

Theorem 5.1

Suppose that \(V\in B_{s}\), \(s\geq\frac{n}{2}\) and \(b\in \mathit{BMO}(\mathbb{R}^{n})\).

  1. (i)

    If \(0<\beta_{2}\leq\beta_{1}<\frac{n}{2}\), \(\frac {s}{s-\beta_{2}}< p_{1}<\frac{n}{2\beta_{1}-2\beta_{2}}\), \(\frac {1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta_{2}}{n}\), then

    $$\bigl\Vert \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}\bigr]f\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})}\lesssim\|f\|_{L^{p_{1}}(\mathbb {R}^{n})}\|b\|_{\mathit{BMO}}. $$
  2. (ii)

    If \(1< p_{2}<\frac{s}{\beta_{2}}\) and \(\frac {1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta_{2}}{n}\), then

    $$\bigl\Vert \bigl[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\bigr]f\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})}\lesssim\|f\|_{L^{p_{1}}(\mathbb{R}^{n})}\|b\|_{\mathit{BMO}}. $$

Proof

We only prove (i). (ii) can be obtained by duality. Because \(\beta _{2}\leq\beta_{1}\), we can decompose the operator \((-\Delta +V)^{-\beta_{1}}V^{\beta_{2}}\) as

$$(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}=(-\Delta+V)^{\beta_{2}-\beta _{1}}(- \Delta+V)^{-\beta_{2}}V^{\beta_{2}}. $$

Denote by \(L^{\beta_{2}-\beta_{1}}\) and \(T_{\beta_{2}}\) the operators \((-\Delta+V)^{\beta_{2}-\beta_{1}}\) and \((-\Delta +V)^{-\beta_{2}}V^{\beta_{2}}\), respectively. Then we can get

$$\begin{aligned}& \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}\bigr]f(x) \\& \quad =\bigl[b, (-\Delta+V)^{\beta_{2}-\beta_{1}}(-\Delta+V)^{-\beta _{2}}V^{\beta_{2}} \bigr]f(x) \\& \quad = bL^{\beta_{2}-\beta_{1}}T_{\beta_{2}}f(x)-L^{\beta_{2}-\beta _{1}}T_{\beta_{2}}(b f) (x) \\& \quad =bL^{\beta_{2}-\beta_{1}}T_{\beta_{2}}f(x)-L^{\beta_{2}-\beta _{1}} \bigl(bT_{\beta_{2}}f(x)\bigr) \\& \qquad {}+L^{\beta_{2}-\beta_{1}}\bigl(bT_{\beta_{2}}f(x)\bigr) -L^{\beta_{2}-\beta_{1}}T_{\beta_{2}}(b f) (x) \\& \quad =\bigl[b, L^{\beta_{2}-\beta_{1}}\bigr]T_{\beta_{2}}f(x)+L^{\beta_{2}-\beta _{1}}[b, T_{\beta_{2}}]f(x). \end{aligned}$$

By (1) of Corollary 4.6, we can get

$$\begin{aligned}& \bigl\Vert \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim \bigl\Vert \bigl[b, L^{\beta_{2}-\beta_{1}} \bigr]T_{\beta _{2}}f\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})}+\bigl\Vert L^{\beta_{2}-\beta _{1}} [b, T_{\beta_{2}} ]f\bigr\Vert _{L^{p_{2}}(\mathbb {R}^{n})} \\& \quad \lesssim \Vert T_{\beta_{2}}f\Vert _{L^{p_{1}}(\mathbb {R}^{n})}+\bigl\Vert [b, T_{\beta_{2}} ]f\bigr\Vert _{L^{p_{1}}(\mathbb{R}^{n})} \\& \quad \lesssim \|f\|_{L^{p_{1}}(\mathbb{R}^{n})}. \end{aligned}$$

This completes the proof. □

In the rest of this section, we prove the boundedness of the commutators \([b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}]\) and \([b,(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}]\) on \(L^{p_{2},q,\lambda }_{\alpha,\theta,V}(\mathbb{R}^{n})\), respectively.

