Open Access

Multi-parameter fourth order impulsive integral boundary value problems with one-dimensional m-Laplacian and deviating arguments

Journal of Inequalities and Applications20152015:64

https://doi.org/10.1186/s13660-015-0587-6

Received: 20 June 2014

Accepted: 3 February 2015

Published: 20 February 2015

Abstract

Using inequality techniques and fixed point theories, several new and more general existence and multiplicity results are derived in terms of different values of \(\lambda>0\) and \(\mu>0\) for a fourth order impulsive integral boundary value problem with one-dimensional m-Laplacian and deviating arguments. We discuss our problems under two cases when the deviating arguments are delayed and advanced. Moreover, the nonexistence of a positive solution is also studied. In this paper, our results cover fourth order boundary value problems without deviating arguments and impulsive effect and are compared with some recent results by Jankowski.

Keywords

multi-parameter impulsive integral boundary value problems with advanced and delayed arguments inequality techniques and fixed point theories one-dimensional m-Laplacian existence and nonexistence of positive solutions

1 Introduction

Functional differential equations with impulse effect occur in many applications, such as population dynamics, biology, biotechnology, industrial robotic, pharmacokinetics, optimal control, etc., and can be expressed by functional differential equations with impulses, see [15]. Functional differential equations with impulses are characterized by sudden changing of their state and by the fact that the processes under consideration depend on their prehistory at each moment of time. Therefore, the study of impulsive functional differential equations has gained prominence and it is a rapidly growing field, see Zhang and Feng [6], Nieto and Rodríguez-López [7], Yan and Shen [8], Li and Shen [9], Yang and Shen [10], YS Liu [11], YJ Liu [12], He and Yu [13] and Ding et al. [14] and the references therein. We note that the difficulties dealing with such problems are that they have deviating arguments and their states are discontinuous. Therefore, the results of impulsive functional differential equations, especially for higher order impulsive functional differential equations, are fewer than those of differential equations without impulses and deviating arguments.

Moreover, owing to its importance in modeling the stationary states of the deflection of an elastic beam, fourth order boundary value problems have attracted much attention from many authors; for example, see Sun and Wang [15], Yao [16], O’Regan [17], Yang [18], Zhang [19], Gupta [20], Agarwal [21], Bonanno and Bella [22] and Han and Xu [23]. In particular, we would like to mention some results of Zhang and Liu [24] and Feng [25]. In [24], Zhang and Liu studied the following fourth order four-point boundary value problem without impulsive effect:
$$\left \{ \begin{array}{l} (\phi_{p}(x''(t)))''=w(t)f(t,x(t)), \quad t\in[0,1], \\ x(0)=0, \qquad x(1)=ax(\xi), \\ x''(0)=0, \qquad x''(1)=bx''(\eta), \end{array} \right . $$
where \(0<\xi,\eta<1\), \(0\leq a< b<1\). By using the upper and lower solution method, fixed point theorems and the properties of Green’s function \(G(t,s)\) and \(H(t,s)\), the authors give sufficient conditions for the existence of one positive solution.
Recently, Feng [25] studied a fourth order boundary value problem with impulses and integral boundary conditions
$$\left \{ \begin{array}{l} (\phi_{p}(y''(t)))''=f(t,y(t)), \quad t\in J, t\neq t_{k}, k=1,2,\ldots,n, \\ \Delta y'|_{t=t_{k}}=-I_{k}(y(t_{k})),\quad k=1,2,\ldots,n, \\ y(0)=y(1)=\int_{0}^{1}g(s)y(s)\,ds, \\ \phi_{p}(y''(0))=\phi_{p}(y''(1))=\int_{0}^{1}h(s)\phi_{p}(y''(s))\,ds. \end{array} \right . $$
Using a suitably constructed cone and fixed point theory for cones, the existence of multiple positive solutions was established. Furthermore, upper and lower bounds for these positive solutions were given.

However, to the best of our knowledge, no paper has considered the existence, multiplicity and nonexistence of positive solutions for fourth order impulsive differential equations with one-dimensional m-Laplacian, multiple parameters and deviating arguments till now; for example, see [2630] and the references therein.

In this paper, we investigate a fourth order impulsive integral boundary value problem with one-dimensional m-Laplacian and deviating arguments
$$ \left \{ \begin{array}{l} (\phi_{m}(y''(t)))''=\lambda\omega(t)f(t,y(\alpha(t))), \quad t\in J, t\neq t_{k}, k=1,2,\ldots,n, \\ \Delta y'|_{t=t_{k}}=-\mu I_{k}(t_{k},y(t_{k})), \quad k=1,2,\ldots ,n, \\ ay(0)-by'(0)=\int_{0}^{1}g(s)y(s)\,ds, \\ ay(1)+by'(1)=\int_{0}^{1}g(s)y(s)\,ds, \\ \phi_{p}(y''(0))=\phi_{p}(y''(1))=\int_{0}^{1}h(t)\phi_{p}(y''(t))\,dt, \end{array} \right . $$
(1.1)
where \(\lambda>0\) and \(\mu>0\) are two parameters, \(a, b>0\), \(J=[0,1]\), \(\phi_{m}(s)\) is an m-Laplace operator, i.e., \(\phi_{m}(s)=|s|^{m-2}s\), \(m>1\), \((\phi_{m})^{-1}=\phi_{m^{*}}\), \(\frac{1}{m}+\frac{1}{m^{*}}=1\), \(t_{k}\) (\(k=1,2,\ldots,n\)) (where n is a fixed positive integer) are fixed points with \(0=t_{0}< t_{1}<t_{2}<\cdots <t_{k}<\cdots <t_{n}<t_{n+1}=1\), \(\Delta y' |_{t=t_{k}}=y'(t_{k}^{+})-x'(t_{k}^{-})\), where \(y'(t_{k}^{+})\) and \(y'(t_{k}^{-})\) represent the right-hand limit and the left-hand limit of \(y'(t)\) at \({t=t_{k}}\), respectively. In addition, ω, f, \(I_{k}\), g and h satisfy
(H1): 

\(\omega\in L^{p}[0,1]\) for some \(1\leq p \leq+\infty\), and there exists \(\eta>0\) such that \(\omega(t)\geq\eta\) a.e. on J;

(H2): 

\(f:J\times R_{+}\rightarrow R_{+}\) is continuous with \(f(t,y)>0\) for all \(t\in J\) and \(y>0, \alpha\in C(J,J)\) with \(R_{+}=[0,+\infty)\);

(H3): 

\(I_{k}:J\times R_{+}\rightarrow R_{+}\) is continuous with \(I_{k}(t,y)>0\) (\(k=1,2,\ldots,n\)) for all t and \(y>0\);

(H4): 
\(g,h\in L^{1}[0,1]\) are nonnegative and \(\xi\in[0,a)\), \(\nu \in[0,1)\), where
$$ \xi=\int_{0}^{1}g(t)\,dt, \qquad \nu=\int _{0}^{1}h(t)\,dt. $$
(1.2)

Some special cases of (1.1) have been investigated. For example, Jankowski [31] considered problem (1.1) with \(\lambda=1\), \(I_{k}=0\) and \(\omega\in C[0,1]\), not \(\omega\in L^{p}[0,1]\) for some \(1\leq p \leq+\infty\). By using a fixed point theorem for cones due to Avery and Peterson, the author proved the existence results of positive solutions for problem (1.1).

Motivated by the results mentioned above, in this paper we study the existence, multiplicity and nonexistence of positive solutions for problem (1.1) by using different methods from that of the proof of Theorem 2.1 and Theorem 2.2 in [30] to overcome difficulties arising from the appearances of \(\alpha(t)\not\equiv t\) and \(\omega(t)\) is \(L^{p}\)-integrable. The arguments are based upon a fixed point theorem due to Krasnoselskii which deals with fixed points of a cone-preserving operator defined on an ordered Banach space.

The organization of this paper is as follows. In Section 2, we present the expression and properties of Green’s function associated with problem (1.1). In Section 3, we present some definitions and lemmas which are needed throughout this paper. In Section 4, we use a fixed point theorem to obtain the existence, multiplicity and nonexistence of positive solutions for problem (1.1) with advanced argument α. In Section 5, we formulate sufficient conditions under which delayed problem (1.1) has positive solutions. In particular, our results in these sections are new when \(\alpha(t)\equiv t\) on \(t\in J\). Finally, in Section 6, we offer some remarks and comments of the associated problem (1.1).

2 Expression and properties of Green’s function

We shall reduce problem (1.1) to an integral equation. To this goal, firstly by means of the transformation
$$ \phi_{m}\bigl(y''(t)\bigr)=-x(t), $$
(2.1)
we convert problem (1.1) into
$$ \left \{ \begin{array}{l} x''(t)+\lambda\omega(t)f(t,y(\alpha(t)))=0, \quad t\in J, \\ x(0)=x(1)=\int_{0}^{1}h(t)x(t)\,dt \end{array} \right . $$
(2.2)
and
$$ \left \{ \begin{array}{l} y''(t)=-\phi_{m^{*}}(x(t)), \quad t\in J, t\neq t_{k}, \\ \Delta y'|_{t=t_{k}}=-\mu I_{k}(t_{k},y(t_{k})), \quad k=1,2,\ldots ,n, \\ ay(0)-by'(0)=\int_{0}^{1}g(s)y(s)\,ds, \\ ay(1)+by'(1)=\int_{0}^{1}g(s)y(s)\,ds. \end{array} \right . $$
(2.3)

Theorem 2.1

If (H1), (H2) and (H4) hold, then problem (2.2) has a unique solution x given by
$$ x(t) =\lambda\int_{0}^{1}H(t,s)\omega(s)f \bigl(s,y\bigl(\alpha(s)\bigr)\bigr)\,ds, $$
(2.4)
where
$$\begin{aligned}& H(t,s)=G(t,s)+\frac{1}{1-\nu}\int_{0}^{1}G(s, \tau)h(\tau) \,d\tau, \end{aligned}$$
(2.5)
$$\begin{aligned}& G(t,s)=\left \{ \begin{array}{l@{\quad}l} t(1-s), & 0\leq t \leq s\leq1, \\ s(1-t), & 0\leq s \leq t \leq1. \end{array} \right . \end{aligned}$$
(2.6)

Proof

The proof of Theorem 2.1 is similar to that of Lemma 2.1 in [25]. □

Write \(e(t)=t(1-t)\). Then from (2.5) and (2.6) we can prove that \(H(t,s)\) and \(G(t,s)\) have the following properties.

