Skip to main content

New upper bounds for \(\|A^{-1}\|_{\infty}\) of strictly diagonally dominant M-matrices

Abstract

A new upper bound for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix is given, and the lower bound for the minimum eigenvalue of the matrix is obtained. Furthermore, an upper bound for the infinity norm of inverse matrix of a strictly α-diagonally dominant M-matrix is presented. Finally, we give numerical examples to illustrate our results.

Introduction

Let \(R^{n\times n}\) denote the set of all \(n\times n\) real matrices, \(N=\{1, 2, \ldots, n\}\) and \(A=(a_{ij})\in R^{n\times n}\) (\(n\geq2\)). A matrix A is called a nonsingular M-matrix if there exist a nonnegative matrix B and some real number s such that

$$ A=sI-B,\quad s>\rho(B), $$

where I is the identity matrix, \(\rho(B)\) is the spectral radius of B. \(\tau(A)\) denotes the minimum of all real eigenvalues of the nonsingular M-matrix A.

Very often in numerical analysis, one needs a bound for the condition number of a square \(n\times n\) matrix A, \(\operatorname{Cond}(A)=\|A\|_{\infty}\cdot\|A^{-1}\|_{\infty}\). Bounding \(\|A\|_{\infty}\) is not usually difficult, but a bound of \(\|A^{-1}\|_{\infty}\) is not usually available unless \(A^{-1}\) is known explicitly.

However, if \(A=(a_{ij})\in R^{n\times n}\) is a strictly diagonally dominant matrix, Varah [1] bound \(\|A^{-1}\|_{\infty}\) quite easily by the following result:

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{\min_{i\in N} \{|a_{ii}|-\sum_{j\neq i}|a_{ij}| \}}. $$
(1)

Remark 1

[2]

If the diagonal dominance of A is weak, i.e., \(\min_{i\in N} \{|a_{ii}|-\sum_{j\neq i}|a_{ij}| \}\) is small, then using (1) in estimating \(\|A^{-1}\|_{\infty}\), the bound may yield a large value.

In 2007, Cheng and Huang [2] presented the following results.

If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \biggl(1+ \frac{u_{j}}{1-u_{j}l_{j}} \biggr) \Biggr]. $$
(2)

If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then the bound in (2) is sharper than that in Theorem 3.3 in [3], i.e.,

$$ \frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \biggl(1+ \frac{u_{j}}{1-u_{j}l_{j}} \biggr) \Biggr]< \sum_{i=1}^{n} \Biggl[a_{ii} \prod_{j=1}^{i}(1-u_{j}) \Biggr]^{-1} . $$

In 2009, Wang [4] obtained the better result: Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}< \frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. $$
(3)

In this paper, we present new upper bounds for \(\|A^{-1}\|_{\infty}\) of a strictly (α-)diagonally dominant M-matrix A, which improved the above results. As an application, a lower bound of \(\tau(A)\) is obtained.

For convenience, for \(i,j,k \in N\), \(j\neq i\), denote

$$\begin{aligned}& R_{i}(A)=\sum_{j\neq i} |a_{ij}|, \qquad C_{i}(A)=\sum_{j\neq i} |a_{ji}|,\qquad d_{i}=\frac{R_{i}(A)}{|a_{ii}|}, \\& J(A)=\{i\in N| d_{i}< 1\},\qquad u_{i}=\frac{\sum_{j=i+1}^{n} |a_{ij}|}{|a_{ii}|},\qquad l_{k}=\max _{k\leq i\leq n} \biggl\{ \frac{\sum_{k\leq j\leq n} |a_{ij}|}{|a_{ii}|} \biggr\} , \\& l_{n}=u_{n}=0, \qquad r_{ji}=\frac {|a_{ji}|}{|a_{jj}|-\sum_{k\neq{j,i}}|a_{jk}|},\qquad r_{i}=\max_{j\neq{i}}\{{r_{ji}}\}, \\& \sigma_{ji}=\frac{|a_{ji}|+\sum_{k\neq{j,i}}|a_{jk}|r_{i}}{|a_{jj}|},\qquad h_{i}=\max _{j\neq i } \biggl\{ \frac{|a_{ji}|}{ |a_{jj}|\sigma_{ji}-\sum_{k\neq j, i} |a_{jk}|\sigma_{ki}} \biggr\} , \\& u_{ji}=\frac{|a_{ji}|+\sum_{k\neq{j,i}}|a_{jk}|\sigma_{ki}h_{i}}{|a_{jj}|},\qquad \omega_{ji}= \frac{|a_{ji}|+\sum_{k\neq{j,i}}|a_{jk}|u_{ki}}{|a_{jj}|}. \end{aligned}$$

