Skip to content

Advertisement

  • Research
  • Open Access

Barnes-Godunova-Levin type inequality of the Sugeno integral for an \((\alpha,m)\)-concave function

Journal of Inequalities and Applications20152015:25

https://doi.org/10.1186/s13660-015-0556-0

  • Received: 26 September 2014
  • Accepted: 9 January 2015
  • Published:

Abstract

In this paper, a Barnes-Godunova-Levin type inequality for the Sugeno integral based on an \(( {\alpha,m} )\)-concave function is proved. Some examples are given to illustrate the validity of these inequalities. Finally, several important results, as special cases of an \(( {\alpha,m} )\)-concave function, are also obtained.

Keywords

  • Barnes-Godunova-Levin type inequality
  • Sugeno integral
  • \((\alpha, m )\)-concave function

MSC

  • 03E72
  • 28B15
  • 28E10
  • 26D10

1 Introduction

As a tool for modeling non-deterministic problems, the theory of fuzzy measures and fuzzy integrals was introduced by Sugeno in [1]. Many authors generalized the Sugeno integral by using some other operators to replace the special operator(s) and/or and introduced Choquet-like integral [2], Shilkret integral [3], -integral [4], and pseudo-integral [5]. Suárez and Gil [6] presented two families of fuzzy integrals, the so-called seminormed fuzzy integral and semiconormed fuzzy integral. Wang and Klir [7] provided a general overview on fuzzy measurement and fuzzy integration.

Recently, Flores-Franulič et al. [821] generalized several classical integral inequalities of the Sugeno integral. Agahi et al. [22] proved a general Barnes-Godunova-Levin type inequality of the Sugeno integral for a concave function. In [23], Mihesan introduced the concept of \(( {\alpha,m} )\)-convex function. For recent results and generalizations concerning m-convex and \(( {\alpha,m} )\)-convex functions, we refer to [2426]. The purpose of this paper is to prove a Barnes-Godunova-Levin type inequality for the Sugeno integral based on an \(( {\alpha,m} )\)-concave function. Some examples are given to illustrate the results.

After some preliminaries and summarization of previous known results in Section 2, Section 3 deals with a Barnes-Godunova-Levin type inequality for the Sugeno integral, and some examples are given to illustrate the results. Finally, as special cases, some remarks are obtained.

2 Preliminaries

In this section, we recall some basic definitions or properties of a fuzzy integral and an \(( {\alpha,m} )\)-concave function. For details, we refer the reader to Refs. [1, 7, 23].

Suppose that is a σ-algebra of the subsets of X, and let \(\mu:\wp \to[0,\infty)\) be a non-negative, extended real-valued set function. We say that μ is a fuzzy measure if it satisfies:
  1. (1)

    \(\mu ( \emptyset ) = 0\);

     
  2. (2)

    \(E,F \in\wp\) and \(E \subset F\) imply \(\mu ( E ) \le\mu ( F)\);

     
  3. (3)

    \(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \subset {E_{2}} \subset \cdots\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcup_{n = 1}^{\infty}{{E_{n}}} } )\);

     
  4. (4)

    \(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \supset {E_{2}} \supset \cdots\), \(\mu ( {{E_{1}}} ) < \infty\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcap_{n = 1}^{\infty}{{E_{n}}} } )\).

     

Definition 2.1

(Mihesan [23])

The function \(f: [ {0,b} ] \to R\) is said to be \(( {\alpha,m} )\)-concave, where \(( {\alpha,m} ) \in { [ {0,1} ]^{2}}\), if for every \(x,y \in [ {0,b} ]\) and \(t \in [ {0,1} ]\), it satisfies
$$ f \bigl( {tx + m ( {1 - t} )y} \bigr) \ge{t^{\alpha}}f ( x ) + m \bigl( {1 - {t^{\alpha}}} \bigr)f ( y ). $$
(2.1)

Note that for \(( {\alpha,m} ) \in \{ { ( {0,0} ), ( {\alpha,0} ), ( {1,0} ), ( {1,m} ), ( {1,1} ), ( {\alpha,1} )} \}\) one obtains the following classes of functions: decreasing, α-starshaped, starshaped, m-concave, concave and α-concave.

If f is a non-negative real-valued function defined on X, we denote the set \(\{ x \in X: f ( x ) \ge\alpha \} = \{ {x \in X:f \ge\alpha} \}\) by \({F_{\alpha }}\) for \(\alpha \ge0\). Note that if \(\alpha \le\beta\) then \({F_{\beta }} \subset {F_{\alpha }}\).

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, we denote by \({M^{+} }\) the set of all non-negative measurable functions with respect to .