Theorem 2.2

Let G and H be given as in Theorem  2.1. If (H4) holds, then
$$\begin{aligned}& H(t,s)>0,\qquad G(t,s)>0,\quad \forall t,s\in(0,1), \end{aligned}$$
(2.7)
$$\begin{aligned}& H(t,s)\geq0,\qquad G(t,s)\geq0,\quad \forall t,s\in J, \end{aligned}$$
(2.8)
$$\begin{aligned}& e(t)e(s)\leq G(t,s)\leq G(t,t)= t(1-t)=e(t)\leq\bar{e}= \max _{t\in J}e(t)=\frac{1}{4},\quad \forall t,s\in J, \end{aligned}$$
(2.9)
$$\begin{aligned}& \rho e(s)\leq H(t,s)\leq\gamma s(1-s)=\gamma e(s)\leq\frac{1}{4}\gamma , \quad \forall t,s\in J, \end{aligned}$$
(2.10)
where
$$ \gamma=\frac{1}{1-\nu},\qquad \rho=\frac{\int_{0}^{1}e(\tau)h(\tau)\,d\tau }{1-\nu}. $$
(2.11)

Theorem 2.3

If (H1), (H3) and (H4) hold, then problem (2.3) has a unique solution y expressed in the form
$$ y(t) =\int_{0}^{1}H_{1}(t,s) \phi_{m^{*}}\bigl(x(s)\bigr)\,ds +\mu\sum_{k=1}^{n}H_{1}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr), $$
(2.12)
where
$$\begin{aligned}& H_{1}(t,s)=G_{1}(t,s)+\frac{1}{a-\xi}\int _{0}^{1}G_{1}(s,\tau)g(\tau )\,d \tau, \end{aligned}$$
(2.13)
$$\begin{aligned}& G_{1}(t,s) =\frac{1}{d}\left \{ \begin{array}{l@{\quad}l} (b+as)(b+a(1-t)),& \textit{if } 0\leq s \leq t \leq1, \\ (b+at)(b+a(1-s)),& \textit{if } 0\leq t \leq s \leq1 \end{array} \right . \end{aligned}$$
(2.14)
and
$$d=a(2b+a). $$

Proof

The proof of Theorem 2.3 is similar to that of Lemma 2.2 in [25]. □

From (2.13) and (2.14) we can prove that \(H_{1}(t,s)\) and \(G_{1}(t,s)\) have the following properties.

Theorem 2.4

Let \(\zeta\in(0,t_{1})\), \(G_{1}\) and \(H_{1}\) be given as in Theorem  2.3. If (H4) holds, then we have
$$\begin{aligned}& \frac{1}{d}b^{2}\leq G_{1}(t,s)\leq G_{1}(s,s)\leq\frac{1}{d}(b+a)^{2}, \quad \forall t,s \in J, \end{aligned}$$
(2.15)
$$\begin{aligned}& \rho_{1}\leq H_{1}(t,s)\leq\frac{a}{a-\xi}G_{1}(s,s) \leq\rho_{2}, \quad \forall t,s\in J, \end{aligned}$$
(2.16)
$$\begin{aligned}& G_{1}(t,s)\geq\delta G_{1}(s,s)\geq\frac{b^{2}\delta}{d}, \qquad H_{1}(t,s)\geq\frac{\delta a}{a-\xi} G_{1}(s,s)\geq\delta \rho_{1},\quad \forall t\in[\zeta,1], s\in J, \end{aligned}$$
(2.17)
where
$$ \delta=\frac{b}{a+b}, \qquad \rho_{1}=\frac{b^{2}\gamma_{1}}{a+2b}, \qquad \rho _{2}=\frac{\gamma_{1} (b+a)^{2}}{a+2b}, \qquad \gamma_{1}= \frac{1}{a-\xi }. $$
(2.18)

Proof

It follows from the definition of \(G_{1}(t,s)\) and \(H_{1}(t,s)\) that (2.15) and (2.16) hold. Now, we show that (2.17) also holds.

In fact, for \(t\in[\zeta,1]\) and \(s\in J\), we have that
$$\begin{aligned}& \frac{G_{1}(t,s)}{G_{1}(s,s)}=\frac{b+a(1-t)}{b+a(1-s)} \geq\frac{b}{b+a} \quad \mbox{for }s \leq t, \\& \frac{G_{1}(t,s)}{G_{1}(s,s)}=\frac{b+at}{b+as} \geq\frac{b+a\zeta}{b+a}\quad \mbox{for }t \leq s. \end{aligned}$$
This and (2.13) show that
$$\begin{aligned} H_{1}(t,s)&\geq\delta G_{1}(s,s) \biggl[1+\frac{1}{a-\xi} \int_{0}^{1}g(\tau)\,d\tau \biggr] \\ &\geq\frac{a\delta}{a-\xi}G_{1}(s,s), \quad t\in[\zeta,1], s\in J. \end{aligned}$$
This together with (2.13) and (2.15) finishes the proof of (2.17). □

From Theorem 2.1 and Theorem 2.3, we have the following result.

Theorem 2.5

Assume that (H1)-(H4) hold. Then problem (1.1) has a unique solution y given by
$$\begin{aligned} y(t) =&\int_{0}^{1}H_{1}(t,s) \phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds \\ &{}+ \mu\sum_{k=1}^{n}H_{1}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr). \end{aligned}$$

3 Preliminaries for the case \(\alpha(t)\geq t\) on J

We begin by introducing the notations
$$\begin{aligned}& f^{0}=\limsup_{y \rightarrow0^{+}}\max_{t\in J} \frac{f(t,y)}{\phi_{m}(y)},\qquad f^{\infty}=\limsup_{y \rightarrow\infty}\max _{t\in J} \frac{f(t,y)}{\phi_{m}(y)}, \\& f_{0}=\liminf _{y \rightarrow0^{+}}\min_{t\in J} \frac{f(t,y)}{\phi_{m}(y)}, \qquad f_{\infty}=\liminf_{y \rightarrow\infty}\min_{t\in J} \frac{f(t,y)}{\phi _{m}(y)}, \\& I^{0}(k)=\limsup_{y \rightarrow0^{+}}\max _{t\in J} \frac{I_{k}(t,y)}{y}, \qquad I^{\infty}(k)=\limsup _{y \rightarrow\infty}\max_{t\in J} \frac{I_{k}(t,y)}{y}, \\& I_{0}(k)=\liminf_{y \rightarrow0^{+}}\min_{t\in J} \frac{I_{k}(t,y)}{y},\qquad I_{\infty}(k)=\liminf_{y \rightarrow\infty}\min _{t\in J} \frac{I_{k}(t,y)}{y},\quad k=1,2,\ldots,n. \end{aligned}$$
We will also need the functions
$$f^{*}(u)=\max \Bigl\{ \max_{t\in J}f(t,y), y\in[0,u] \Bigr\} ,\qquad I_{k}^{*}(u)=\max \Bigl\{ \max _{t\in J}I_{k}(t,y), y\in[0,u] \Bigr\} , $$
and let
$$\begin{aligned}& f_{0}^{*}=\lim_{u\rightarrow0^{+}}\frac{f^{*}(u)}{\phi _{m}(u)}, \qquad f_{\infty}^{ *}=\lim_{u\rightarrow\infty} \frac {f^{*}(u)}{\phi_{m}(u)}, \\& I_{0}^{*}(k)=\lim _{u\rightarrow 0^{+}}\frac{I_{k}^{*}(u)}{u}, \qquad I_{\infty}^{ *}(k)= \lim_{u\rightarrow\infty}\frac{I_{k}^{*}(u)}{u}, \end{aligned}$$
where \(k=1,2,\ldots,n\).

Our first lemma gives some relationships between the functions f and \(f^{*}\) and \(I_{k}^{*}\) and \(I_{k}\).

Lemma 3.1

(See [32])

Assume that (H1) holds. Then
$$f_{0}^{*}=f^{0}, \qquad f_{\infty}^{ *}=f^{\infty}, \qquad I_{0}^{*}(k)=I^{0}(k),\qquad I_{\infty}^{ *}(k)=I^{\infty}(k), $$
where \(k=1,2,\ldots,n\).

Proof

The proof of Lemma 3.1 is similar to that of Lemma 2.8 in [32]. □

The following fixed point theorem of a cone is crucial in the proofs of our results.

Lemma 3.2

(See [33])

Let P be a cone in a real Banach space E. Assume that \(\Omega_{1}\) and \(\Omega_{2}\) are bounded open sets in E with \(0 \in\Omega_{1}\), \(\bar{\Omega}_{1}\subset\Omega_{2}\). If
$$A:P\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\rightarrow P $$
is completely continuous such that either
  1. (i)

    \(\|Ax\|\leq\|x\|\), \(\forall x\in P\cap\partial \Omega_{1}\) and \(\|Ax\|\geq\|x\|\), \(\forall x\in P\cap\partial\Omega_{2}\), or

     
  2. (ii)

    \(\|Ax\|\geq\|x\|\), \(\forall x\in P\cap\partial \Omega_{1}\) and \(\|Ax\|\leq\|x\|\), \(\forall x\in P\cap\partial\Omega_{2}\),

     
then A has at least one fixed point in \(P\cap(\bar{\Omega}_{2}\backslash\Omega_{1})\).
Let \(J'=J\backslash\{t_{1},t_{2},\ldots,t_{m}\}\), and
$$PC^{1}[0,1]= \bigl\{ y\in C[0,1]:y'|_{(t_{k},t_{k+1})}\in C(t_{k},t_{k+1}), y'\bigl(t_{k}^{-} \bigr), y'\bigl(t_{k}^{+}\bigr)\text{ exist}, k=1,2, \ldots,m \bigr\} . $$
Then \(PC^{1}[0,1]\) is a real Banach space with the norm
$$ \|y\|_{PC^{1}}=\max \bigl\{ \|y\|_{\infty}, \bigl\Vert y'\bigr\Vert _{\infty} \bigr\} , $$
(3.1)
where \(\|y\|_{\infty}=\sup_{t\in J}|y(t)|\), \(\|y'\|_{\infty}=\sup_{t\in J}|y'(t)|\).

A function \(y\in PC^{1}[0,1]\cap C^{4}(J')\) with \(\varphi_{p}(y'')\in C^{2}(0,1)\) is called a solution of problem (1.1) if it satisfies (1.1).

Define a cone in \(PC^{1}[0,1]\) by
$$ K= \biggl\{ y\in PC^{1}[0,1]:y(t)\geq0 \mbox{ on }J\mbox{ and } \min _{t\in [\zeta,1]} y(t) \geq\delta\frac{\rho_{1}}{\rho_{4}} \|y\|_{PC^{1}} \biggr\} , $$
(3.2)
where δ, \(\rho_{1}\) and \(\rho_{4}\) are defined in (2.18) and (3.8), respectively. For \(r>0\), let
$$ \Omega_{r}=\bigl\{ y\in K:\Vert y\Vert _{PC^{1}}< r\bigr\} . $$
(3.3)
Define an operator \(T_{\lambda}^{\mu}:K\rightarrow PC^{1}[0,1]\) by
$$\begin{aligned} \bigl(T_{\lambda}^{\mu}y\bigr) (t) =&\int_{0}^{1}H_{1}(t,s) \phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds \\ &{}+\mu\sum_{k=1}^{n}H_{1}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr). \end{aligned}$$
(3.4)

It follows from (3.4) and Theorem 2.5 that the following lemma holds.