We will denote by \(A^{(n_{1},n_{2})}\) the principal submatrix of A formed from all rows and all columns with indices between \(n_{1}\) and \(n_{2}\) inclusively; e.g., \(A^{(2,n)}\) is the submatrix of A obtained by deleting the first row and the first column of A.

Definition 1

[3]

\(A=(a_{ij})\in R^{n\times n}\) is a weakly chained diagonally dominant if for all \(i\in N\), \(d_{i}\leq1\) and \(J(A)\neq\phi\), and for all \(i\in N\), \(i\notin J(A)\), there exist indices \(i_{1}, i_{2},\ldots,i_{k}\) in N with \(a_{i_{r},i_{r+1}}\neq0\), \(0\leq r\leq k-1\), where \(i_{0}=i\) and \(i_{k}\in J(A)\).

Definition 2

[5]

\(A=(a_{ij})\in R^{n\times n}\) is called a strictly α-diagonally dominant matrix if there exists \(\alpha\in[0,1]\) such that

$$ |a_{ii}|> \alpha R_{i}(A)+(1- \alpha)C_{i}(A),\quad \forall i\in N. $$

Upper bounds for \(\|A^{-1}\|_{\infty}\) of a strictly diagonally dominant M-matrix

In this section, we give several bounds of \(\|A^{-1}\|_{\infty}\) and \(\tau(A)\) for a strictly diagonally dominant M-matrix A.

Lemma 1

[2]

Let \(A=(a_{ij})\) be a weakly chained diagonally dominant M-matrix, \(B=A^{(2,n)}\), \(A^{-1}=(\alpha_{ij})\), and \(B^{-1}=(\beta_{ij})\). Then, for \(i,j=2,\ldots,n\),

$$\begin{aligned}& \alpha_{11}=\frac{1}{\triangle},\qquad \alpha_{i1}= \frac{1}{\triangle}\sum_{k=2}^{n} \beta_{ik}(-a_{k1}),\qquad \alpha_{1j}= \frac{1}{\triangle}\sum_{k=2}^{n} \beta_{kj}(-a_{1k}), \\& \alpha_{ij}=\beta_{ij}+\alpha_{1j}\sum _{k=2}^{n}\beta_{ik}(-a_{k1}), \qquad \triangle=a_{11}-\sum_{k=2}^{n}a_{1k} \Biggl(\sum_{i=2}^{n}\beta _{ki}a_{i1} \Biggr)>0. \end{aligned}$$

Furthermore, if \(J(A)=N\), then

$$ \triangle\geq a_{11}(1-d_{1}l_{1})\geq a_{11}(1-d_{1}). $$

Lemma 2

[2]

If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then

$$\triangle\geq a_{11}(1-d_{1}l_{1})> a_{11}(1-d_{1})>0. $$

Lemma 3

Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then, for \(A^{-1}=(\alpha_{ij})\),

$$ \alpha_{ji}\leq\omega_{ji}\alpha_{ii}, \quad i, j\in N, j\neq i. $$

Proof

This proof is similar to the one of Lemma 2 in [6]. □

Lemma 4

Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then, for \(A^{-1}=(\alpha_{ij})\),

$$ \frac{1}{a_{ii}}\leq\alpha_{ii}\leq \frac{1}{a_{ii}-\sum_{j\neq i}|a_{ij}|\omega_{ji}},\quad i\in N. $$