Theorem 5.2

Suppose that \(V\in B_{s}\), \(s\geq\frac{n}{2}\), \(\alpha\in(-\infty,0]\) and \(\lambda\in(0,n)\). Let \(1< q<\infty\), \(1<\beta_{2}\leq\beta_{1}<\frac{n}{2}\) and \(1< p_{2}<\frac{s}{\beta _{2}}\) with \(\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2\beta _{1}-2\beta_{2}}{n}\). If \(\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2\beta_{1}}{n}<\theta <\frac{\lambda}{q}+1-\frac{1}{p_{1}}\), then for \(b\in \mathit{BMO}(\mathbb{R}^{n})\),

$$\bigl\Vert \bigl[b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}}\bigr]f\bigr\Vert _{L^{p_{2},q,\lambda }_{\alpha,\theta,V}}\lesssim\|f\|_{L^{p_{1},q,\lambda}_{\alpha ,\theta,V}}\|b\|_{\mathit{BMO}}. $$

Proof

For any ball \(B(x_{0},r)\), we have

$$f(y)=\sum^{\infty}_{j=-\infty}f(y) \chi_{E_{j}}(y)=\sum^{\infty }_{j=-\infty}f_{j}(y), $$

where \(E_{j}=B(x_{0},2^{j}r)\backslash B(x_{0},2^{j-1}r)\). Hence, we have

$$\begin{aligned}& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \bigl\Vert \chi_{k} \bigl[b,V^{\beta_{2}}(-\Delta +V)^{-\beta_{1}} \bigr]f\bigr\Vert ^{q}_{L^{p_{2}}(\mathbb{R}^{n})} \\ & \quad \lesssim\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty} \bigl\Vert \chi_{k} \bigl[b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\ & \qquad {}+\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\bigl\Vert \chi_{k} \bigl[b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\ & \qquad {}+\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\bigl\Vert \chi_{k} \bigl[b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\ & \quad =:D_{1}+D_{2}+D_{3}. \end{aligned}$$

For \(D_{2}\), by (ii) of Theorem 5.1, we have

$$\begin{aligned} D_{2} \lesssim& \bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q}\|b\|^{q}_{\mathit{BMO}} \\ \lesssim& \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

For \(D_{1}\), by Lemmas 2.7 and 4.1, we obtain

$$\begin{aligned}& \bigl\Vert \chi_{k}\bigl[b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\ & \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}} \biggl(\int _{E_{k}}\biggl\vert \int_{E_{j}}V^{\beta _{2}}(x) \bigl(b(x)-b(y)\bigr)f(y)\,dy\biggr\vert ^{p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}} \\ & \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}} \biggl[ \biggl(\int _{E_{k}}V^{\beta _{2}p_{2}}(x)\bigl\vert b(x)-b_{2^{k}r} \bigr\vert ^{p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}}\int_{E_{j}} \bigl\vert f(y)\bigr\vert \,dy \\ & \qquad {}+ \biggl(\int_{E_{k}}V^{\beta_{2}p_{2}}(x)\,dx \biggr)^{\frac {1}{p_{2}}}\int_{E_{j}}\bigl\vert b(y)-b_{2^{k}r}\bigr\vert \bigl\vert f(y)\bigr\vert \,dy \biggr] \\ & \quad \lesssim\frac{\|b\|_{\mathit{BMO}}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}} \biggl[ \biggl(\int _{E_{k}}V(x)\,dx \biggr)^{\beta_{2}}|E_{k}|^{\frac {1}{p_{2}}-\beta_{2}} \int_{E_{j}}\bigl\vert f(y)\bigr\vert \,dy \\ & \qquad {}+ \biggl(\int_{E_{k}}V(x)\,dx \biggr)^{\beta_{2}}|E_{k}|^{\frac {1}{p_{2}}-\beta_{2}}|E_{j}|^{1-\frac{1}{p_{1}}}(k-j) \|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \biggr] \\ & \quad \lesssim\frac{\|b\|_{\mathit{BMO}}}{(1+2^{k}rm_{V}(x_{0}))^{N_{1}}}\frac {k-j}{(2^{k}r)^{n-2{\beta_{1}}}}|E_{k}|^{\frac{1}{p_{2}}-\frac {2\beta_{2}}{n}}|E_{j}|^{1-\frac{1}{p_{1}}} \|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where \(\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2\beta_{1}-2\beta _{2}}{n}\) and \(N_{1}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta_{2}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2\beta_{1}}{n}<\theta <\frac{\lambda}{q}+1-\frac{1}{p_{1}}\), we obtain