Lemma 3.3

Assume that (H1)-(H4) hold. Then \(y\in K\) is a positive fixed point of \(T_{\lambda}^{\mu}\) if and only if y is a positive solution of problem (1.1).

Lemma 3.4

Suppose that (H1)-(H4) hold. Then \(T_{\lambda}^{\mu}(K) \subset K\) and \(T_{\lambda}^{\mu}: K\rightarrow K\) is completely continuous.

Proof

For all \(u\in K\), then \(T_{\lambda}u\geq0\) on J and it follows from (2.16) and (3.4) that
$$\begin{aligned}& \bigl(T_{\lambda}^{\mu}y\bigr) (t)=\int_{0}^{1}H_{1}(t,s) \phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds \\& \hphantom{\bigl(T_{\lambda}^{\mu}y\bigr) (t)=}{}+\mu\sum_{k=1}^{n}H_{1}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr) \\& \hphantom{\bigl(T_{\lambda}^{\mu}y\bigr) (t)}\leq\rho_{2} \Biggl(\int_{0}^{1} \phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds + \mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr), \\& \hphantom{\bigl(T_{\lambda}^{\mu}y\bigr) (t)={}}t \in J, \end{aligned}$$
(3.5)
$$\begin{aligned}& \bigl\vert \bigl(T_{\lambda}^{\mu}y\bigr)'(t)\bigr\vert \leq\int_{0}^{1}\bigl\vert H_{1t}'(t,s)\bigr\vert \phi _{m^{*}} \biggl( \lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl( \tau,y(\tau)\bigr) \,d\tau \biggr)\,ds \\& \hphantom{\bigl\vert \bigl(T_{\lambda}^{\mu}y\bigr)'(t)\bigr\vert \leq}{}+\mu\sum_{k=1}^{m}\bigl\vert H_{1t}'(t,t_{k})\bigr\vert I_{k}\bigl(t_{k},y(t_{k})\bigr) \\& \hphantom{\bigl\vert \bigl(T_{\lambda}^{\mu}y\bigr)'(t)\bigr\vert }\leq\rho_{3} \Biggl(\int_{0}^{1} \phi _{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds +\mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr), \\& \hphantom{\bigl\vert \bigl(T_{\lambda}^{\mu}y\bigr)'(t)\bigr\vert \leq{}}t \in J, \end{aligned}$$
(3.6)
where \(\rho_{3}=\frac{1}{d}a(a+b)\),
$$H_{1t}'(t,s)= G_{1t}'(t,s) = \frac{1}{d}\left \{ \begin{array}{l@{\quad}l} -a(b+as), &\mbox{if } 0\leq s \leq t \leq1, \\ a(b+a(1-s)), & \mbox{if } 0\leq t \leq s \leq1 \end{array} \right . $$
and
$$\max_{t,s\in J,t\neq s}\bigl\vert H_{1t}'(t,s) \bigr\vert =\max_{t,s\in J,t\neq s}\bigl\vert G_{1t}'(t,s) \bigr\vert =\frac{1}{d}a(b+a). $$
It follows from (3.5) and (3.6) that
$$\begin{aligned} \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq& \rho_{4} \Biggl(\int_{0}^{1}\phi _{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds \\ &{}+ \mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr), \end{aligned}$$
(3.7)
where
$$ \rho_{4}=\max\{\rho_{2},\rho_{3} \}. $$
(3.8)
Noticing (2.17), (3.4) and (3.7), we have
$$\begin{aligned}& \min_{t\in[\zeta,1]}\bigl(T_{\lambda}^{\mu}y\bigr) (t) \\& \quad = \min_{t\in [\zeta,1]} \Biggl( \int_{0}^{1}H_{1}(t,s) \phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds \\& \qquad {}+\mu\sum_{k=1}^{n}H_{1}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr) \\& \quad \geq \delta\rho_{1} \Biggl(\int_{0}^{1} \phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds + \mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr) \\& \quad = \delta\frac{\rho_{1}}{\rho_{4}}\rho_{4} \Biggl(\int_{0}^{1} \phi _{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds +\mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr) \\& \quad \geq \delta\frac{\rho _{1}}{\rho_{4}}\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}. \end{aligned}$$
Thus, \(T_{\lambda}^{\mu}(K)\subset K\).

Finally, similar to the proof of Lemma 2.10 in [25], one can prove that \(T_{\lambda}^{\mu}: K \rightarrow K\) is completely continuous. This gives the proof of Lemma 3.4. □

To obtain some of the norm inequalities in Lemma 3.6 and Lemma 3.8, we employ Hölder’s inequality.

Lemma 3.5

(Hölder)

Let \(f\in L^{p}[a,b]\) with \(p>1\), \(g\in L^{q}[a,b]\) with \(q>1\), and \(\frac{1}{p}+\frac{1}{q}=1\). Then \(fg\in L^{1}[a,b]\) and
$$\|fg\|_{1}\leq\|f\|_{p}\|g\|_{q}. $$
Let \(f\in L^{1}[a,b]\), \(g\in L^{\infty}[a,b]\). Then \(fg\in L^{1}[a,b]\) and
$$\|fg\|_{1}\leq\|f\|_{1}\|g\|_{\infty}. $$

Next, we consider the following cases for \(\omega\in L^{p}[0,1]\): \(p>1\), \(p=1\), \(p=\infty\). Case \(p>1\) is treated in Lemma 3.6 and Lemma 3.8.

Lemma 3.6

Assume that (H1)-(H4) hold, \(\alpha(t)\geq t\) on J and let \(r>0\) be given. If there exist \(\varepsilon_{1} >0\) and \(\varepsilon_{2} >0\) such that \(f^{*}(r)\leq\varepsilon_{1}\phi _{m}(r) \) and \(I_{k}^{*}(r)\leq\varepsilon_{2} r\) (\(k=1,2,\ldots,n\)), then
$$ \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda \gamma \varepsilon_{1} \Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n\varepsilon _{2} \bigr)\|y \|_{PC^{1}}, \quad y\in\partial\Omega_{r}. $$
(3.9)

Proof

By the definition of \(f^{*}(r)\) and \(I_{k}^{*}\), if \(f^{*}(r)\leq\varepsilon_{1} \phi_{m}(r)\) and \(I_{k}^{*}(r)\leq \varepsilon_{2} r\) (\(k=1,2,\ldots,n\)), then
$$f(t,y)\leq\varepsilon_{1} \phi_{m}(r), \qquad I_{k}(t,y)\leq\varepsilon_{2} r \quad \mbox{for }t\in J \mbox{ and }0\leq y\leq r. $$

Since \(0\leq t\leq\alpha(t)\leq1\) on J, it follows from \(0\leq y(t)\leq r\) on J that \(0\leq y(\alpha(t))\leq r\).

Therefore, we have \(f(t,y(\alpha(t)))\leq\varepsilon_{1} \phi_{m}(r)\) for \(t\in J\), and it follows from (3.7) that
$$\begin{aligned} \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq& \rho_{4} \Biggl(\int_{0}^{1}\phi _{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds + \mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr) \\ \leq&\rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\int _{0}^{1}\gamma e(\tau )\omega(\tau)f\bigl(\tau,y \bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr) +\mu\sum _{k=1}^{n}I_{k}\bigl(t_{k},y(t_{k}) \bigr) \Biggr) \\ \leq&\rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\gamma\int _{0}^{1} e(\tau )\omega(\tau)\varepsilon_{1} \phi_{m}(r) \,d\tau \biggr) +\mu\sum_{k=1}^{n} \varepsilon_{2} r \Biggr) \\ =& \rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\gamma \varepsilon_{1} \phi _{m}(r)\int_{0}^{1} e(\tau)\omega(\tau) \,d\tau \biggr) +\mu\sum_{k=1}^{n} \varepsilon_{2} r \Biggr) \\ \leq&\rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma \varepsilon_{1} \phi _{m}(r)\Vert e\Vert _{q} \|\omega\|_{p} \bigr) +\mu n\varepsilon_{2} r \bigr) \\ =&\rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma \varepsilon_{1} \Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n\varepsilon_{2} r \bigr)\|y \|_{PC^{1}}, \quad \forall y \in\partial\Omega_{r}. \end{aligned}$$
This completes the proof. □

The following result deals with the case \(p=1\).

Corollary 3.1

Assume that (H1)-(H4) hold, \(\alpha (t)\geq t\) on J and let \(r>0\) be given. If there exist \(\varepsilon _{1} >0\) and \(\varepsilon_{2} >0\) such that \(f^{*}(r)\leq\varepsilon _{1}\phi_{m}(r) \) and \(I_{k}^{*}(r)\leq\varepsilon_{2} r\) (\(k=1,2,\ldots ,n\)), then
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda \gamma \varepsilon_{1} \Vert e\Vert _{\infty}\|\omega\|_{1} \bigr) +\mu n\varepsilon_{2} r \bigr)\|y\|_{PC^{1}}, \quad y\in \partial\Omega_{r}. $$

Proof

By Lemma 3.6, let \(\|e\|_{\infty}\|\omega\|_{1}\) replace \(\|e\|_{q}\|\omega\|_{p}\) and repeat the argument above. □

Finally we consider the case of \(p=\infty\).

Corollary 3.2

Assume that (H1)-(H4) hold, \(\alpha (t)\geq t\) on J and let \(r>0\) be given. If there exist \(\varepsilon _{1} >0\) and \(\varepsilon_{2} >0\) such that \(f^{*}(r)\leq\varepsilon _{1}\phi_{m}(r) \) and \(I_{k}^{*}(r)\leq\varepsilon_{2} r\) (\(k=1,2,\ldots ,n\)), then
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda \gamma \varepsilon_{1} \Vert e\Vert _{1}\|\omega\|_{\infty} \bigr) +\mu n\varepsilon_{2} r \bigr)\|y\|_{PC^{1}}, \quad y\in \partial\Omega_{r}. $$

Proof

By Lemma 3.6, let \(\|e\|_{1}\|\omega\|_{\infty}\) replace \(\|e\|_{q}\|\omega\|_{p}\) and repeat the argument above. □

Lemma 3.7

Assume that (H1)-(H4) hold, \(\alpha(t)\geq t\) on J and let \(l_{1}>0\) and \(l_{2}\) be given. If \(f(t,y)\geq l_{1}\phi_{m}(y)\) and \(I_{k}(t,y)\geq l_{2}y\) (\(k=1,2,\ldots,n\)) for \(t\in J\) and \(y\in K\), then
$$ \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\geq \delta\frac{\rho_{1}^{2}}{\rho_{4}} \bigl((l_{1}\lambda\rho\eta)^{m^{*}-1} \beta+\mu nl_{2} \bigr)\|y\| _{PC^{1}}, $$
(3.10)
where \(\beta=\phi_{m^{*}}(\int_{\zeta}^{1}e(\tau)\,d\tau)\).