Proof

This proof is similar to the one of Lemma 2.3 in [7]. □

Lemma 5

[3]

Let \(A=(a_{ij})\) be a weakly chained diagonally dominant M-matrix, \(A^{-1}=(\alpha_{ij})\), and \(\tau=\tau(A)\). Then

$$ \tau\leq\min_{i\in N} \{a_{ii} \},\qquad \tau\leq\max _{i\in N} \biggl\{ \sum_{j\in N}a_{ij} \biggr\} ,\qquad \tau\geq\min_{i\in N} \biggl\{ \sum _{j\in N}a_{ij} \biggr\} ,\quad \frac{1}{M}\leq \tau\leq\frac{1}{m}, $$

where

$$M=\max_{i\in N} \biggl\{ \sum_{j\in N} \alpha_{ij} \biggr\} =\bigl\Vert A^{-1}\bigr\Vert _{\infty},\qquad m=\min_{i\in N} \biggl\{ \sum _{j\in N}\alpha_{ij} \biggr\} . $$

Theorem 1

Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix, \(B=A^{(2,n)}\), \(A^{-1}=(\alpha_{ij})\), and \(B^{-1}=(\beta_{ij})\). Then

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+\frac{1}{1-d_{1}l_{1}}\bigl\Vert B^{-1}\bigr\Vert _{\infty}. $$

Proof

Let

$$\eta_{i}=\sum_{j=1}^{n} \alpha_{ij},\qquad M_{A}=\bigl\Vert A^{-1}\bigr\Vert _{\infty}, \qquad M_{B}=\bigl\Vert B^{-1}\bigr\Vert _{\infty}. $$

Then

$$M_{A}=\max_{i\in N}\{\eta_{i}\}, \qquad M_{B}=\max_{2\leq i\leq n} \Biggl\{ \sum _{j=2}^{n}\beta_{ij} \Biggr\} . $$

By Lemma 1, Lemma 2, and Lemma 4,

$$\begin{aligned} \eta_{1} =&\alpha_{11}+\sum _{j=2}^{n}\alpha_{1j} =\frac{1}{\triangle}+ \frac{1}{\triangle}\sum_{k=2}^{n}(-a_{1k}) \sum_{j=2}^{n}\beta_{kj} \leq \frac{1}{\triangle}+\frac{1}{\triangle}a_{11}d_{1}M_{B} \\ \leq&\frac{1}{\triangle}+\frac{d_{1}M_{B}}{1-d_{1}l_{1}} \leq\frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+ \frac{M_{B}}{1-d_{1}l_{1}}. \end{aligned}$$
(4)

Let \(2\leq i\leq n\). Then, by Lemma 1 and Lemma 3,

$$\begin{aligned}& \sum_{k=2}^{n}\beta_{ik}(-a_{k1})= \triangle\cdot\alpha_{i1}\leq \triangle \omega_{i1} \alpha_{11}=\omega_{i1}< 1, \\& \alpha_{ij}=\beta_{ij}+\alpha_{1j}\sum _{k=2}^{n}\beta_{ik}(-a_{k1})\leq \beta_{ij}+\alpha_{1j}\omega_{i1}< \beta_{ij}+\alpha_{1j}. \end{aligned}$$

Therefore, for \(2\leq i\leq n\), we have

$$\begin{aligned} \eta_{i} =&\alpha_{i1}+\sum _{j=2}^{n}\alpha_{ij} \leq \alpha_{11}\omega_{i1}+\sum_{j=2}^{n} (\beta_{ij}+\alpha_{1j}\omega _{i1} ) = \eta_{1}\omega_{i1}+M_{B} \leq \eta_{1}l_{1}+M_{B} \\ \leq& \biggl(\frac{1}{\triangle}+\frac{d_{1}M_{B}}{1-d_{1}l_{1}} \biggr)l_{1}+M_{B} \leq\frac{1}{\triangle}+\frac{M_{B}}{1-d_{1}l_{1}} \leq\frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+ \frac{M_{B}}{1-d_{1}l_{1}}. \end{aligned}$$
(5)