$$\begin{aligned} D_{1} \lesssim& \|b\|^{q}_{\mathit{BMO}} \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac {1}{(1+2^{k}rm_{V}(x_{0}))^{N_{1}}}\frac{k-j}{(2^{k}r)^{n-2{\beta _{1}}}}|E_{k}|^{\frac{1}{p_{2}}-\frac{2\beta _{2}}{n}}|E_{j}|^{1-\frac{1}{p_{1}}} \|f_{j}\|_{L^{p_{1}}(\mathbb {R}^{n})} \Biggr)^{q} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha }{q}}}{(1+2^{k}rm_{V}(x_{0}))^{N_{1}}}\frac{(2^{j}r)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta}}{(2^{k}r)^{n-2\beta_{1}}}\frac {|E_{k}|^{\frac{1}{p_{2}}-\frac{2\beta_{2}}{n}}}{|E_{j}|^{\frac {1}{p_{1}}-1}}(k-j) \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\frac{(1+rm_{V}(x_{0}))^{\alpha }}{r^{\lambda n}}\sum ^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl( \sum^{k-2}_{j=-\infty}(k-j)2^{(j-k)n(\frac{\lambda}{q}-\theta-\frac {1}{p_{1}}+1)} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

For \(D_{3}\), because \(\frac{1}{p_{1}}-\frac{1}{p_{2}}=\frac{2\beta _{1}-2\beta_{2}}{n}\) and \(N_{1}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta _{2}\), we have

$$\begin{aligned}& \bigl\Vert \chi_{k}\bigl[b,V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{j}r)^{n-2{\beta_{1}}}} \biggl(\int _{E_{k}}\biggl\vert \int_{E_{j}}V(x)^{\beta_{2} } \bigl(b(x)-b(y)\bigr)f(y)\,dy\biggr\vert ^{p_{2}}\,dx \biggr)^{\frac {1}{p_{2}}} \\& \quad \lesssim\frac{j-k}{(1+2^{j}rm_{V}(x_{0}))^{N_{1}}}|E_{j}|^{\frac {2\beta_{1}}{n}-\frac{1}{p_{1}}}|E_{k}|^{\frac{1}{p_{2}}-\frac {2\beta_{2}}{n}} \|b\|_{\mathit{BMO}}\|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where we have used the fact that \(|x-y|\sim2^{j}r\) for \(x\in E_{k}\), \(y\in E_{j}\) and \(j\geq k+2\). Since \(\frac{\lambda}{q}-\frac{1}{p_{1}}+\frac{2\beta _{1}}{n}<\theta<\frac{\lambda}{q}+1-\frac{1}{p_{1}}\), we obtain

$$\begin{aligned} D_{3} \lesssim& \bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{\infty}_{j=k+2} \frac {j-k}{(1+2^{j}rm_{V}(x_{0}))^{N_{1}}}|E_{j}|^{\frac{2\beta _{1}}{n}-\frac{1}{p_{1}}}|E_{k}|^{\frac{1}{p_{2}}-\frac{2\beta _{2}}{n}} \|b\|_{\mathit{BMO}}\|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{\infty}_{j=k+2} \frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha}{q}}(2^{j}r)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta}}{(1+2^{j}rm_{V}(x_{0}))^{N_{1}}}\frac {|E_{k}|^{\frac{1}{p_{2}}-\frac{2\beta_{2}}{n}}}{|E_{j}|^{\frac {2\beta_{1}}{n}-\frac{1}{p_{1}}}}(j-k) \Biggr)^{q} \|f \|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{\infty }_{j=k+2}(j-k)2^{(k-j)n(\theta-\frac{\lambda}{q}+\frac {1}{p_{1}}+\frac{2\beta_{1}}{n})} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

Let N be large enough. Finally, we get

$$\bigl\Vert \bigl[b, V^{\beta_{2}}(-\Delta+V)^{-\beta_{1}} \bigr]f\bigr\Vert _{L^{p_{2},q,\lambda}_{\alpha,\theta,V}}\lesssim\|f\| _{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|_{\mathit{BMO}}. $$

 □

Theorem 5.3

Suppose that \(V\in B_{s}\), \(s\geq\frac{n}{2}\) and \(b\in \mathit{BMO}(\mathbb {R}^{n})\). Let \(\alpha\in(-\infty,0]\), \(\lambda\in(0,n)\) and \(1< q<\infty\). If \(0<\beta_{2}\leq\beta_{1}<\frac{n}{2}\), \(\frac{s}{s-\beta _{2}}< p_{1}<\frac{n}{2\beta_{1}-2\beta_{2}}\), \(\frac {1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta_{2}}{n}\), \(\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac {1}{p_{2}}+1-\frac{2\beta_{1}}{n}\), then

$$\bigl\Vert \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f\bigr\Vert _{L^{p_{2},q,\lambda}_{\alpha,\theta,V}}\lesssim\|f\| _{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|_{\mathit{BMO}}. $$