Proof

By the definition of K, if \(y\in K\), then we have
$$y(t)\geq0 \quad \mbox{on }J \quad \mbox{and}\quad \min_{t\in[\zeta,1]}y(t) \geq\delta\frac {\rho_{1}}{\rho_{4}}\|y\|_{PC^{1}}. $$
Since \(0\leq t\leq\alpha(t)\leq1\) on J, it follows from \(y(t)\geq0\) on J that \(y(\alpha(t))\geq0\).
Similarly, since \(\zeta\leq t\leq\alpha(t)\leq1\) on \([\zeta,1]\), it follows from \(\min_{t\in[\zeta,1]}y(t)\geq\delta\frac{\rho _{1}}{\rho_{4}}\|y\|_{PC^{1}}\) that
$$\min_{t\in[\zeta,1]}y\bigl(\alpha(t)\bigr)\geq\delta\frac{\rho_{1}}{\rho _{4}} \|y\|_{PC^{1}}. $$
Therefore, \(f(t,y(\alpha(t)))\geq l_{1}\phi_{m}(y)\) for \(t\in J\), and it follows from the definition of \(T_{\lambda}^{\mu}\) and (2.17) that
$$\begin{aligned} \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \geq& \rho_{1}\phi_{m^{*}} \biggl(\lambda\int_{0}^{1} \rho e(\tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr)\,d\tau \biggr)+\mu \rho_{1}\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \\ \geq&\rho_{1}(\lambda\rho\eta)^{m^{*}-1}\phi _{m^{*}} \biggl(\int_{0}^{1} e(\tau)f\bigl(\tau,y\bigl( \alpha(\tau)\bigr)\bigr)\,d\tau \biggr)+\mu \rho_{1}\sum _{k=1}^{n}I_{k}\bigl(t_{k},y(t_{k}) \bigr) \\ \geq&\rho_{1}(\lambda\rho\eta)^{m^{*}-1}\phi _{m^{*}} \biggl(\int_{0}^{1} e(\tau)l_{1} \phi_{m}\bigl(y\bigl(\alpha(\tau)\bigr)\bigr)\,d\tau \biggr)+\mu \rho_{1}\sum_{k=1}^{n}l_{2}y(t_{k}) \\ \geq&\rho_{1}(l_{1}\lambda\rho\eta )^{m^{*}-1} \phi_{m^{*}} \biggl(\int_{\zeta}^{1} e(\tau) \phi_{m}\bigl(y\bigl(\alpha (\tau)\bigr)\bigr)\,d\tau \biggr)+\mu \rho_{1}l_{2}\sum_{k=1}^{n}y(t_{k}) \\ \geq&\rho_{1}(l_{1}\lambda\rho\eta )^{m^{*}-1} \phi_{m^{*}} \biggl(\int_{\zeta}^{1} e(\tau) \phi_{m}\biggl(\delta \frac{\rho_{1}}{\rho_{4}}\|y\|_{PC^{1}}\biggr)\,d \tau \biggr)+\mu\rho_{1}l_{2}\sum _{k=1}^{n}\delta\frac{\rho_{1}}{\rho_{4}}\|y \|_{PC^{1}} \\ =&\delta\frac{\rho_{1}^{2}}{\rho_{4}} \bigl((l_{1}\lambda\rho \eta)^{m^{*}-1}\beta+\mu nl_{2} \bigr)\|y\|_{PC^{1}}. \end{aligned}$$
This completes the proof. □

Lemma 3.8

Assume that (H1)-(H4) hold and \(\alpha (t)\geq t\) on J. If \(y\in\partial\Omega_{r}\), \(r>0\), then
$$ \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma M_{r} \Vert e\Vert _{q}\|\omega\|_{p} \bigr) +\mu n M^{*} \bigr), $$
(3.11)
where
$$\begin{aligned}& M_{r}=\max_{t\in J, 0\leq y\leq r}\bigl\{ f(t,y)\bigr\} >0,\qquad M^{*}=\max\bigl\{ M_{k}^{*}, k=1,2,\ldots,n\bigr\} >0, \\& M_{k}^{*}=\max_{t\in J, 0\leq y\leq r}\bigl\{ I_{k}(t,y)\bigr\} ,\quad k=1,2,\ldots,n. \end{aligned}$$

Proof

If \(y\in\partial\Omega_{r}\), then \(0\leq y(t)\leq r\) for \(t\in J\).

Since \(0\leq t\leq\alpha(t)\leq1\) on J, it follows from \(0\leq y\leq r\) that
$$0\leq y\bigl(\alpha(t)\bigr)\leq r. $$
Therefore, from \(f(t,y)\leq{M_{r}}\) for \(t\in J\) and \(y\in\partial \Omega_{r}\), we have
$$f\bigl(t,y\bigl(\alpha(t)\bigr)\bigr)\leq{M_{r}}. $$
So, for \(y\in\partial\Omega_{r}\), we have
$$\begin{aligned} \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq& \rho_{4} \Biggl(\int_{0}^{1}\phi _{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds + \mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr) \\ \leq&\rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\int _{0}^{1}\gamma e(\tau )\omega(\tau)f\bigl(\tau,y \bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr) +\mu\sum _{k=1}^{n}I_{k}\bigl(t_{k},y(t_{k}) \bigr) \Biggr) \\ \leq&\rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\gamma\int _{0}^{1} e(\tau )\omega(\tau)M_{r} \,d \tau \biggr) +\mu\sum_{k=1}^{n}M^{*} \Biggr) \\ =& \rho_{4} \biggl(\phi_{m^{*}} \biggl(\lambda\gamma M_{r}\int_{0}^{1} e(\tau )\omega(\tau) \,d\tau \biggr) +\mu n M^{*} \biggr) \\ \leq&\rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma M_{r}\Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n M^{*} \bigr). \end{aligned}$$
This gives the proof. □

Corollary 3.3

When \(p=1\), assume that (H1)-(H4) hold and \(\alpha(t)\geq t\) on J. If \(y\in\partial\Omega_{r}\), \(r>0\), then
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma M_{r} \Vert e\Vert _{\infty}\|\omega\|_{1} \bigr) +\mu n M^{*} \bigr). $$

Proof

By Lemma 3.8, let \(\|e\|_{\infty}\|\omega\|_{1}\) replace \(\|e\|_{q}\|\omega\|_{p}\) and repeat the argument above. □

Corollary 3.4

When \(p=\infty\), assume that (H1)-(H4) hold and \(\alpha(t)\geq t\) on J. If \(y\in\partial\Omega_{r}\), \(r>0\), then
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma M_{r} \Vert e\Vert _{1}\|\omega\|_{\infty} \bigr) +\mu n M^{*} \bigr). $$

Proof

By Lemma 3.8, let \(\|e\|_{1}\|\omega_{\infty}\|\) replace \(\|e\|_{q}\|\omega_{p}\|\) and repeat the argument above. □

Lemma 3.9

Assume that (H1)-(H4) hold and \(\alpha (t)\geq t\) on J. If \(y\in\partial\Omega_{r}\), \(r>0\), then
$$ \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \geq \rho_{1}(\sigma_{r}\lambda\rho\eta )^{m^{*}-1}\beta+\mu \rho_{1}n\sigma^{*}_{r}, $$
(3.12)
where
$$\begin{aligned}& \sigma_{r}=\min_{t\in J, 0\leq y\leq r}\bigl\{ f(t,y)\bigr\} >0,\qquad \sigma ^{*}=\min\{m_{k}, k=1,2,\ldots,n\}>0, \\& \sigma_{k}=\min_{t\in J, 0\leq y\leq r}\bigl\{ I_{k}(t,y) \bigr\} ,\quad k=1,2,\ldots,n. \end{aligned}$$

Proof

If \(y\in\partial\Omega_{r}\), then \(0\leq y(t)\leq r\) for \(t\in J\).

Since \(0\leq t\leq\alpha(t)\leq1\) on J, it follows from \(0\leq y(t)\leq r\) for \(t\in J\) that
$$0\leq y\bigl(\alpha(t)\bigr)\leq r. $$
Therefore, from \(f(t,y)\geq\sigma_{r}\) for \(t\in J\) and \(0\leq y \leq r\), we have
$$f\bigl(t,y\bigl(\alpha(t)\bigr)\bigr)\geq\sigma_{r}. $$
So, for \(y\in\partial\Omega_{r}\), we have
$$\begin{aligned} \bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \geq& \rho_{1}\phi_{m^{*}} \biggl(\lambda\int_{0}^{1} \rho e(\tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr)\,d\tau \biggr)+\mu \rho_{1}\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \\ \geq&\rho_{1}(\lambda\rho\eta)^{m^{*}-1}\phi _{m^{*}} \biggl(\int_{0}^{1} e(\tau)f\bigl(\tau,y\bigl( \alpha(\tau)\bigr)\bigr)\,d\tau \biggr)+\mu \rho_{1}\sum _{k=1}^{n}I_{k}\bigl(t_{k},y(t_{k}) \bigr) \\ \geq&\rho_{1}(\lambda\rho\eta)^{m^{*}-1}\phi _{m^{*}} \biggl(\int_{0}^{1} e(\tau)\sigma_{r}\,d \tau \biggr)+\mu\rho_{1}\sum_{k=1}^{n} \sigma^{*}_{r} \\ \geq&\rho_{1}(\sigma_{r}\lambda\rho\eta )^{m^{*}-1} \phi_{m^{*}} \biggl(\int_{\zeta}^{1} e(\tau)\,d \tau \biggr)+\mu\rho _{1}n\sigma^{*}_{r} \\ =&\rho_{1}(\sigma_{r}\lambda\rho\eta )^{m^{*}-1} \beta+\mu\rho_{1}n\sigma^{*}_{r}. \end{aligned}$$
This finishes the proof. □

4 Main results for the case \(\alpha(t)\geq t\) on J

In this section, we apply Lemma 3.2 to establish the existence, multiplicity and nonexistence of positive solutions for problem (1.1). We consider the following three cases for \(\omega\in L^{p}[0,1]\): \(p> 1\), \(p=1\) and \(p=\infty\). Case \(p>1\) is treated in the following theorem.

Theorem 4.1

Assume that (H1)-(H4) hold and \(\alpha (t)\geq t\) on J. Then:
  1. (a)

    If \(f^{0}=0\) and \(I^{0}(k)=0\) or \(f^{\infty}=0\) and \(I^{\infty }(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has a positive solution for \(\lambda>\lambda_{0}\) and \(\mu >\mu_{0}\).

     
  2. (b)

    If \(f_{0}=\infty\) and \(I_{0}(k)=\infty\) or \(f_{\infty}=\infty\) and \(I_{\infty}(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu _{0}>0\) such that problem (1.1) has a positive solution for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  3. (c)

    If \(f^{0}=f^{\infty}=0\) and \(I^{0}(k)=I^{\infty}(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(\lambda> \lambda_{0}\) and \(\mu>\mu _{0}\).

