- Research
- Open access
- Published:
Several closed expressions for the Euler numbers
Journal of Inequalities and Applications volume 2015, Article number: 219 (2015)
Abstract
In the paper, the authors establish several closed expressions for the Euler numbers in the form of a determinant or double sums and in terms of, for example, the Stirling numbers of the second kind.
1 Introduction and main results
It is well known ([1], p.75, item 4.3.69) that the secant function secz may be expanded at \(z=0\) into the power series
where \(E_{k}\) are called in number theory the Euler numbers which may also be defined ([2], p.15) by
In number theory, the numbers
are called in [3], p.128, for example, the secant numbers or the zig numbers.
These numbers also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.
The first few secant numbers \(S_{k}\) for \(k=1,2,3,4\) are 1, 5, 61, \(1\text{,}385\). The first few Euler numbers \(E_{2k}\) for \(0\le k\le9\) are
It is a classical topic to find closed expressions for the Euler numbers \(E_{2k}\) and the tangent number \(S_{k}\). These numbers are closely connected with many other numbers and functions, such as the Bernoulli numbers, the Genocchi numbers, the tangent numbers, the Euler polynomials, the Stirling numbers of two kinds, and the Riemann zeta function, in number theory and combinatorics. There has been a plenty of literature such as [1, 2, 4–10] and closely related references therein.
In mathematics, a closed expression is a mathematical expression that can be evaluated in a finite number of operations. It may contain constants, variables, four arithmetic operations, and elementary functions, but usually no limit.
In this paper, we establish several closed expressions for the Euler numbers \(E_{2k}\) in the form of a determinant of order 2k or double sums and in terms of, for example, the Stirling numbers of the second kind \(S(n,k)\) which may be generated ([2], p.20) by
may be computed ([2], p.21) by the closed expression
and may be interpreted combinatorially as the number of ways of partitioning a set of n elements into k nonempty subsets.
Our main results may be formulated as the following theorems.
Theorem 1.1
For \(k\in\mathbb{N}\),
where \(|c_{ij}|_{k\times k}\) is the determinant of a matrix \([c_{ij}]_{k\times k}\) of elements \(c_{ij}\) and order k.
Theorem 1.2
For \(k\in\mathbb{N}\),
Theorem 1.3
For \(n\in\mathbb{N}\),
and
Theorem 1.4
For \(k\in\mathbb{N}\),
2 Lemmas
In order to prove our main results, we need the following lemmas.
Lemma 2.1
Let \(u=u(x)\) and \(v=v(x)\ne0\) be differentiable functions, let \(U_{n+1,1}\) be an \((n+1)\times1\) matrix whose elements \(u_{k,1}=u^{(k-1)}(x)\) for \(1\le k\le n+1\), let \(V_{n+1,n}\) be an \((n+1)\times n\) matrix whose elements \(v_{i,j}=\binom {i-1}{j-1}v^{(i-j)}(x)\) for \(1\le i\le n+1\) and \(1\le j\le n\), and let \(|W_{n+1,n+1}|\) denote the determinant of the \((n+1)\times(n+1)\) matrix \(W_{n+1,n+1}=[U_{n+1,1} \ V_{n+1,n}]\). Then the nth derivative of the ratio \(\frac{u(x)}{v(x)}\) may be computed by
Proof
This is a reformulation of [11], p.40, Exercise 5. □
The Bell polynomials of the second kind \(\mathrm{B}_{n,k}\), or say, the partial Bell polynomials \(\mathrm{B}_{n,k}\), may be defined ([12], p.134, Theorem A) by
for \(n\ge k\ge0\).
Lemma 2.2
(Faà di Bruno formula [12], p.139, Theorem C)
For \(n\in\mathbb{N}\), the nth derivative of a composite function \(f(g(x))\) may be computed in terms of the Bell polynomials of the second kind \(\mathrm{B}_{n,k}\) by
Lemma 2.3
([12], p.135)
For \(n\ge k\ge0\), we have
and
where a and b are any complex numbers.
Lemma 2.4
([5], Theorem 2.1)
For \(n\ge k\ge1\), the Bell polynomials of the second kind \(\mathrm {B}_{n,k}\) satisfy
Lemma 2.5
([5], Theorem 4.1 and [13], Theorem 3.1)
For \(n\ge k\ge0\), the Bell polynomials of the second kind \(\mathrm {B}_{n,k}\) satisfy
Lemma 2.6
([7], Theorem 1.2)
For \(n\ge k\ge1\), the Bell polynomials of the second kind \(\mathrm {B}_{n,k}\) satisfy
3 Proofs of main results
We now start out to prove our main results.