Definition 2.2

(Sugeno [1])

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(f \in{M^{+} }\) and \(A \in\wp\). The Sugeno integral (or the fuzzy integral) of f on A, with respect to the fuzzy measure μ, is defined as
$$ (S)\int_{A} {f\,d\mu} = \bigvee _{\alpha \ge0} \bigl[ { \alpha \wedge\mu ( {A \cap{F_{\alpha }}} )} \bigr], $$
(2.2)
when \(A = X\),
$$ (S)\int_{X} {f\,d\mu} = \bigvee _{\alpha \ge0} \bigl[ { \alpha \wedge\mu ( {{F_{\alpha }}} )} \bigr], $$
(2.3)
where and denote the operations sup and inf on \([ {0,\infty} )\), respectively.

The properties of the Sugeno integral are well known and can be found in [7].

Proposition 2.3

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(A,B \in \wp\) and \(f,g \in{M^{+} }\) then:
  1. (1)

    \({ ( S )\int_{A} {f\,d\mu \le\mu ( A )} }\);

     
  2. (2)

    \({ ( S )\int_{A} {k\,d\mu} = k \wedge\mu ( A )}\), k for a non-negative constant;

     
  3. (3)

    \({ ( S )\int_{A} {f\,d\mu \le} ( S )\int_{A} {g\,d\mu} }\) for \(f \le g\);

     
  4. (4)

    \({ ( S )\int_{A \cup B} {f\,d\mu \ge} ( S )\int_{A} {f\,d\mu} \vee ( S )\int_{B} {f\,d\mu} }\);

     
  5. (5)

    \({\mu ( {A \cap \{ {f \ge\alpha} \} } ) \ge\alpha \Rightarrow ( S )\int_{A} {f\,d\mu} \ge \alpha}\);

     
  6. (6)

    \({\mu ( {A \cap \{ {f \ge\alpha} \} } ) \le\alpha \Rightarrow ( S )\int_{A} {f\,d\mu} \le \alpha}\);

     
  7. (7)

    \({ ( S )\int_{A} {f\,d\mu} > \alpha \Leftrightarrow}\) there exists \(\gamma > \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) >\alpha\);

     
  8. (8)

    \({ ( S )\int_{A} {f\,d\mu} < \alpha \Leftrightarrow}\) there exists \(\gamma < \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) < \alpha\).

     

Remark 2.4

Consider the distribution function F associated to f on A, that is, \(F ( \alpha ) = \mu ( {A \cap \{ {f \ge \alpha} \}} )\). Then, due to (4) and (5) of Proposition 2.3, we have \(F ( \alpha ) = \alpha \Rightarrow ( S )\int_{A} {f\,d\mu} = \alpha\). Thus, from a numerical point of view, the Sugeno integral can be calculated solving the equation \(F ( \alpha ) = \alpha\).

Definition 2.5

Functions \(f,g:X \to R\) are said to be co-monotone if for all \(x,y \in X\),
$$ \bigl( {f ( x ) - f ( y )} \bigr) \bigl( {g ( x ) - g ( y )} \bigr) \ge0, $$
(2.4)
and f and g are said to be counter-monotone if for all \(x,y \in X\),
$$ \bigl( {f ( x ) - f ( y )} \bigr) \bigl( {g ( x ) - g ( y )} \bigr) \leq0. $$
(2.5)

It is clear that if f and g are co-monotone, then for any real numbers s, t either \({F_{s}} \subseteq{G_{t}}\) or \({F_{t}} \subseteq {G_{s}}\).

2.1 Barnes-Godunova-Levin type inequality for the Sugeno integral based on an \(( {\alpha,m} )\)-concave function

The classical Barnes-Godunova-Levin type inequality provides the inequality
$$ { \biggl( {\int_{a}^{b} {{f^{p}} ( x )\,dx} } \biggr)^{\frac{1}{p}}} { \biggl( {\int_{a}^{b} {{g^{q}} ( x )\,dx} } \biggr)^{\frac{1}{q}}} \le B ( {p,q} )\int _{a}^{b} {f ( x )g ( x )\,dx}, $$
(2.6)
where \(p,q > 1\), \(B ( {p,q} ) = \frac{{6{{ ( {b - a} )}^{{\frac{1 }{ p}} + {\frac{1 }{ q}} - 1}}}}{{{{ ( {1 + p} )}^{{\frac{1 }{ p}}}}{{ ( {1 + q} )}^{{\frac{1 }{ q}}}}}}\) and f, g are non-negative concave functions on \([ a,b ]\).

Unfortunately, the following example shows that the Barnes-Godunova-Levin type inequality for the Sugeno integral is not valid.