     
  4. (d)

    If \(f_{0}=f_{\infty}=\infty\) and \(I_{\infty}(k)=I_{\infty }(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  5. (e)

    If \(f^{0}<\infty\), \(I^{0}(k)<\infty\), \(f^{\infty}<\infty\) and \(I^{\infty}<\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(0<\lambda<\lambda _{0}\) and \(0<\mu<\mu_{0}\).

     
  6. (f)

    If \(f_{0}>0\), \(I_{0}(k)>0\), \(I_{\infty}>0\) and \(f_{\infty}>0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(\lambda> \lambda_{0}\) and \(\mu_{0}>0\).

     

Proof

Part (a). Choose a number \(r_{1}>0\). By Lemma 3.9, we have \(\|T_{\lambda}^{\mu}y\|_{PC^{1}}>\|y\|_{PC^{1}}\) for \(y\in\partial \Omega_{r_{1}}\), \(\lambda> \lambda_{0}\) and \(\mu>\mu_{0}\), where
$$\lambda_{0}= \biggl(\frac{1}{2\rho_{1}\beta}r_{1} \biggr)^{m-1}(\sigma _{r}\rho\eta)^{-1}>0,\qquad \mu_{0}=\frac{1}{2\rho_{1}n\sigma_{r_{1}}^{*}}r>0. $$
If \(f^{0}=0\) and \(I^{0}(k)=0\), then from Lemma 3.1 we have \(f_{0}^{*}=0\) and \(I_{0}^{*}(k)=0\), and so we can choose \(r_{2}\in(0, r_{1})\) so that \(f^{*}(r_{2})\leq\varepsilon_{1} r_{2}\) and \(I_{k}^{*}(r_{2})\leq \varepsilon_{2} r_{2}\), where \(\varepsilon_{1} >0\) and \(\varepsilon_{2} >0\) respectively satisfy
$$ 2\rho_{4}\phi_{m^{*}} \bigl(\lambda\gamma\varepsilon_{1} \Vert e\Vert _{q}\| \omega\|_{p} \bigr)< 1, \qquad 2 \rho_{4}\mu n\varepsilon_{2}<1. $$
(4.1)
Then Lemma 3.6 shows that
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma \varepsilon_{1} \Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n\varepsilon_{2} \bigr)\|y \|_{PC^{1}}< \|y\|_{PC^{1}} \quad \mbox{for } y\in \partial \Omega_{r_{2}}. $$
If \(f^{\infty}=0\) and \(I^{\infty}(k)=0\), then from Lemma 3.1, \(f_{\infty }^{*}=0\) and \(I_{\infty}^{*}(k)=0\). Hence, there exists \(r_{3}\in (2r_{1},\infty)\) such that \(f^{*}(r_{3})\leq\varepsilon_{1} r_{3}\) and \(I_{k}^{*}(r_{3})\leq\varepsilon_{2} r_{4}\), where \(\varepsilon_{1} >0\) and \(\varepsilon_{2} >0\) satisfies (4.1). Thus
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma \varepsilon_{1} \Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n\varepsilon_{2} \bigr)\|y \|_{PC^{1}}< \|y\|_{PC^{1}} \quad \mbox{for } y\in \partial \Omega_{r_{3}}. $$

Therefore, it follows from Lemma 3.2 that \(T_{\lambda}^{\mu}\) has a fixed point in \(\bar{\Omega}_{r_{1}}\backslash\Omega_{r_{2}} \) or \(\bar {\Omega}_{r_{3}}\backslash\Omega_{r_{1}}\), according to whether \(f^{0}=0\) and \(I^{0}(k)=0\) or \(f^{\infty}=0\) and \(I^{\infty}(k)=0\), respectively. Consequently, problem (1.1) has a positive solution for \(\lambda> \lambda_{0}\) and \(\mu>\mu_{0}\).

Part (b). Choose a number \(r_{1}>0\). By Lemma 3.8, there exists \(\lambda _{0}>0 \) such that
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}< \|y \|_{PC^{1}} \quad \mbox{for } y\in\partial\Omega _{r_{1}}, 0<\lambda< \lambda_{0}\mbox{ and }0<\mu<\mu_{0}, $$
where
$$\lambda_{0}= \biggl(\frac{1}{2\rho_{4}} \biggr)^{m-1} \bigl( \gamma M_{r}\Vert e\Vert _{q}\|\omega\|_{p} \bigr)^{-1}, \qquad \mu_{0}=\frac{1}{2\rho_{4} n M^{*}}. $$
If \(f_{0}=\infty\) and \(I_{0}(k)=\infty\), there exists \(r_{2} \in (0,r_{1})\) such that \(f(t,y)\geq l_{1}\phi_{m}(y)\) and \(I_{k}(t,y)\geq l_{2} y\) for \(t\in J\) and \(0\leq y \leq r_{2}\), where \(l_{1}>0\) and \(l_{2}>0\) are chosen so that
$$ 2\delta\frac{\rho_{1}^{2}}{\rho_{4}}(l_{1}\lambda\rho\eta)^{m^{*}-1}\beta >1, \qquad 2\delta\frac{\rho_{1}^{2}}{\rho_{4}}\mu nl_{2}>1. $$
(4.2)
Obviously,
$$f(t,y)\geq l_{1}\phi_{m}(y), \qquad I_{k}(t,y) \geq l_{2} y\quad (k=1,2,\ldots,n)\mbox{ for }y\in\partial \Omega_{r_{2}} \mbox{ and }t \in J. $$
Then, from Lemma 3.7, we can obtain
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \geq \delta\frac{\rho_{1}^{2}}{\rho _{4}} \bigl((l_{1}\lambda\rho\eta)^{m^{*}-1} \beta+\mu nl_{2} \bigr)\|y\| _{PC^{1}}>\|y\|_{PC^{1}}\quad \mbox{for }y\in\partial\Omega_{r_{3}}. $$

If \(f_{\infty}=\infty\) and \(I_{\infty}(k)=\infty\), then there exists \(\hat{N}>0\) such that \(f(t,y)\geq l_{1}\phi_{m}(y)\), \(I_{k}(t,y)\geq l_{2} y\) (\(k=1,2,\ldots,n\)) for \(t\in J\) and \(y\geq\hat{N}\), and \(l_{1} >0\) and \(l_{2}>0\) satisfy (4.2).

Let \(r_{3}=\max\{2r_{1},\hat{N}\rho_{4}/ \delta\rho_{1}\}\). If \(y\in \partial\Omega_{r_{3}}\), then
$$\min_{t\in[\zeta,1]}y(t)\geq\frac{\delta\rho_{1}}{\rho_{4}} \| y\|_{PC^{1}}\geq \hat{N}. $$
So,
$$f(t,y)\geq l_{1}\phi_{m}(y), \qquad I_{k}(t,y) \geq l_{2} y\quad (k=1,2,\ldots,n)\mbox{ for }t\in J\mbox{ and }y\in\partial \Omega_{r_{3}}. $$
From Lemma 3.7, we can get
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \geq \delta\frac{\rho_{1}^{2}}{\rho _{4}} \bigl((l_{1}\lambda\rho\eta)^{m^{*}-1} \beta+\mu nl_{2} \bigr)\|y\| _{PC^{1}}>\|y\|_{PC^{1}}\quad \mbox{for }y\in\partial\Omega_{r_{3}}. $$

Therefore, it follows from Lemma 3.2 that \(T_{\lambda}^{\mu}\) has a fixed point in \(\bar{\Omega}_{r_{1}}\backslash\Omega_{r_{2}} \) or \(\bar{\Omega}_{r_{3}}\backslash\Omega_{r_{1}}\), according to whether \(f_{0}=\infty\) and \(I_{0}(k)=\infty\) or \(f_{\infty}=\infty\) and \(I_{\infty}(k)=\infty\), respectively. Consequently, problem (1.1) has a positive solution for \(0<\lambda<\lambda_{0}\) and \(0<\mu<\mu_{0}\).

Part (c). Choose two numbers \(0< r_{3}<r_{4}\). By Lemma 3.9, there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}>\|y \|_{PC^{1}}\quad \mbox{for }y\in\partial\Omega _{r_{i}}, i=3,4. $$
Since \(f^{0}=f^{\infty}=0\) and \(I^{0}(k)=I^{\infty}(k)=0\), from the proof of part (a), it follows that we can choose \(r_{1}\in(0,r_{3}/2)\) and \(r_{2}\in(2r_{4},\infty)\) such that
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}< \|y \|_{PC^{1}} \quad \mbox{for } y\in\partial\Omega _{r_{i}}, i=1,2. $$
It follows from Lemma 3.2 that \(T_{\lambda}^{\mu}\) has two fixed points \(y_{1}\) and \(y_{2}\) such that \(y_{1}\in\bar{\Omega}_{r_{3}}\backslash \Omega_{r_{1}}\) and \(y_{2}\in\bar{\Omega}_{r_{2}}\backslash\Omega _{r_{4}}\). These are the desired distinct positive solutions of problem (1.1) for \(\lambda> \lambda_{0}\) and \(\mu>\mu_{0}\) satisfying
$$ r_{1}\leq\|y_{1}\|_{PC^{1}}\leq r_{3}< r_{4} \leq\|y_{2}\|_{PC^{1}}\leq r_{2}. $$
(4.3)
Part (d). Choose two numbers \(0< r_{3}<r_{4}\). By Lemma 3.8, there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}< \|y \|_{PC^{1}}\quad \mbox{for } 0 < \lambda< \lambda _{0}, 0<\mu< \mu_{0} \mbox{ and }y\in\partial\Omega_{r_{i}}, i=3,4. $$
Since \(f_{0}=\infty\) and \(f_{\infty}=\infty\) and \(I_{\infty}(k)=I_{\infty }(k)=\infty\), from the proof of part (b), we know that we can choose \(r_{1}\in(0,r_{3}/2)\) and \(r_{2}\in(2r_{4},\infty)\) such that
$$\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}>\|y \|_{PC^{1}} \quad \mbox{for }y\in\partial\Omega _{r_{i}}, i=1,2. $$

It follows from Lemma 3.2 that \(T_{\lambda}^{\mu}\) has two fixed points \(y_{1}\) and \(y_{2}\) such that \(y_{1}\in\bar{\Omega}_{r_{3}}\backslash \Omega_{r_{1}}\) and \(y_{2}\in\bar{\Omega}_{r_{2}}\backslash\Omega _{r_{4}}\). These are the desired distinct positive solutions of problem (1.1) for \(0<\lambda< \lambda_{0}\) and \(0<\mu<\mu_{0}\) satisfying (4.3).