Proof

Similarly, we can decompose f based on an arbitrary ball \(B(x_{0},r)\) as follows:

$$f(y)=\sum^{\infty}_{j=-\infty}f(y) \chi_{E_{j}}(y)=\sum^{\infty }_{j=-\infty}f_{j}(y), $$

where \(E_{j}=B(x_{0},2^{j}r)\backslash B(x_{0},2^{j-1}r)\). Hence, we have

$$\begin{aligned}& \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \bigl\Vert \chi_{k} \bigl[b, (-\Delta+V)^{-\beta _{1}}V^{\beta_{2}} \bigr]f\bigr\Vert ^{q}_{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k-2}_{j=-\infty} \bigl\Vert \chi_{k} \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {}+\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\bigl\Vert \chi_{k} \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\& \qquad {}+\bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty }|E_{k}|^{\theta q} \Biggl(\sum^{\infty}_{j=k+2}\bigl\Vert \chi_{k} \bigl[b, (-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \Biggr)^{q} \\& \quad =F_{1}+F_{2}+F_{3}. \end{aligned}$$

Applying Theorem 5.1, we can get

$$\begin{aligned} F_{2} \lesssim& \frac{(1+rm_{V}(x_{0}))^{\alpha}}{r^{\lambda n}}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \Biggl(\sum^{k+1}_{j=k-1}\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q}\|b\|^{q}_{\mathit{BMO}} \\ \lesssim& \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

For \(F_{1}\), by Hölder’s inequality and the fact that \(V\in B_{s}\), we apply Lemmas 4.1 and 2.7 to deduce that

$$\begin{aligned}& \bigl\Vert \chi_{k}\bigl[b,(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}} \biggl(\int _{E_{k}}\biggl\vert \int_{E_{j}} \bigl(b(x)-b(y)\bigr)V^{\beta_{2}}(y)f(y)\,dy\biggr\vert ^{p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}} \\& \quad \lesssim\frac{1}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{k}r)^{n-2{\beta_{1}}}} \\& \qquad {}\times\biggl[ \biggl( \int _{E_{k}}\bigl\vert b(x)-b_{2^{k}r}\bigr\vert ^{p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}}\int_{E_{j}}\bigl\vert V^{\beta_{2}}(y)f(y)\bigr\vert \,dy \\& \qquad {}+|E_{k}|^{\frac{1}{p_{2}}}\int_{E_{j}}\bigl\vert b(y)-b_{2^{k}r}\bigr\vert \bigl\vert V^{\beta _{2}}(y)f(y) \bigr\vert \,dy \biggr] \\& \quad \lesssim\frac{(\int_{E_{j}}V(y)\,dy)^{\beta _{2}}}{(1+2^{k}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {k-j}{(2^{k}r)^{n-2{\beta_{1}}}} |E_{k}|^{\frac{1}{p_{2}}}|E_{j}|^{1-\frac{1}{p_{1}}} \|b\|_{\mathit{BMO}}\| f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})} \\& \quad \lesssim\|b\|_{\mathit{BMO}}\frac {k-j}{(1+2^{k}rm_{V}(x_{0}))^{N_{2}}}|E_{k}|^{\frac{1}{p_{2}}+\frac {2\beta_{1}}{n}-1}|E_{j}|^{1-\frac{1}{p_{1}}-\frac{2\beta_{2}}{n}} \|f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})}, \end{aligned}$$

where \(\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta _{2}}{n}\) and \(N_{2}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta_{2}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda}{q}-\frac {1}{p_{2}}+1-\frac{2\beta_{1}}{n}\), we obtain