Example

Consider \(X = [ {0,100} ]\) and \(p = q = 4\). Let m be the Lebesgue measure on X. If we take the functions \(f ( x ) = g ( x ) = \sqrt[4]{x}\), then \(f ( x )\), \(g ( x )\) are two \(( {{\frac{1 }{2}},{\frac{1}{3}}} )\)-concave functions. In fact,
$$\sqrt[4]{x} = f \biggl( {{\frac{x }{{100}}} \cdot100 + {\frac{1}{3}} \biggl( {1 - {\frac{x }{{100}}}} \biggr) \cdot0} \biggr) \ge \sqrt{{ \frac{x }{ {100}}}} f ( {100} ) + {\frac{1}{3}} \biggl( {1 - \sqrt{{ \frac{x}{{100}}}} } \biggr)f ( 0 ) = \sqrt{\frac{x}{{10}}} . $$
A straightforward calculus shows that
$$\begin{aligned}& ( S )\int_{0}^{100} {{f^{4}} ( x )\,dm} = ( S )\int_{0}^{100} {{g^{4}} ( x )\,dm} = 50,\\& ( S )\int_{0}^{100} {f ( x )g ( x )\,dm} = 9.5125,\qquad B ( {4,4} ) = 0.26833. \end{aligned}$$
However,
$$\begin{aligned} 7.0711 &= { \biggl( { ( S )\int_{0}^{100} {{f^{4}} ( x )\,dm} } \biggr)^{{\frac{1}{4}}}} { \biggl( { ( S )\int _{0}^{100} {{g^{4}} ( x )\,dm} } \biggr)^{{\frac{1}{4}}}} \\ &\ge B ( {4,4} ) ( S )\int_{0}^{100} {f ( x )g ( x )\,dm} = 2.5525. \end{aligned}$$

This proves that the Barnes-Godunova-Levin type inequality for the Sugeno integral is not satisfied.

The aim of this work is to show a Barnes-Godunova-Levin type inequality for the Sugeno integral with respect to an \(( {\alpha,m} )\)-concave function.

Theorem 2.6

Let \(X= [ {0,1} ]\), \(\alpha,m \in ( {0,1} )\) and f, g be \((\alpha,m )\)-concave functions for all \(x \in X\). If m is a Lebesgue measure on X, then

Case (i). If \(f ( 0 ) \le f ( 1 )\) and \(g ( 0 ) \le g ( 1 )\), then
$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( 1 - \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}} \biggr) \wedge \biggl( {1 - { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}} \biggr), \end{aligned}$$
(2.7)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f ( 0 ) > f ( 1 )\) and \(g ( 0 ) > g ( 1 )\), then

Case (a). If \(\frac{{f ( 1 )}}{{f ( 0 )}} < \frac{{g ( 1 )}}{{g ( 0 )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{{f ( 0 )}}}} )\), then
$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), \end{aligned}$$
(2.8)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}}\wedge1 \wedge f ( 1 ) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), $$
(2.9)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},{\frac{{g ( 1 )} }{{g ( 0 )}}}} )\), then
$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}}\wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), $$
(2.10)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 4. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}}\wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge 1\wedge g ( 1 ), $$
(2.11)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 5. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},1} )\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx}\ge {t_{1}} {t_{2}}\wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.12)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (b). If \(\frac{{f ( 1 )}}{{f ( 0 )}} = \frac{{g ( 1 )}}{{g ( 0 )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{ {f ( 0 )}}}} )\), then
$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac {1}{\alpha}}}} \biggr), \end{aligned}$$
(2.13)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( 1 )\wedge g ( 1 )\wedge1, $$
(2.14)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.15)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (c). If \(\frac{{f ( 1 )}}{{f ( 0 )}} > \frac{{g ( 1 )}}{{g ( 0 )}}\), then

Case 1. If \(m \in ( {0,{\frac{{g ( 1 )} }{ {g ( 0 )}}}} )\), then
$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), \end{aligned}$$
(2.16)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac {1}{\alpha}}}} \biggr) \wedge g ( 1 )\wedge1, $$
(2.17)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},{\frac{{f ( 1 )} }{{f ( 0 )}}}} )\), then
$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge { \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.18)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 4. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( 1 ) \wedge{ \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.19)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 5. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.20)
where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Proof