Furthermore, from (4) and (5), we obtain

$$ M_{A}\leq \frac{1}{a_{11}-\sum_{j=2}^{n}|a_{1j}|\omega_{j1}}+\frac{1}{1-d_{1}l_{1}}\bigl\Vert B^{-1}\bigr\Vert _{\infty}. $$
(6)

The result follows. □

Theorem 2

Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq \frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. $$
(7)

Proof

The result follows by applying the principle of mathematical induction with respect to k on \(A^{(k,n)}\) in (6). □

By Lemma 5 and Theorem 1, we can obtain a new bound of \(\tau(A)\).

Corollary 1

If \(A=(a_{ij})\) is a strictly diagonally dominant M-matrix, then

$$ \tau(A)\geq \Biggl\{ \frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr] \Biggr\} ^{-1}. $$

Theorem 3

Let \(A=(a_{ij})\) be a strictly diagonally dominant M-matrix. Then the bound in (7) is better than that in (3), i.e.,

$$\begin{aligned}& \frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr] \\& \quad \leq\frac{1}{a_{11}(1-u_{1}l_{1})}+\sum_{i=2}^{n} \Biggl[\frac{1}{a_{ii}(1-u_{i}l_{i})} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. \end{aligned}$$

Proof

Since A is a strictly diagonally dominant matrix, so \(0\leq u_{j}\), \(l_{j}<1\) for all j. By the definition of \(u_{i}\), \(l_{i}\), \(\omega_{ki}\), we have \(\omega_{ki}\leq l_{i}\) and \(a_{ii}u_{i}=\sum_{k=i+1}^{n}|a_{ik}|\) for all i. Obviously, the result follows. □

Upper bounds for \(\|A^{-1}\|_{\infty}\) of a strictly α-diagonally dominant M-matrix

In this section, we present an upper bound of \(\|A^{-1}\|_{\infty}\) for a strictly α-diagonally dominant M-matrix A.

Lemma 6

[8]

Let \(A, B\in R^{n\times n}\). If A and \(A-B\) are nonsingular, then

$$ (A-B)^{-1}=A^{-1}+A^{-1}B \bigl(I-A^{-1}B\bigr)^{-1}A^{-1}. $$

Lemma 7

Let \(A=(a_{ij})\in R^{n\times n}\) be a strictly diagonally dominant M-matrix, and \(B=(b_{ij}) \in R^{n\times n}\). If \(\varphi_{0} \cdot \|B\|_{\infty}<1\), then \(\|A^{-1}B\|_{\infty}<1\), where

$$ \varphi_{0}=\frac{1}{a_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{a_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. $$

Proof

By Theorem 2, we get

$$ \bigl\Vert A^{-1}B\bigr\Vert _{\infty}\leq\bigl\Vert A^{-1}\bigr\Vert _{\infty}\|B\|_{\infty}\leq \varphi_{0} \|B\|_{\infty}< 1. $$

The result follows. □

Lemma 8

[8]

If \(\|A^{-1}\|_{\infty}<1\), then \(I-A\) is nonsingular and

$$ \bigl\Vert (I-A)^{-1}\bigr\Vert _{\infty}\leq \frac{1}{1-\|A\|_{\infty}}. $$

Theorem 4

Let \(A=(a_{ij})\in R^{n\times n}\) be a strictly α-diagonally dominant matrix, \(\alpha\in(0, 1]\) and A be an M-matrix. If \(\{ i\in N| R_{i}(A)>C_{i}(A) \}\neq\emptyset\), and