$$\begin{aligned} F_{1} \lesssim& \|b\|^{q}_{\mathit{BMO}} \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac {k-j}{(1+2^{k}rm_{V}(x_{0}))^{N_{2}}}|E_{k}|^{\frac{1}{p_{2}}+\frac {2\beta_{1}}{n}-1}|E_{j}|^{1-\frac{1}{p_{1}}-\frac{2\beta_{2}}{n}} \| f_{j}\|_{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{k-2}_{j=-\infty} \frac{(1+2^{j}rm_{V}(x_{0}))^{-\frac {\alpha}{q}}}{(1+2^{k}rm_{V}(x_{0}))^{N_{2}}} \bigl(2^{j}r\bigr)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta} \frac {|E_{j}|^{1-\frac{1}{p_{2}}-\frac{2\beta_{1}}{n}}}{|E_{k}|^{1-\frac {1}{p_{2}}-\frac{2\beta_{1}}{n}}}(k-j) \Biggr)^{q}\|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\frac{(1+rm_{V}(x_{0}))^{\alpha }}{r^{\lambda n}}\sum ^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl( \sum^{k-2}_{j=-\infty}(k-j)2^{(k-j)n(\theta-\frac{\lambda}{q}+\frac {1}{p_{2}}-1+\frac{2\beta_{1}}{n})} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

For \(F_{3}\), note that when \(x\in E_{k}\), \(y\in E_{j}\) and \(j\geq k+2\), then \(|x-y|\sim2^{j}r\). Similar to \(F_{1}\), we have

$$\begin{aligned}& \bigl\Vert \chi_{k}\bigl[b,(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}} \bigr]f_{j}\bigr\Vert _{L^{p_{2}}(\mathbb{R}^{n})} \\& \quad \lesssim\frac{1}{(1+2^{j}rm_{V}(x_{0}))^{N/k_{0}+1}}\frac {1}{(2^{j}r)^{n-2{\beta_{1}}}} \biggl(\int _{E_{k}}\biggl\vert \int_{E_{j}} \bigl(b(x)-b(y)\bigr)V(y)^{\beta_{2}}f(y)\,dy\biggr\vert ^{p_{2}}\,dx \biggr)^{\frac{1}{p_{2}}} \\& \quad \lesssim\frac{j-k}{(1+2^{j}rm_{V}(x_{0}))^{N_{2}}}|E_{k}|^{\frac {1}{p_{2}}}|E_{j}|^{-\frac{1}{p_{2}}} \|f_{j}\|_{L^{p_{1}}(\mathbb {R}^{n})}\|b\|_{\mathit{BMO}}, \end{aligned}$$

where \(\frac{1}{p_{2}}=\frac{1}{p_{1}}-\frac{2\beta_{1}-2\beta _{2}}{n}\) and \(N_{2}<(N/k_{0}+1)-(\log_{2}C_{0}+1)\beta_{2}\). Since \(\frac{\lambda}{q}-\frac{1}{p_{2}}<\theta<\frac{\lambda }{q}-\frac{1}{p_{2}}+1-\frac{2\beta_{1}}{n}\), we obtain

$$\begin{aligned} F_{3} \lesssim& \|b\|^{q}_{\mathit{BMO}} \bigl(1+rm_{V}(x_{0})\bigr)^{\alpha}r^{-\lambda n} \sum^{0}_{k=-\infty}|E_{k}|^{\theta q} \\ &{}\times \Biggl(\sum^{\infty}_{j=k+2} \frac {(1+2^{j}rm_{V}(x_{0}))^{-\frac{\alpha }{q}}}{(1+2^{j}rm_{V}(x_{0}))^{N_{2}}}\bigl(2^{j}r\bigr)^{\frac{\lambda n}{q}}|E_{j}|^{-\theta} \frac{|E_{k}|^{\frac {1}{p_{2}}}}{|E_{j}|^{\frac{1}{p_{2}}}}(j-k)\|f_{j}\| _{L^{p_{1}}(\mathbb{R}^{n})} \Biggr)^{q} \\ \lesssim& \|b\|^{q}_{\mathit{BMO}}\bigl(1+rm_{V}(x_{0}) \bigr)^{\alpha}r^{-\lambda n}\sum^{0}_{k=-\infty}|E_{k}|^{\lambda} \Biggl(\sum^{\infty }_{j=k+2}(j-k)2^{(k-j)n(\theta-\frac{\lambda}{q}+\frac {1}{p_{2}})} \Biggr)^{q} \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}} \\ \lesssim& \|f\|^{q}_{L^{p_{1},q,\lambda}_{\alpha,\theta,V}}\|b\|^{q}_{\mathit{BMO}}. \end{aligned}$$