Let \(p,q \in ( {0,\infty} )\), \({ ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{{\frac{1 }{ p}}}} = {t_{1}}\) and \({ ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{{\frac{1 }{ q}}}} = {t_{2}}\). Since \(f,g: [ {0,1} ] \to [ {0,\infty} )\) are two \(( {\alpha,m} )\)-concave functions for \(x \in [ {0,1} ]\), we have
$$\begin{aligned}& f ( x ) = f \bigl( {m ( {1 - x} ) \cdot0 + x \cdot 1} \bigr) \ge m \bigl( {1 - {x^{\alpha}}} \bigr)f ( 0 ) + {x^{\alpha}}f ( 1 ) = {h_{1}}( x ), \end{aligned}$$
(2.21)
$$\begin{aligned}& g ( x ) = g \bigl( {m ( {1 - x} ) \cdot0 + x \cdot 1} \bigr) \ge m \bigl( {1 - {x^{\alpha}}} \bigr)g ( 0 ) + {x^{\alpha}}g ( 1 ) = {h_{2}} ( x ). \end{aligned}$$
(2.22)
Case (i). If \(f ( 0 ) \le f ( 1 )\) and \(g ( 0 ) \le g ( 1 )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have
$$\begin{aligned} & ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{0}^{1} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ & \quad\ge{t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)f ( 0 ) + {x^{\alpha}}f ( 1 ) \ge{t_{1}}} \bigr\} } \bigr) \\ &\qquad{} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)g ( 0 ) + {x^{\alpha}}g ( 1 ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {0,1} ] \cap \biggl\{ {x \ge{{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {0,1} ] \cap \biggl\{ {x \ge{{ \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr). \end{aligned}$$
(2.23)
Case (ii). If \(f ( 0 ) > f ( 1 )\) and \(g ( 0 ) > g ( 1 )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have
$$\begin{aligned} & ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{0}^{1} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)f ( 0 ) + {x^{\alpha}}f ( 1 ) \ge{t_{1}}} \bigr\} } \bigr) \\ &\qquad{}\wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)g ( 0 ) + {x^{\alpha}}g ( 1 ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {mf ( 0 ) + \bigl( {f ( 1 ) - mf ( 0 )} \bigr){x^{\alpha}} \ge{t_{1}}} \bigr\} } \bigr) \\ &\qquad{}\wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {mg ( 0 ) + \bigl( {g ( 1 ) - mg ( 0 )} \bigr){x^{\alpha}} \ge{t_{2}}} \bigr\} } \bigr). \end{aligned}$$
(2.24)

Case (a). If \(\frac{{f ( 1 )}}{{f ( 0 )}} < \frac{{g ( 1 )}}{{g ( 0 )}}\), then by (2.24) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{ {f ( 0 )}}}} )\), then
$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). \end{aligned}$$
(2.25)
Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge1 \wedge f ( 1 ) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). $$
(2.26)
Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},{\frac{{g ( 1 )} }{{g ( 0 )}}}} )\), then
$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge { \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac {1}{\alpha}}} \wedge \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). $$
(2.27)
Case 4. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge g ( 1 )\wedge1. $$
(2.28)
Case 5. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},1} )\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.29)

Case (b). If \(\frac{{f ( 1 )}}{{f ( 0 )}} = \frac{{g ( 1 )}}{{g ( 0 )}}\), then by (2.24) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{ {f ( 0 )}}}} )\), then
$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). $$
(2.30)
Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( 1 ) \wedge g ( 1 )\wedge1. $$
(2.31)
Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.32)

Case (c). If \(\frac{{f ( 1 )}}{{f ( 0 )}} > \frac{{g ( 1 )}}{{g ( 0 )}}\), then by (2.24) we obtain

Case 1. If \(m \in ( {0,{\frac{{g ( 1 )} }{ {g ( 0 )}}}} )\), then
$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \\ &{}\wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). \end{aligned}$$
(2.33)
Case 2. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac {1}{\alpha}}}} \biggr) \wedge g ( 1 )\wedge1. $$
(2.34)
Case 3. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},{\frac{{f ( 1 )} }{{f ( 0 )}}}} )\), then
$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge { \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.35)
Case 4. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge1\wedge f ( 1 ) \wedge{ \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.36)
Case 5. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then
$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.37)
This completes the proof. □