$$ \varphi_{1}< \frac{1}{ \max_{1\leq i\leq n}\alpha(R_{i}(A)-C_{i}(A)) }, $$

then

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}< \frac{\varphi_{1}}{1-\varphi_{1} \max_{1\leq i\leq n}\alpha(R_{i}(A)-C_{i}(A))}, $$
(8)

where

$$\begin{aligned}& \varphi_{1}=\frac{1}{\nu_{1}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{\nu_{i}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr], \\& \nu_{i}=\max_{1\leq i\leq n} \bigl\{ a_{ii}, a_{ii}+ \alpha\bigl(R_{i}(A)-C_{i}(A)\bigr) \bigr\} . \end{aligned}$$

Proof

Let \(A=B-C\), where \(B=(b_{ij})\), \(C=(c_{ij})\), and

$$\begin{aligned}& b_{ij}=\left \{ \begin{array}{l@{\quad}l} a_{ii}+\alpha(R_{i}(A)-C_{i}(A)), & i=j, R_{i}(A)>C_{i}(A), \\ a_{ij}, &\mbox{otherwise}, \end{array} \right . \\& c_{ij}=\left \{ \begin{array}{l@{\quad}l} \alpha(R_{i}(A)-C_{i}(A)), & i=j, R_{i}(A)>C_{i}(A), \\ 0, &\mbox{otherwise}. \end{array} \right . \end{aligned}$$

For any \(i\in\{ i\in N| R_{i}(A)>C_{i}(A)\}\), we get

$$ b_{ii}=a_{ii}+\alpha\bigl(R_{i}(A)-C_{i}(A) \bigr)>R_{i}(A)=R_{i}(B). $$

For any \(i\in\{ i\in N| R_{i}(A)\leq C_{i}(A)\}\), we have

$$ b_{ii}=a_{ii}>\alpha R_{i}(A)+(1- \alpha)C_{i}(A) \geq R_{i}(A)=R_{i}(B). $$

Thus, B is a strictly diagonal dominant M-matrix. By Lemma 7, we get \(\|B^{-1}C\|_{\infty}<1\). By Lemma 6, Lemma 8, and Theorem 2, we have

$$\begin{aligned} \bigl\Vert B^{-1}\bigr\Vert _{\infty} \leq& \frac{1}{b_{11}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{b_{ii}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr] \\ =& \frac{1}{\nu_{1}-\sum_{k=2}^{n}|a_{1k}|\omega_{k1}}+\sum_{i=2}^{n} \Biggl[ \frac{1}{\nu_{i}-\sum_{k=i+1}^{n}|a_{ik}|\omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1-u_{j}l_{j}} \Biggr]. \end{aligned}$$

Therefore

$$ \bigl\Vert B^{-1}C\bigr\Vert _{\infty}\leq \varphi_{1} \max_{1\leq i\leq n}\alpha\bigl(R_{i}(A)-C_{i}(A) \bigr) . $$

Furthermore, we have

$$\begin{aligned} \bigl\Vert A^{-1}\bigr\Vert _{\infty} =&\bigl\Vert (B-C)^{-1}\bigr\Vert _{\infty}=\bigl\Vert B^{-1}+B^{-1}C\bigl(I-B^{-1}C\bigr)^{-1}B^{-1} \bigr\Vert _{\infty}\\ \leq&\bigl\Vert B^{-1}\bigr\Vert _{\infty}+\bigl\Vert B^{-1}C\bigr\Vert _{\infty}\cdot\bigl\Vert \bigl(I-B^{-1}C\bigr)^{-1}\bigr\Vert _{\infty}\cdot\bigl\Vert B^{-1}\bigr\Vert _{\infty}\\ \leq&\bigl\Vert B^{-1}\bigr\Vert _{\infty}+ \frac{\|B^{-1}C\|_{\infty}}{1-\|B^{-1}C\|_{\infty}} \bigl\Vert B^{-1}\bigr\Vert _{\infty}\\ =& \frac{\|B^{-1}\|_{\infty}}{1-\|B^{-1}C\|_{\infty}} \\ \leq&\frac{\varphi_{1}}{1-\varphi_{1} \max_{1\leq i\leq n}\alpha(R_{i}(A)-C_{i}(A))}. \end{aligned}$$

The result follows. □

Numerical examples

In this section, we present numerical examples to illustrate the advantages of our derived results.