Part (e). Since \(f^{0}<\infty\), \(I^{0}(k)<\infty\), \(f^{\infty}<\infty\) and \(I^{\infty}(k)<\infty\), there exist positive numbers \(l_{i}>0\) (\(i=1,2,3,4\)), \(h_{1}>0\) and \(h_{2}>0\) such that \(h_{1}< h_{2}\) and for \(t \in J\), \(0< y\leq h_{1}\), we have
$$f(t,y)\leq l_{1}\phi_{m}(y), \qquad I_{k}(t,y) \leq l_{2}y $$
and for \(t \in J\), \(y\geq h_{2}\), we have
$$f(t,y)\leq l_{3}\phi_{m}(y), \qquad I_{k}(t,y) \leq l_{4}y. $$
Let
$$\begin{aligned}& l=\max \biggl\{ l_{1}, l_{3}, \max \biggl\{ \frac{f(t,y)}{\phi_{m}(y)}:t \in J, h_{1}\leq y \leq h_{2} \biggr\} \biggr\} >0, \\& l^{*}=\max \biggl\{ l_{2}, l_{4}, \max \biggl\{ \frac{I_{k}(t,y)}{y}:t \in J, h_{1}\leq y \leq h_{2} \biggr\} \biggr\} >0. \end{aligned}$$
Thus, we have
$$f(t,y)\leq l \phi_{m}(y), \qquad I_{k}(t,y)\leq l^{*}y \quad \mbox{for } t \in J\mbox{ and }y \in[0,\infty). $$

Since \(0\leq t\leq\alpha(t)\leq1\) on J, it follows from \(0\leq y(t)\leq h_{1}\), \(y(t)\geq h_{2}\) and \(h_{1}\leq y(t)\leq h_{2}\) on J that \(0\leq y(\alpha(t))\leq h_{1}\), \(y(\alpha(t))\geq h_{2}\) and \(h_{1}\leq y(\alpha(t))\leq h_{2}\) on J, respectively.

Assume that y is a positive solution of problem (1.1). We will show that this leads to a contradiction for
$$0< \lambda< \lambda_{0}= \biggl(\frac{1}{2\rho_{4}} \biggr)^{m-1} \bigl(\gamma l\Vert e\Vert _{q}\|\omega \|_{p} \bigr)^{-1} $$
and
$$0< \mu< \mu_{0}=\frac{1}{2\rho_{4}nl^{*}}. $$
Since \((T_{\lambda}^{\mu}y)(t)=y(t)\) for \(t\in J\), by Lemma 3.6 we have that
$$\|y\|_{PC^{1}}=\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\leq\rho_{4} \bigl(\phi _{m^{*}} \bigl(\lambda \gamma l \Vert e\Vert _{q}\|\omega\|_{p} \bigr) +\mu nl^{*} \bigr)\|y\|_{PC^{1}}< \|y\|_{PC^{1}}, $$
which is a contradiction.
Part (f). Since \(f_{0}>0\), \(I_{0}(k)>0\), \(I_{\infty}>0\) and \(f_{\infty }>0\), there exist positive numbers \(l_{i}>0\) (\(i=5,6,7,8\)), \(h_{3}>0\) and \(h_{4}>0\) such that \(h_{3}< h_{4}\) and for \(t \in J\), \(0\leq y\leq h_{3}\), we have
$$f(t,y)\geq l_{5}\phi_{m}(y), \qquad I_{k}(t,y) \geq l_{6} y, $$
and for \(t \in J\), \(y\geq h_{4}\), we have
$$f(t,y)\geq l_{7}\phi_{m}(y), \qquad I_{k}(t,y) \geq l_{8} y. $$
Let
$$\begin{aligned}& l^{**}=\min \biggl\{ l_{5}, l_{7}, \min \biggl\{ \frac{f(t,y)}{\phi_{m}(y)}:t \in J, h_{3}\leq y \leq h_{4} \biggr\} \biggr\} >0, \\& l^{***}=\min \biggl\{ l_{6}, l_{8}, \min \biggl\{ \frac{I_{k}(t,y)}{y}:t \in J, h_{3}\leq y \leq h_{4} \biggr\} \biggr\} >0. \end{aligned}$$
Then
$$f(t,y)\geq l^{**} \phi_{m}(y),\qquad I_{k}(t,y) \geq l^{***}y\quad \mbox{for }t \in J \mbox{ and }y \in[0,\infty). $$
Assume that y is a positive solution of problem (1.1). We will show that this leads to a contradiction for
$$\begin{aligned}& \lambda> \lambda_{0}= \biggl(\frac{\rho_{4}}{2\delta\rho_{1}^{2}\beta} \biggr)^{m-1} \bigl(l^{**}\rho\eta \bigr)^{-1}, \\& \mu> \mu_{0}=\frac{\rho_{4}}{2\delta\rho_{1}^{2}n l^{***}}. \end{aligned}$$
Since \((T_{\lambda}^{\mu}y)(t)=y(t)\) for \(t\in J\), by Lemma 3.7 we have that
$$\|y\|_{PC^{1}}=\bigl\Vert T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\geq\delta\frac{\rho _{1}^{2}}{\rho_{4}} \bigl(\bigl(l^{**}\lambda \rho\eta\bigr)^{m^{*}-1}\beta+\mu nl^{***} \bigr)\|y \|_{PC^{1}}>\|y\|_{PC^{1}}, $$
which is a contradiction. □

The results of the following theorem deal with the case \(p=1\).

Corollary 4.1

Assume that (H1)-(H4) hold and \(\alpha (t)\geq t\) on J. Then:
  1. (a)

    If \(f^{0}=0\) and \(I^{0}(k)=0\) or \(f^{\infty}=0\) and \(I^{\infty }(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has a positive solution for \(\lambda>\lambda_{0}\) and \(\mu >\mu_{0}\).

     
  2. (b)

    If \(f_{0}=\infty\) and \(I_{0}(k)=\infty\) or \(f_{\infty}=\infty\) and \(I_{\infty}(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu _{0}>0\) such that problem (1.1) has a positive solution for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  3. (c)

    If \(f^{0}=f^{\infty}=0\) and \(I^{0}(k)=I^{\infty}(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(\lambda> \lambda_{0}\) and \(\mu>\mu _{0}\).

     
  4. (d)

    If \(f_{0}=f_{\infty}=\infty\) and \(I_{\infty}(k)=I_{\infty }(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  5. (e)

    If \(f^{0}<\infty\), \(I^{0}(k)<\infty\), \(f^{\infty}<\infty\) and \(I^{\infty}<\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(0<\lambda<\lambda _{0}\) and \(0<\mu<\mu_{0}\).

     
  6. (f)

    If \(f_{0}>0\), \(I_{0}(k)>0\), \(I_{\infty}>0\) and \(f_{\infty}>0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(\lambda> \lambda_{0}\) and \(\mu_{0}>0\).

     

Proof

It follows from the proofs of Corollary 3.1 and Corollary 3.3 that Corollary 4.1 holds. □

Finally we consider the case of \(p=\infty\).

Corollary 4.2

Assume that (H1)-(H4) hold and \(\alpha (t)\geq t\) on J. Then:
  1. (a)

    If \(f^{0}=0\) and \(I^{0}(k)=0\) or \(f^{\infty}=0\) and \(I^{\infty }(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has a positive solution for \(\lambda>\lambda_{0}\) and \(\mu >\mu_{0}\).

     
  2. (b)

    If \(f_{0}=\infty\) and \(I_{0}(k)=\infty\) or \(f_{\infty}=\infty\) and \(I_{\infty}(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu _{0}>0\) such that problem (1.1) has a positive solution for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  3. (c)

    If \(f^{0}=f^{\infty}=0\) and \(I^{0}(k)=I^{\infty}(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(\lambda> \lambda_{0}\) and \(\mu>\mu _{0}\).

     
  4. (d)

    If \(f_{0}=f_{\infty}=\infty\) and \(I_{\infty}(k)=I_{\infty }(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  5. (e)

    If \(f^{0}<\infty\), \(I^{0}(k)<\infty\), \(f^{\infty}<\infty\) and \(I^{\infty}<\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(0<\lambda<\lambda _{0}\) and \(0<\mu<\mu_{0}\).

     
  6. (f)

    If \(f_{0}>0\), \(I_{0}(k)>0\), \(I_{\infty}>0\) and \(f_{\infty}>0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(\lambda> \lambda_{0}\) and \(\mu_{0}>0\).

     

Proof

It follows from the proofs of Corollary 3.2 and Corollary 3.4 that Corollary 4.2 holds. □

5 Positive solutions of problem (1.1) for the case of \(\alpha (t)\leq t\) on J

Now we deal with problem (1.1) for the case of \(\alpha(t)\leq t\) on J. Similarly as Theorem 2.4 and Lemmas 3.3-3.9, we can prove the following results.

Lemma 5.1

Let \(\zeta^{*}\in(t_{n},1)\), \(G_{1}\) and \(H_{1}\) be given as in Theorem  2.3. If (H4) holds, then we have
$$ G_{1}(t,s)\geq\delta G_{1}(s,s)\geq\frac{b^{2}\delta}{d},\qquad H_{1}(t,s)\geq\frac{\delta a}{a-\xi} G_{1}(s,s)\geq\delta \rho_{1},\quad \forall t\in\bigl[0,\zeta^{*}\bigr], s\in J, $$
(5.1)
where d is defined in Theorem  2.3, δ and \(\rho_{1}\) are defined in (2.8).

Proof

In fact, for \(t\in[0,\zeta^{*}]\) and \(s\in J\), we have that
$$\begin{aligned}& \frac{G_{1}(t,s)}{G_{1}(s,s)}=\frac{b+a(1-t)}{b+a(1-s)} \geq\frac{b+a(1-\zeta^{*})}{b+a}\quad \mbox{for }s \leq t, \\& \frac{G_{1}(t,s)}{G_{1}(s,s)}=\frac{b+at}{b+as} \geq\frac{b}{b+a} \quad \mbox{for }t \leq s. \end{aligned}$$
This and (2.13) show that
$$\begin{aligned} H_{1}(t,s)&\geq\delta G_{1}(s,s) \biggl[1+\frac{1}{a-\xi} \int_{0}^{1}g(\tau)\,d\tau \biggr] \\ &\geq\frac{a\delta}{a-\xi}G_{1}(s,s),\quad t\in\bigl[0, \zeta^{*}\bigr], s\in J. \end{aligned}$$
This together with (2.13) and (2.15) finishes the proof of (5.1). □
Let \(PC^{1}[0,1]\) be as defined in Section 3. We define a cone \(K^{*}\) in \(PC^{1}[0,1]\) by
$$K^{*}= \biggl\{ y\in PC^{1}[0,1]\Big|y(t)\geq0\mbox{ on }J \mbox{ and }\min_{t\in [0,\zeta^{*}]}\geq\delta\frac{\rho_{1}}{\rho_{4}} \|y \|_{PC^{1}} \biggr\} , $$
where δ, \(\rho_{1}\) and \(\rho_{4}\) are defined in (2.18) and (3.8), respectively. It is easy to see that \(K^{*}\) is a closed convex cone of \(PC^{1}[0,1]\).
Define \({}^{*}T_{\lambda}^{\mu}: K^{*}\rightarrow PC^{1}[0,1]\) by
$$\begin{aligned} \bigl(^{*}T_{\lambda}^{\mu}y\bigr) (t) =&\int _{0}^{1}H_{1}(t,s)\phi_{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f \bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds \\ &{}+\mu\sum_{k=1}^{n}H_{1}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr). \end{aligned}$$
(5.2)

It is clear that y is a positive solution of problem (1.1) if and only of y is a fixed point of \({}^{*}T_{\lambda}^{\mu}\).