Example

Consider \(X = [ {0,1} ]\) and \(p = 2\), \(q = 4\). If we take the functions \(f ( x ) =\sqrt[2]{x}\), \(g ( x ) = \sqrt[4]{x}\), then \(f ( x )\), \(g ( x )\) are two \(( {{\frac{2 }{3}},{\frac{1 }{3}}} )\) -concave functions. In fact, \(\sqrt[t]{x} = f ( {x \cdot1 + {\frac{1 }{3}} ( {1 - x} ) \cdot0} ) \ge{x^{{\frac{2 }{3}}}}f ( 1 ) + {\frac{1 }{3}} ( {1 - {x^{{\frac{2 }{ 3}}}}} )f ( 0 ) = {x^{{\frac{2 }{3}}}}\) for \(t \ge{\frac{3 }{2}}\). Let m be the Lebesgue measure on X. A straightforward calculus shows that
$$( S )\int_{0}^{1} {{f^{2}} ( x )\,dm} = ( S )\int_{0}^{1} {{g^{4}} ( x )\,dm} = 0.5,\qquad ( S )\int_{0}^{1} {f ( x )g ( x )\,dm} = 0.5497. $$
By Theorem 2.6, we have
$$\begin{aligned} 0.5497 ={}& ( S )\int_{0}^{1} f ( x )g ( x )\,dx \ge \biggl( ( S )\int_{0}^{1} {{f^{2}} ( x )\,dx} \biggr)^{\frac{1}{2}} \biggl( ( S )\int _{0}^{1} {{g^{4}} ( x )\,dx} \biggr)^{\frac{1}{4}} \\ &{} \wedge \biggl( 1 - \biggl( \biggl( { ( S )\int_{0}^{1} {{f^{2}} ( x )\,dx} } \biggr)^{\frac{1}{2}} \biggr)^{\frac{3}{2}} \biggr) \wedge \biggl( 1 - \biggl( \biggl( { ( S )\int _{0}^{1} {{g^{4}} ( x )\,dx} } \biggr)^{\frac{1}{4}} \biggr)^{\frac{3}{2}} \biggr) \\ ={}& 0.0156 \wedge0.8750 \wedge0.9844=0.0156. \end{aligned}$$
(2.38)

Now, we will prove the general cases of Theorem 2.6.

Theorem 2.7

Let \(X= [ {a,b} ]\), \(\alpha,m \in ( {0,1} )\) and f, g be \(( {\alpha,m} )\)-concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f ( a ) \le f ( b )\) and \(g ( a ) \le g ( b )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( 1 - \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)^{\frac{1}{\alpha}} \biggr)} \biggr), \end{aligned}$$
(2.39)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then

Case (a). If \(\frac{{f ( b )}}{{f ( a )}} < \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned}$$
(2.40)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge ( {b - a} ) \wedge f ( b ) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned}$$
(2.41)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},{\frac{{g ( b )} }{{g ( a )}}}} )\), then
$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr)\\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned} $$
(2.42)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 4. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge g ( b ) \wedge ( {b - a} ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.43)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 5. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.44)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (b). If \(\frac{{f ( b )}}{{f ( a )}} = \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned}$$
(2.45)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ), $$
(2.46)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{f ( b )} }{ {f ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.47)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (c). If \(\frac{{f ( b )}}{{f ( a )}} > \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{g ( b )} }{ {g ( a )}}}} )\), then
$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned} $$
(2.48)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then
$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \wedge g ( b ) \wedge ( {b - a} ), \end{aligned}$$
(2.49)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},{\frac{{f ( b )} }{{f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.50)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 4. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge ( {b - a} )\wedge f ( b ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma -a} \biggr), \end{aligned}$$
(2.51)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 5. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then
$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{} \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.52)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Proof

Let \(p,q \in ( {0,\infty} )\), \({ ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{{\frac{1 }{ p}}}} = {t_{1}}\) and \({ ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{{\frac{1 }{ q}}}} = {t_{2}}\). Since \(f,g: [ {a,b} ] \to [ {0,\infty} )\) are two \(( {\alpha,m} )\)-concave functions for \(x \in [ {a,b} ]\), we have
$$\begin{aligned}& \begin{aligned}[b] f ( x ) &= f \biggl( {m \biggl( {1 - \frac{{x - ma}}{{b - ma}}} \biggr) \cdot a + \frac{{x - ma}}{{b - ma}} \cdot b} \biggr)\\ &\ge m \biggl( 1 - \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}\biggr)f ( a ) + { \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}}f ( b ) = {h_{1}} ( x ), \end{aligned} \end{aligned}$$
(2.53)
$$\begin{aligned}& \begin{aligned}[b] g ( x ) &= g \biggl( {m \biggl( {1 - \frac{{x - ma}}{{b - ma}}} \biggr) \cdot a + \frac{{x - ma}}{{b - ma}} \cdot b} \biggr)\\ &\ge m \biggl( {1 - { \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}}} \biggr)g ( a ) + { \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}}g ( b ) = {h_{2}} ( x ). \end{aligned} \end{aligned}$$
(2.54)
Case (i). If \(f ( a ) \le f ( b )\) and \(g ( a ) \le g ( b )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have
$$\begin{aligned} & ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{a}^{b} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)f ( a ) + {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}f ( b ) \ge{t_{1}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)g ( a ) + {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}g ( b ) \ge{t_{2}}} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {x \ge{{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} ( {b - ma} ) + ma} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {x \ge{{ \biggl( { \frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}} ( {b - ma} ) + ma} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &\qquad{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.55)
Case (ii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have
$$\begin{aligned} & ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{a}^{b} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)f ( a ) + {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}f ( b ) \ge{t_{1}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)g ( a ) + {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}g ( b ) \ge{t_{2}}} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {mf ( a ) + \bigl( {f ( b ) - mf ( a )} \bigr){{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}} \ge {t_{1}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {mg ( a ) + \bigl( {g ( b ) - mg ( a )} \bigr){{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}} \ge{t_{2}}} \biggr\} } \biggr). \end{aligned}$$
(2.56)