Let N be large enough. We finally get

$$\bigl\Vert \bigl[b,(-\Delta+V)^{-\beta_{1}}V^{\beta_{2}}\bigr]f\bigr\Vert _{L^{p_{2},q,\lambda }_{\alpha,\theta,V}}\lesssim\|f\|_{L^{p_{1},q,\lambda}_{\alpha ,\theta,V}}\|b\|_{\mathit{BMO}}. $$

 □

References

  1. Shen, Z: \(L^{p}\) Estimate for Schrödinger operator with certain potentials. Ann. Inst. Fourier 45, 513-546 (1995)

    Article  MATH  Google Scholar 

  2. Guo, Z, Li, P, Peng, L: \(L^{p}\) Boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341, 421-432 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  3. Liu, Y: The weighted estimates for the operators \(V^{\alpha}(-\Delta _{G}+V)^{-\beta}\) and \(V^{\alpha}\nabla_{G}(-\Delta_{G}+V)^{-\beta }\) on the stratified Lie group G. J. Math. Anal. Appl. 349, 235-244 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  4. Liu, Y, Huang, J, Dong, J: Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrödinger operators. Sci. China Math. 56, 1895-1913 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  5. Liu, Y, Wang, L, Dong, J: Commutators of higher order Riesz transform associated with Schrödinger operators. J. Funct. Spaces Appl. 2013, Article ID 842375 (2013)

    MathSciNet  Google Scholar 

  6. Tang, L, Dong, J: Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials. J. Math. Anal. Appl. 355, 101-109 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  7. Yang, DC, Yang, DY, Zhou, Y: Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal. 30, 271-300 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. Yang, DC, Yang, DY, Zhou, Y: Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators. Commun. Pure Appl. Anal. 9, 779-812 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  9. Sugano, S: Estimates for the operators \(V^{\alpha}(-\Delta+V)^{-\beta }\) and \(V^{\alpha}\nabla(-\Delta+V)^{-\beta}\) with certain non-negative potentials V. Tokyo J. Math. 21, 441-452 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  10. Peetre, J: On the theory of \(\mathcal{L}_{p,\lambda}\) spaces. J. Funct. Anal. 4, 71-87 (1969)

    MathSciNet  Article  MATH  Google Scholar 

  11. Herz, C: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283-323 (1968/1969)

  12. Chen, X, Chen, J: Boundedness of sublinear operators on generalized Morrey spaces and its application. Chin. Ann. Math., Ser. A 32, 705-720 (2011)

    MATH  Google Scholar 

  13. Lu, S, Xu, L: Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 34, 299-314 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  14. Duong, X, Yan, L: On commutators of fractional integrals. Proc. Am. Math. Soc. 132, 3549-3557 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  15. Jiang, Y: Endpoint estimates for fractional integral associated to Schrödinger operators on the Heisenberg groups. Acta Math. Sci., Ser. B. 31, 993-1000 (2011)

    Article  MATH  Google Scholar 

  16. Coifman, R, Rochberg, R, Weiss, G: Factorization theorems for Hardy space in several variables. Ann. Math. 103, 611-635 (1988)

    MathSciNet  Article  Google Scholar 

  17. Liu, Y: Commutators of BMO functions and degenerate Schrödinger operators with certain nonnegative potentials. Monatshefte Math. 165, 41-56 (2012)

    Article  MATH  Google Scholar 

  18. Dziubański, J, Zienkiewicz, J: \(H^{p}\) Spaces for Schrödinger operator. In: Fourier Analysis and Related Topics. Banach Center Publ., vol. 56, pp. 45-53 (2002)

    Google Scholar 

  19. John, F, Nirenberg, L: On function of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415-426 (1961)

    MathSciNet  Article  MATH  Google Scholar 

  20. Bui, T-A: Weighted estimates for commutators of some singular integrals related to Schrödinger operators. Bull. Sci. Math. 138, 270-292 (2014)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

Project was supported by NSFC No. 11171203; New Teacher’s Fund for Doctor Stations, Ministry of Education No. 20114402120003; Guangdong Natural Science Foundation S2011040004131; Foundation for Distinguished Young Talents in Higher Education of Guangdong, China, LYM11063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao Li.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wan, X. & Zhang, C. Schrödinger type operators on generalized Morrey spaces. J Inequal Appl 2015, 229 (2015). https://doi.org/10.1186/s13660-015-0747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0747-8

MSC

  • 42B35
  • 42B20

Keywords

  • generalized Morrey spaces
  • Schrödinger operator
  • commutator
  • reverse Hölder class