Lemma 5.2

Assume that (H1)-(H4) hold. Then \(y\in K^{*}\) is a positive fixed point of \({}^{*}T_{\lambda}^{\mu}\) if and only if y is a positive solution of problem (1.1).

Lemma 5.3

Assume that (H1)-(H4) hold. Then \({}^{*}T_{\lambda}^{\mu}(K^{*})\subset K^{*}\) and \({}^{*}T_{\lambda}^{\mu }:K^{*}\rightarrow K^{*}\) is completely continuous.

Let \(f^{*}\) and \(I_{k}^{*}\) be defined as in Section 3. Similar to the proof of that in Lemmas 3.6-3.9, we have the following results. Here, we only consider the case \(m>1\) and only give the proof of Lemma 5.4.

Lemma 5.4

Assume that (H1)-(H4) hold, \(\alpha(t)\leq t\) on J and let \(r>0\) be given. If there exist \(\varepsilon_{1} >0\) and \(\varepsilon_{2} >0\) such that \(f^{*}(r)\leq\varepsilon_{1}\phi _{m}(r) \) and \(I_{k}^{*}(r)\leq\varepsilon_{2} r\) (\(k=1,2,\ldots,n\)), then
$$ \bigl\Vert {}^{*}T_{\lambda}^{\mu}y\bigr\Vert \leq \rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda \gamma \varepsilon_{1} \Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n\varepsilon _{2} \bigr)\|y \|_{PC^{1}},\quad y\in\partial\Omega_{r}. $$
(5.3)

Proof

By the definition of \(f^{*}(r)\) and \(I_{k}^{*}\), if \(f^{*}(r)\leq\varepsilon_{1} \phi_{m}(r)\) and \(I_{k}^{*}(r)\leq \varepsilon_{2} r\) (\(k=1,2,\ldots,n\)), then
$$f(t,y)\leq\varepsilon_{1} \phi_{m}(r),\qquad I_{k}(t,y)\leq\varepsilon_{2} r\quad \mbox{for }t\in J \mbox{ and }0\leq y\leq r. $$

Since \(0\leq\alpha(t)\leq t\leq1\) on J, it follows from \(0\leq y(t)\leq r\) on J that \(0\leq y(\alpha(t))\leq r\).

Therefore, we have \(f(t,y(\alpha(t)))\leq\varepsilon_{1} \phi_{m}(r)\) for \(t\in J\), and it follows from (3.7) and (5.2) that
$$\begin{aligned} \bigl\Vert {}^{*}T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq&\rho_{4} \Biggl(\int_{0}^{1} \phi _{m^{*}} \biggl(\lambda\int_{0}^{1}H(s, \tau)\omega(\tau)f\bigl(\tau,y\bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr)\,ds +\mu\sum_{k=1}^{n}I_{k} \bigl(t_{k},y(t_{k})\bigr) \Biggr) \\ \leq&\rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\int _{0}^{1}\gamma e(\tau )\omega(\tau)f\bigl(\tau,y \bigl(\alpha(\tau)\bigr)\bigr) \,d\tau \biggr) +\mu\sum _{k=1}^{n}I_{k}\bigl(t_{k},y(t_{k}) \bigr) \Biggr) \\ \leq&\rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\gamma\int _{0}^{1} e(\tau )\omega(\tau)\varepsilon_{1} \phi_{m}(r) \,d\tau \biggr) +\mu\sum_{k=1}^{n} \varepsilon_{2} r \Biggr) \\ =& \rho_{4} \Biggl(\phi_{m^{*}} \biggl(\lambda\gamma \varepsilon_{1} \phi _{m}(r)\int_{0}^{1} e(\tau)\omega(\tau) \,d\tau \biggr) +\mu\sum_{k=1}^{n} \varepsilon_{2} r \Biggr) \\ \leq&\rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma \varepsilon_{1} \phi _{m}(r)\Vert e\Vert _{q} \|\omega\|_{p} \bigr) +\mu n\varepsilon_{2} r \bigr) \\ =&\rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda\gamma \varepsilon_{1} \Vert e\Vert _{q}\|\omega \|_{p} \bigr) +\mu n\varepsilon_{2} r \bigr)\|y \|_{PC^{1}}, \quad \forall y \in\partial\Omega_{r}. \end{aligned}$$
This completes the proof. □

Lemma 5.5

Assume that (H1)-(H4) hold, \(\alpha(t)\leq t\) on J and let \(l_{1}>0\) and \(l_{2}\) be given. If \(f(t,y)\geq l_{1}\phi_{m}(y)\) and \(I_{k}(t,y)\geq l_{2}y\) for \(t\in J\) and \(y\in K^{*}\), then
$$\bigl\Vert {}^{*}T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}}\geq\delta\frac{\rho_{1}^{2}}{\rho _{4}} \bigl((l_{1}\lambda\rho \eta)^{m^{*}-1}\beta+\mu nl_{2} \bigr)\|y\|_{PC^{1}}. $$

Let \(\hat{\Omega}_{r}=\{y\in K^{*}:\|y\|_{PC^{1}}< r\}\).

Lemma 5.6

Assume that (H1)-(H4) hold and \(\alpha (t)\leq t\) on J. If \(y\in\partial\hat{\Omega}_{r}\), \(r>0\), then
$$\bigl\Vert {}^{*}T_{\lambda}^{\mu}y\bigr\Vert _{PC^{1}} \leq\rho_{4} \bigl(\phi_{m^{*}} \bigl(\lambda \gamma M_{r}\Vert e\Vert _{q}\|\omega\|_{p} \bigr) +\mu n M^{*} \bigr), $$
where \(M_{r}\) and \(M^{*}\) are defined in Lemma  3.8.

Lemma 5.7

Assume that (H1)-(H4) hold and \(\alpha (t)\leq t\) on J. If \(y\in\partial\hat{\Omega}_{r}\), \(r>0\), then
$$\bigl\Vert {}^{*}T_{\lambda}u\bigr\Vert _{PC^{1}} \geq \rho_{1}(\sigma_{r}\lambda\rho\eta )^{m^{*}-1}\beta+\mu \rho_{1}n\sigma^{*}_{r}, $$
where \(\sigma_{r}\) and \(\sigma^{*}\) are defined in Lemma  3.9.

Let \(f^{0}\), \(f^{\infty}\), \(f_{0}\), \(f_{\infty}\), \(I^{0}(k)\), \(I^{\infty }(k)\), \(I_{0}(k)\) and \(I_{\infty}(k)\) be defined as in Section 3. Similar to the proof of Theorem 4.1, we have the following results.

Theorem 5.1

Assume that (H1)-(H4) hold and \(\alpha (t)\leq t\) on J. Then:
  1. (a)

    If \(f^{0}=0\) and \(I^{0}(k)=0\) or \(f^{\infty}=0\) and \(I^{\infty }(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has a positive solution for \(\lambda>\lambda_{0}\) and \(\mu >\mu_{0}\).

     
  2. (b)

    If \(f_{0}=\infty\) and \(I_{0}(k)=\infty\) or \(f_{\infty}=\infty\) and \(I_{\infty}(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu _{0}>0\) such that problem (1.1) has a positive solution for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  3. (c)

    If \(f^{0}=f^{\infty}=0\) and \(I^{0}(k)=I^{\infty}(k)=0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(\lambda> \lambda_{0}\) and \(\mu>\mu _{0}\).

     
  4. (d)

    If \(f_{0}=f_{\infty}=\infty\) and \(I_{\infty}(k)=I_{\infty }(k)=\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has at least two positive solutions for \(0<\lambda <\lambda_{0}\) and \(0<\mu<\mu_{0}\).

     
  5. (e)

    If \(f^{0}<\infty\), \(I^{0}(k)<\infty\), \(f^{\infty}<\infty\) and \(I^{\infty}<\infty\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(0<\lambda<\lambda _{0}\) and \(0<\mu<\mu_{0}\).

     
  6. (f)

    If \(f_{0}>0\), \(I_{0}(k)>0\), \(I_{\infty}>0\) and \(f_{\infty}>0\), then there exist \(\lambda_{0}>0\) and \(\mu_{0}>0\) such that problem (1.1) has no positive solution for \(\lambda> \lambda_{0}\) and \(\mu_{0}>0\).

     

6 Remarks and comments

In this section, we offer some remarks and comments of the associated problem (1.1).

Remark 6.1

The idea of deviating arguments for problem (1.1) is from Jankowski [34], but the method and conclusion are quite different, and Jankowski only considered the case \(\lambda=1\), \(\mu=1\) and \(\omega \in C[0,1]\), not \(\omega(t)\) is \(L^{p}\)-integrable.

Remark 6.2

Generally, it is difficult to study the existence of positive solutions for nonlinear fourth order boundary value problems with impulsive effects and deviating arguments (see, e.g., [1525] and their references).