Case (a). If \(\frac{{f ( b )}}{{f ( a )}} < \frac{{g ( b )}}{{g ( a )}}\), then by (2.56) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.57)
Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge ( {b - a} ) \wedge f ( b ) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.58)
Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},{\frac{{g ( b )} }{{g ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.59)
Case 4. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge g ( b ) \wedge ( {b - a} ) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.60)
Case 5. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.61)

Case (b). If \(\frac{{f ( b )}}{{f ( a )}} = \frac{{g ( b )}}{{g ( a )}}\), then by (2.56) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.62)
Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ). $$
(2.63)
Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.64)

Case (c). If \(\frac{{f ( b )}}{{f ( a )}} > \frac{{g ( b )}}{{g ( a )}}\), then by (2.56) we obtain

Case 1. If \(m \in ( {0,{\frac{{g ( b )} }{ {g ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.65)
Case 2. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then
$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{} \wedge g ( b ) \wedge ( {b - a} ). \end{aligned}$$
(2.66)
Case 3. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},{\frac{{f ( b )} }{{f ( a )}}}} )\), then
$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned} $$
(2.67)
Case 4. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge ( {b - a} ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.68)
Case 5. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.69)
This completes the proof. □

Example

Consider \(X = [ {2,5} ]\) and \(p = 2\), \(q = 4\). Let m be the Lebesgue measure on X. If we take the function \(f ( x ) = \sqrt[2]{{6 - x}}\), \(g ( x ) = \sqrt[4]{{6 - x}}\), then \(f ( x )\), \(g ( x )\) are two \(( {{\frac{1 }{2}},{\frac{{\sqrt{5} } }{2}}} )\) -concave functions. In fact,
$$\begin{aligned} \sqrt{6 - x} &= f \biggl( {{\frac{{\sqrt{5} } }{4}} \cdot \biggl( {1 - { \frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{ {5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr)2 + \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr) \cdot5} \biggr) \\ &\ge \biggl( \frac{{x - {\frac{{\sqrt{5} } }{4}} \times 2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}} \biggr)^{{\frac{1 }{2}}}f ( 5 ) + { \frac{{\sqrt{5} } }{4}} \biggl( 1 - \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times 2}}}} \biggr)^{{\frac{1 }{2}}} \biggr)f ( 2 ) \\ &= \frac{{ ( {2 - \sqrt{5} } )x + 4\sqrt{5} }}{{10 - \sqrt{5} }} \end{aligned}$$
(2.70)
and
$$\begin{aligned} \sqrt[4]{{6 - x}} &= g \biggl( {{\frac{{\sqrt{5} } }{4}} \cdot \biggl( {1 - { \frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr) \times 2 + \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr) \times 5} \biggr) \\ &\ge { \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times 2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr)^{{\frac{1 }{2}}}}g ( 5 ) + { \frac{{\sqrt{5} } }{4}} \biggl( 1 - \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times 2}}}} \biggr)^{{\frac{1 }{2}}} \biggr)g ( 2 ) \\ &= \frac{{ ( {4 - \sqrt{10} } )x + 5\sqrt{10} - 5}}{{20 - 2\sqrt{5} }}. \end{aligned}$$
(2.71)
A straightforward calculus shows that
$$( S )\int_{2}^{5} {{f^{2}} ( x )\,dm} = ( S )\int_{2}^{5} {{g^{4}} ( x )\,dm} = 2,\qquad ( S )\int_{2}^{5} {f ( x )g ( x )\,dm} = 1.8040. $$
By Theorem 2.7, we have
$$\begin{aligned} 1.8040 ={}& ( S )\int_{2}^{5} {f ( x )g ( x )\,dx} \ge \biggl( { ( S )\int_{2}^{5} {{f^{2}} ( x )\,dx} } \biggr)^{\frac{1}{2}} \biggl( { ( S )\int_{2}^{5} {{g^{4}} ( x )\,dx} } \biggr)^{\frac{1}{4}} \\ &{}\wedge \biggl( { \biggl( {5 - {\frac{{\sqrt{5} } }{4}} \times2} \biggr) \biggl( { \frac{{{{ ( { ( S )\int_{2}^{5} {{f^{2}} ( x )\,dx} } )}^{\frac{1}{2}}} - {\frac{{\sqrt{5} } }{ 4}}f ( 2 )}}{{f ( 5 ) - {\frac{{\sqrt{5} } }{4}}f ( 2 )}}} \biggr)^{2} + {\frac{{\sqrt{5} } }{4}} \times2 - 2} \biggr) \\ &{}\wedge \biggl( \biggl( {5 - {\frac{{\sqrt{5} } }{4}} \times2} \biggr) \biggl( { \frac{{{{ ( { ( S )\int_{2}^{5} {{g^{4}} ( x )\,dx} } )}^{\frac{1}{4}}} - {\frac{{\sqrt{5} } }{ 4}}g ( 2 )}}{{g ( 5 ) - {\frac{{\sqrt{5} } }{4}}g ( 2 )}}} \biggr)^{2} \biggr) \\ ={}& 1.6818 \wedge23.5607 \wedge34.4227 = 1.6818. \end{aligned}$$
(2.72)