Example 1

Let

$$ A=\left ( \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} 37&-1&-3&-1&-2&-4&-2&-3&-1&-5\\ -4&30&-1&-2&-3&-4&0&-1&-1&-3\\ -1&-3&30&-4&0&-2&-3&-2&-4&-5\\ -3&-5&-3&40&-1&-2&-3&-4&-2&-4\\ -5&-2&0&-5&25.01&-5&0&-1&-5&-2\\ -2&0&-2&-1&-4&30&-5&-2&-5&-3\\ 0&-3&-1&-1&-2&-4&40&-2&-3&-4\\ -1&-3&-2&-3&-2&-1&-2&40&-4&-1\\ -2&-4&-3&-1&-3&-3&-4&0&27&-2\\ -2&-1&0&-2&-4&-3&-1&0&-3&25 \end{array} \right ). $$

It is easy to see that A is a strictly diagonally dominant M-matrix. By calculations with Matlab 7.1, we have

$$\begin{aligned}& \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq100 \quad ( \mbox{by (1)}),\qquad \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq 11.2862\quad (\mbox{by (2)}), \\& \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq5.2305\quad ( \mbox{by (3)}),\qquad \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq 1.0003\quad (\mbox{by (7)}), \end{aligned}$$

respectively. It is obvious that the bound in (7) is the best result.

Example 2

Let

$$ A=\left ( \begin{array}{@{}c@{\quad}c@{\quad}c@{}} 2&-1&-1\\ -1&2&-1\\ -0.5&-0.5&2 \end{array} \right ). $$

It is easy to see that A is a strictly α-diagonally dominant M-matrix by taking \(\alpha=0.5\), and A is not a strictly diagonally dominant matrix. Thus the bound of \(\|A^{-1}\|_{\infty}\) cannot be estimated by (1), (2), and (3), but it can be estimated by (8). By (8), we get

$$ \bigl\Vert A^{-1}\bigr\Vert _{\infty}\leq8.0322. $$

References

  1. Varah, JM: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3-5 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheng, GH, Huang, TZ: An upper bound for A −1 of strictly diagonally dominant M-matrices. Linear Algebra Appl. 426, 667-673 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Shivakumar, PN, Williams, JJ, Ye, Q, Marinov, CA: On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics. SIAM J. Matrix Anal. Appl. 17, 298-312 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wang, P: An upper bound for A −1 of strictly diagonally dominant M-matrices. Linear Algebra Appl. 431, 511-517 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhang, YL, Mo, HM, Liu, JZ: α-Diagonal dominance and criteria for generalized strictly diagonally dominant matrices. Numer. Math. 31, 119-128 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Li, YT, Wang, F, Li, CQ, Zhao, JX: Some new bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix. J. Inequal. Appl. 2013, 480 (2013)

    Article  MathSciNet  Google Scholar 

  7. Li, YT, Chen, FB, Wang, DF: New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 430, 1423-1431 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Xu, S: Theory and Methods about Matrix Computation. Tsinghua University Press, Beijing (1986)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11361074, 71161020) and IRTSTYN, Applied Basic Research Programs of Science and Technology Department of Yunnan Province (2013FD002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Sun, Ds. & Zhao, Jx. New upper bounds for \(\|A^{-1}\|_{\infty}\) of strictly diagonally dominant M-matrices. J Inequal Appl 2015, 172 (2015). https://doi.org/10.1186/s13660-015-0696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0696-2

MSC

  • 15A42
  • 15A45

Keywords

  • diagonal dominance
  • M-matrix
  • infinity norm
  • upper bound
  • minimum eigenvalue