Proof of Theorem 1.1
Applying Lemma 2.1 to \(u(z)=1\) and \(v(z)=\cos z\) gives
where
and
is the Kronecker delta. Consequently, by taking the limit \(z\to0\), we find
The proof of Theorem 1.1 is complete. □
Proof of Theorem 1.2
By (2.1) applied to \(f(u)=\frac{1}{u}\) and \(u=g(z)=\cos z\) and by Lemma 2.6, we have
as \(z\to0\). Hence,
Consequently, by interchanging the first two sums, we get
which may be rearranged as (1.4). The proof of Theorem 1.2 is complete. □
Proof of Theorem 1.3
Let \(f(u)=\frac{2u}{u^{2}+1}\) and \(u=g(z)=e^{z}\). Then, by (2.1), (2.3), and (2.2) in sequence,
where, by applying \(f(v)=\ln v\) and \(v=g(u)=u^{2}+1\) in (2.1) and making use of (2.3) and (2.5), we have
Consequently, we obtain
Further taking the limit \(z\to0\) yields
and, by interchanging two sums in the above line, we get
As a result of further simplifying, formulas (1.5) and (1.6) follow. The proof of Theorem 1.3 is complete. □
Proof of Theorem 1.4
Formula (1.7) was ever established in [5], Theorem 3.1. We now give a different proof for it.
Applying (2.1) to the functions \(f(u)=\frac{1}{u}\) and \(u=g(z)=\cosh z\) and making use of formula (2.4) yield
By virtue of (1.2), Theorem 1.4 follows immediately. □
Remark 3.1
This paper is a slightly corrected and revised version of the preprint [14].
References
Abramowitz, M, Stegun, IA (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1972)
Temme, NM: Special Functions: An Introduction to Classical Functions of Mathematical Physics. A Wiley-Interscience Publication. Wiley, New York (1996). doi:10.1002/9781118032572
Brent, RP, Harvey, D: Fast computation of Bernoulli, tangent and secant numbers. In: Computational and Analytical Mathematics. Springer Proc. Math. Stat., vol. 50, pp. 127-142. Springer, New York (2013). doi:10.1007/978-1-4614-7621-4_8
Guo, B-N, Qi, F: Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind. J. Comput. Appl. Math. 272, 251-257 (2014). doi:10.1016/j.cam.2014.05.018
Guo, B-N, Qi, F: Explicit formulas for special values of the Bell polynomials of the second kind and the Euler numbers. ResearchGate Technical Report (2015). doi:10.13140/2.1.3794.8808
Kim, DS, Kim, T, Kim, YH, Lee, SH: Some arithmetic properties of Bernoulli and Euler numbers. Adv. Stud. Contemp. Math. (Kyungshang) 22(4), 467-480 (2012)
Qi, F: Derivatives of tangent function and tangent numbers. Appl. Math. Comput. (2015, in press). arXiv:1202.1205v3
Malenfant, J: Finite, closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers (2011). arXiv:1103.1585
Vella, DC: Explicit formulas for Bernoulli and Euler numbers. Integers 8, A01 (2008)
Yakubovich, S: Certain identities, connection and explicit formulas for the Bernoulli, Euler numbers and Riemann zeta-values (2014). arXiv:1406.5345
Bourbaki, N: Functions of a Real Variable, Elementary Theory: Elements of Mathematics. Springer, Berlin (2004). doi:10.1007/978-3-642-59315-4; Translated from the 1976 French original by Philip Spain.
Comtet, L: Advanced Combinatorics: The Art of Finite and Infinite Expansions, revised and enlarged edition. Reidel, Dordrecht (1974)
Qi, F, Zheng, M-M: Explicit expressions for a family of the Bell polynomials and applications. Appl. Math. Comput. 258, 597-607 (2015). doi:10.1016/j.amc.2015.02.027
Qi, F, Wei, C-F: Several closed expressions for the Euler numbers. ResearchGate Technical Report (2015). doi:10.13140/2.1.3474.7688
Acknowledgements
The first author was partially supported by the NNSF of China under Grant No. 51274086, by the Ministry of Education Doctoral Foundation of China - Priority Areas under Grant No. 20124116130001, by the Basic and Frontier Research Project in Henan Province of China under Grant No. 122300410115, and by the Doctoral Foundation at Henan Polytechnic University in China under Grant No. B2014-003. The second author was partially supported by the NNSF of China under Grant No. 11361038. The authors thank anonymous referees for their careful corrections to the original version of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wei, CF., Qi, F. Several closed expressions for the Euler numbers. J Inequal Appl 2015, 219 (2015). https://doi.org/10.1186/s13660-015-0738-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-015-0738-9