As some special cases of \((\alpha,m )\)-concave functions in Theorem 2.7, we have the following results.

Remark 2.8

Let \(X= [ {a,b} ]\), \(\alpha= m= 0 \) and f, g be two decreasing functions for all \(x \in X\). If μ is a Lebesgue measure on X, then
$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge { \biggl( { ( S ) \int_{a}^{b} {{f^{p}} ( x )\,dx} } \biggr)^{\frac{1}{p}}} { \biggl( { ( S ) \int_{a}^{b} {{g^{q}} ( x )\,dx} } \biggr)^{\frac{1}{q}}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ). \end{aligned}$$
(2.73)

Remark 2.9

Let \(X= [ {a,b} ]\), \(\alpha=1\), \(m= 0 \) and f, g be two starshaped functions for all \(x \in X\). If μ is a Lebesgue measure on X, then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge b \biggl( {1 - {\frac{{{t_{1}}} }{{f ( b )}}}} \biggr) \wedge b \biggl( {1 - {\frac{{{t_{2}}} }{ {g ( b )}}}} \biggr), $$
(2.74)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.10

Let \(X= [ {a,b} ]\), \(\alpha=1\), \(m\in ({0,1} ) \) and f, g be two m-concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f ( a ) \le f ( b )\) and \(g ( a ) \le g ( b )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.75)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then

Case (a). If \(\frac{{f ( b )}}{{f ( a )}} < \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.76)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$ ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge ( {b - a} ) \wedge f ( b ) \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), $$
(2.77)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},{\frac{{g ( b )} }{{g ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.78)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 4. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge g ( b ) \wedge ( {b - a} ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr), $$
(2.79)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 5. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.80)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (b). If \(\frac{{f ( b )}}{{f ( a )}} = \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.81)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ), $$
(2.82)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{f ( b )} }{ {f ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.83)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (c). If \(\frac{{f ( b )}}{{f ( a )}} > \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{g ( b )} }{ {g ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.84)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 2. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then
$$ ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \wedge g ( b ) \wedge ( {b - a} ), $$
(2.85)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 3. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},{\frac{{f ( b )} }{{f ( a )}}}} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.86)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 4. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge ( {b - a} )\wedge f ( b ) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.87)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case 5. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.88)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.11

[22]

Let \(X= [ {a,b} ]\), \(\alpha=1\), \(m=1 \) and f, g be two concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f (a ) < f ( b )\) and \(g ( a ) < g ( b )\), then
$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ) \biggl( {1 - \biggl( {\frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - a} ) \biggl( {1 - \biggl( {\frac{{{t_{2}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)} \biggr)} \biggr), \end{aligned} $$
(2.89)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case (ii). If \(f (a ) = f ( b )\) and \(g ( a ) = g ( b )\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge f ( a )g ( a ) \wedge ( {b - a} ). $$
(2.90)
Case (iii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ) \biggl( { \frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)} \biggr) \wedge \biggl( { ( {b - a} ) \biggl( {\frac{{{t_{1}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)} \biggr), $$
(2.91)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.12

Let \(X= [ {a,b} ]\), \(\alpha\in ({0,1} )\), \(m=0 \) and f, g be two α-starshaped functions for all \(x \in X\). If μ is a Lebesgue measure on X, then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge b \biggl( {1 - {{ \biggl( { \frac{{{t_{1}}}}{{f ( b )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr) \wedge b \biggl( {1 - {{ \biggl( {\frac{{{t_{2}}}}{{g ( b )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr), $$
(2.92)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.13