For example, we consider the following problems:
$$ \left \{ \begin{array}{l} (\phi_{m}(y''(t)))''=\lambda\omega(t)f(t,y(\alpha(t))),\quad t\in J, t\neq t_{k}, k=1,2,\ldots,n, \\ \Delta y'|_{t=t_{k}}=-\mu I_{k}(t_{k},y(t_{k})), \quad k=1,2,\ldots ,n, \\ y(0)=0, \qquad y(1)=\int_{0}^{1}g(t)y(t)\,dt, \\ \phi_{p}(y''(0))=0, \qquad \phi_{p}(y''(1))=\int_{0}^{1}h(t)\phi _{p}(y''(t))\,dt. \end{array} \right . $$
(6.1)
Here \(\lambda>0\) and \(\mu>0\) are two parameters, \(a, b>0\), \(J=[0,1]\), \(\phi_{m}(s)\) is an m-Laplace operator, i.e., \(\phi_{m}(s)=|s|^{m-2}s\), \(m>1\), \((\phi_{m})^{-1}=\phi_{m^{*}}\), \(\frac{1}{m}+\frac{1}{m^{*}}=1\), \(t_{k}\) (\(k=1,2,\ldots,n\)) (where n is a fixed positive integer) are fixed points with \(0=t_{0}< t_{1}<t_{2}<\cdots <t_{k}<\cdots <t_{n}<t_{n+1}=1\), \(\Delta y' |_{t=t_{k}}=y'(t_{k}^{+})-x'(t_{k}^{-})\), where \(y'(t_{k}^{+})\) and \(y'(t_{k}^{-})\) represent the right-hand limit and the left-hand limit of \(y'(t)\) at \({t=t_{k}}\), respectively.
By means of transformation (2.2), we can convert problem (4.1) into
$$ \left \{ \begin{array}{l} x''(t)+\lambda\omega(t)f(t,y(\alpha(t)))=0, \quad t\in J, \\ x(0)=0, \qquad x(1)=\int_{0}^{1}h(t)x(t)\,dt \end{array} \right . $$
(6.2)
and
$$ \left \{ \begin{array}{l} y''(t)=-\phi_{m^{*}}(x(t)), \quad t\in J, t\neq t_{k}, \\ \Delta y'|_{t=t_{k}}=-\mu I_{k}(t_{k}, y(t_{k})), \quad k=1,2,\ldots ,n, \\ y(0)=0, \qquad y(1)=\int_{0}^{1}g(t)y(t)\,dt. \end{array} \right . $$
(6.3)
Using a similar proof to that of Theorem 2.1 and Theorem 2.2, we can obtain the following results. In addition, if we replace ξ, ν by \(\xi^{*}\), \(\nu^{*}\) in (H2), respectively, then we obtain (\(\mathrm{H}^{*}_{2}\)), where
$$\xi^{*}=\int_{0}^{1}sg(s)\,ds, \qquad \nu^{*}=\int_{0}^{1}sh(s)\,ds. $$

Lemma 6.1

If (H1), (\(\mathrm{H}^{*}_{2}\)) and (H4) hold, then problem (6.2) has a unique solution x expressed by
$$ x(t) =\lambda\int_{0}^{1}H^{*}(t,s)f \bigl(s,y(s)\bigr)\,ds, $$
(6.4)
where
$$ H^{*}(t,s)=G(t,s)+\frac{t}{1-\int_{0}^{1}sh(s)\,ds}\int_{0}^{1} G(\tau,s)h(\tau)\,d\tau, $$
(6.5)
\(G(t,s)\) is defined in (2.6).

Lemma 6.2

If (H1), (H3) and (H4) hold, then problem (6.3) has a unique solution y given by
$$ y(t) =\int_{0}^{1}H_{1}^{*}(t,s) \phi_{m^{*}}\bigl(x(s)\bigr)\,ds +\sum_{k=1}^{n}H_{1}^{*}(t,t_{k})I_{k} \bigl(t_{k},y(t_{k})\bigr), $$
(6.6)
where
$$ H_{1}^{*}(t,s)=G(t,s)+\frac{t}{1-\int_{0}^{1}sg(s)\,ds}\int _{0}^{1} G(s,\tau)g(\tau)\,d\tau. $$
(6.7)
It is not difficult to prove that \(H^{*}(t,s)\) and \(H_{1}^{*}(t,s)\) have similar properties to those of \(H(t,s)\) and \(H_{1}(t,s)\). However, there does not exist a positive number \(\delta\in(0,1)\) such that
$$G(t,s)\geq\delta G(s,s)\quad \mbox{for }t\in[\zeta,1], s\in J; $$
or there does not exist a positive number \(\delta^{*}\in(0,1)\) such that
$$G(t,s)\geq\delta^{*} G(s,s)\quad \mbox{for }t\in\bigl[0, \zeta^{*}\bigr], s\in J, $$
where \(\zeta\in(0,t_{1})\) and \(\zeta^{*}\in(t_{n},1)\). This implies that we cannot study the existence of positive solutions for problem (6.1) when the deviating arguments are delayed and advanced.

Remark 6.3

There are many functions \(\alpha(t)\) satisfying \(\alpha(t)\geq t\) or \(\alpha(t)\leq t\) on J. For example,
$$\begin{aligned}& \mbox{if }\alpha(t)=t^{\frac{1}{n}},\quad \mbox{then }\alpha(t)\geq t \mbox{ on }J; \\& \mbox{if }\alpha(t)=t^{n},\quad \mbox{then }\alpha(t)\leq t \mbox{ on }J, \end{aligned}$$
where n is a positive integral number.

Declarations

Acknowledgements

We wish to express our thanks to Prof. Xuemei Zhang, Department of Mathematics and Physics, North China Electric Power University, Beijing, P.R. China, for her kind help, careful reading, and making useful comments on the earlier version of this paper. The authors also thank the project NSFC (11171032) and the improving project of graduate education of Beijing Information Science and Technology University (YJT201416) for their support.

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Authors’ Affiliations

(1)
School of Applied Science, Beijing Information Science & Technology University

References

  1. Kuang, Y: Delay Differential Equations: With Applications in Population Dynamics. Academic Press, Boston (1993) MATHGoogle Scholar
  2. Yan, JR: Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model. J. Math. Anal. Appl. 279, 111-120 (2003) View ArticleMATHMathSciNetGoogle Scholar
  3. Gyöi, I, Ladas, G: Oscillation Theorem of Delay Differential Equations with Applications. Clarendon, Oxford (1991) Google Scholar
  4. Lalli, BS, Zhang, BG: On a periodic delay population model. Q. Appl. Math. 52, 35-42 (1994) MATHMathSciNetGoogle Scholar
  5. Gopalsamy, K, Kulenović, MRS, Ladas, G: Environmental periodicity and time delays in a food-limited population model. J. Math. Anal. Appl. 147, 545-555 (1990) View ArticleMATHMathSciNetGoogle Scholar
  6. Zhang, XM, Feng, MQ: Transformation technique, fixed point theorem and positive solutions for second-order impulsive differential equations with deviating arguments. Adv. Differ. Equ. 2014, 312 (2014) View ArticleGoogle Scholar
  7. Nieto, JJ, Rodríguez-López, R: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. Math. Anal. Appl. 318, 593-610 (2006) View ArticleMATHMathSciNetGoogle Scholar
  8. Yan, JR, Shen, JH: Impulsive stabilization of functional differential equations by Lyapunov-Razumikhin functions. Nonlinear Anal. 37, 245-255 (1999) View ArticleMATHMathSciNetGoogle Scholar
  9. Li, JL, Shen, JH: New comparison results for impulsive functional differential equations. Appl. Math. Lett. 23, 487-493 (2010) View ArticleMATHMathSciNetGoogle Scholar
  10. Yang, XX, Shen, JH: Nonlinear boundary value problems for first-order impulsive functional differential equations. Appl. Math. Comput. 189, 1943-1952 (2007) View ArticleMATHMathSciNetGoogle Scholar
  11. Liu, YS: Periodic boundary value problems for first order functional differential equations with impulse. J. Comput. Appl. Math. 223, 27-39 (2009) View ArticleMATHMathSciNetGoogle Scholar
  12. Liu, YJ: Further results on periodic boundary value problems for nonlinear first-order impulsive functional differential equations. J. Math. Anal. Appl. 327, 435-452 (2007) View ArticleMATHMathSciNetGoogle Scholar
  13. He, ZM, Yu, JS: Periodic boundary value problem for first-order impulsive functional differential equations. J. Math. Anal. Appl. 272, 67-78 (2002) View ArticleMATHMathSciNetGoogle Scholar
  14. Ding, W, Han, MA, Mi, JR: Periodic boundary value problem for the second-order impulsive functional differential equations. Comput. Math. Appl. 50, 491-507 (2005) View ArticleMATHMathSciNetGoogle Scholar
  15. Sun, JP, Wang, XQ: Monotone positive solutions for an elastic beam equation with nonlinear boundary conditions. Math. Probl. Eng. 2011, Article ID 609189 (2011) Google Scholar
  16. Yao, QL: Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl. 374, 681-692 (2011) View ArticleMATHMathSciNetGoogle Scholar
  17. O’Regan, D: Solvability of some fourth (and higher) order singular boundary value problems. J. Math. Anal. Appl. 161, 78-116 (1991) View ArticleMATHMathSciNetGoogle Scholar
  18. Yang, B: Positive solutions for the beam equation under certain boundary conditions. Electron. J. Differ. Equ. 2005, 78 (2005) Google Scholar
  19. Zhang, XG: Existence and iteration of monotone positive solutions for an elastic beam equation with a corner. Nonlinear Anal., Real World Appl. 10, 2097-2103 (2009) View ArticleMATHMathSciNetGoogle Scholar
  20. Gupta, GP: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26, 289-304 (1988) View ArticleMATHMathSciNetGoogle Scholar
  21. Agarwal, RP: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2, 91-110 (1989) MATHGoogle Scholar
  22. Bonanno, G, Bella, BD: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343, 1166-1176 (2008) View ArticleMATHMathSciNetGoogle Scholar
  23. Han, GD, Xu, ZB: Multiple solutions of some nonlinear fourth-order beam equations. Nonlinear Anal. TMA 68, 3646-3656 (2008) View ArticleMATHMathSciNetGoogle Scholar
  24. Zhang, XG, Liu, LS: Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator. J. Math. Anal. Appl. 336, 1414-1423 (2007) View ArticleMATHMathSciNetGoogle Scholar
  25. Feng, MQ: Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions and one-dimensional p-Laplacian. Bound. Value Probl. 2011, Article ID 654871 (2011) View ArticleGoogle Scholar
  26. Cabada, A, Tersian, S: Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations. Bound. Value Probl. 2014, 105 (2014) View ArticleGoogle Scholar
  27. Afrouzi, GA, Hadjian, A, Radulescu, VD: Variational approach to fourth-order impulsive differential equations with two control parameters. Results Math. 65, 371-384 (2014) View ArticleMATHMathSciNetGoogle Scholar
  28. Sun, JT, Chen, HB, Yang, L: Variational methods to fourth-order impulsive differential equations. J. Appl. Math. Comput. 35, 323-340 (2011) View ArticleMATHMathSciNetGoogle Scholar
  29. Xie, JL, Luo, ZG: Solutions to a boundary value problem of a fourth-order impulsive differential equation. Bound. Value Probl. 2013, 154 (2013) View ArticleMathSciNetGoogle Scholar
  30. Zhang, XM, Feng, MQ: Positive solutions for classes of multi-parameter fourth-order impulsive differential equations with one-dimensional singular p-Laplacian. Bound. Value Probl. 2014, 112 (2014) View ArticleGoogle Scholar
  31. Jankowski, T: Positive solutions of one-dimensional p-Laplacian boundary value problems for fourth-order differential equations with deviating arguments. J. Optim. Theory Appl. 149, 47-60 (2011) View ArticleMATHMathSciNetGoogle Scholar
  32. Wang, HY: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281, 287-306 (2003) View ArticleMATHMathSciNetGoogle Scholar
  33. Guo, DJ, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988) MATHGoogle Scholar
  34. Jankowski, T: Positive solutions to third-order impulsive Sturm-Liouville boundary value problems with deviating arguments and one-dimensional p-Laplacian. Dyn. Syst. Appl. 20, 575-586 (2011) MATHMathSciNetGoogle Scholar

Copyright

© Feng and Qiu; licensee Springer. 2015