Let \(X= [ {a,b} ]\), \(\alpha\in ({0,1} )\), \(m=1 \) and f, g be two α-concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f (a ) < f ( b )\) and \(g ( a ) < g ( b )\), then
$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - a} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr)} \biggr), \end{aligned} $$
(2.93)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).
Case (ii). If \(f (a ) = f ( b )\) and \(g ( a ) = g ( b )\), then
$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge f ( a )g ( a ) \wedge ( {b - a} ). $$
(2.94)
Case (iii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then
$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ){{ \biggl( { \frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr) \wedge \biggl( { ( {b - a} ){{ \biggl( {\frac{{{t_{1}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr), \end{aligned}$$
(2.95)
where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

3 Conclusion

In this paper, we have investigated the Barnes-Godunova-Levin type inequality of the Sugeno integral with respect to an \(( {\alpha ,m} )\)-concave function. For further investigations, we will continue to explore other integral inequalities for the Sugeno integral related to \(( {\alpha,m} )\)-concavity.

Declarations

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61273143, 61472424) and Fundamental Research Funds for the Central Universities (2013RC10, 2013RC12 and 2014YC07).

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Authors’ Affiliations

(1)
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China

References

  1. Sugeno, M: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology (1974) Google Scholar
  2. Mesiar, R: Choquet-like integrals. J. Math. Anal. Appl. 2, 477-488 (1995) View ArticleMathSciNetGoogle Scholar
  3. Shilkret, N: Maxitive measure and integration. Indag. Math. 74, 109-116 (1971) View ArticleMATHMathSciNetGoogle Scholar
  4. Weber, S: -decomposable measures and integrals for Archimedean t-conorms . J. Math. Anal. Appl. 101, 114-138 (1984) View ArticleMATHMathSciNetGoogle Scholar
  5. Ichihashi, H, Tanaka, H, Asai, K: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 2, 354-364 (1988) View ArticleMathSciNetGoogle Scholar
  6. Suárez, FG, Gil, ÁP: Two families of fuzzy integrals. Fuzzy Sets Syst. 18, 67-81 (1986) View ArticleMATHGoogle Scholar
  7. Wang, Z, Klir, GJ: Generalized Measure Theory. Springer, New York (2009) View ArticleMATHGoogle Scholar
  8. Flores-Franulič, A, Román-Flores, H: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178-1184 (2007) View ArticleMATHMathSciNetGoogle Scholar
  9. Flores-Franulič, A, Román-Flores, H, Chalco-Cano, Y: Markov type inequalities for fuzzy integrals. Appl. Math. Comput. 207, 242-247 (2009) View ArticleMATHMathSciNetGoogle Scholar
  10. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Hardy-type inequality for fuzzy integrals. Appl. Math. Comput. 204, 178-183 (2008) View ArticleMATHMathSciNetGoogle Scholar
  11. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: The fuzzy integral for monotone functions. Appl. Math. Comput. 185, 492-498 (2007) View ArticleMATHMathSciNetGoogle Scholar
  12. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177, 3129-3201 (2007) View ArticleGoogle Scholar
  13. Caballero, J, Sadarangani, K: A Cauchy-Schwarz type inequality for fuzzy integrals. Nonlinear Anal. 73, 3329-3335 (2010) View ArticleMATHMathSciNetGoogle Scholar
  14. Caballero, J, Sadarangani, K: Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst. 161, 1480-1487 (2010) View ArticleMATHMathSciNetGoogle Scholar
  15. Agahia, H, Mesiar, R, Ouyang, Y: Hölder type inequality for Sugeno integral. Fuzzy Sets Syst. 161, 2337-2347 (2010) View ArticleGoogle Scholar
  16. Agahi, H, Mesiar, R, Ouyang, Y, Pap, E, Štrboja, M: Berwald type inequality for Sugeno integral. Appl. Math. Comput. 217, 4100-4108 (2010) View ArticleMATHMathSciNetGoogle Scholar
  17. Agahi, H, Mesiar, R, Ouyang, Y: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708-715 (2010) View ArticleMATHMathSciNetGoogle Scholar
  18. Caballero, J, Sadarangani, K: Sandor’s inequality for Sugeno integrals. Appl. Math. Comput. 218, 1617-1622 (2011) View ArticleMATHMathSciNetGoogle Scholar
  19. Caballero, J, Sadarangani, K: Fritz Carlson’s inequality for fuzzy integrals. Comput. Math. Appl. 59, 2763-2767 (2010) View ArticleMATHMathSciNetGoogle Scholar
  20. Mesiar, R, Ouyang, Y: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst. 160, 58-64 (2009) View ArticleMATHMathSciNetGoogle Scholar
  21. Caballero, J, Sadarangani, K: Hermite-Hadamard inequality for fuzzy integrals. Appl. Math. Comput. 215, 2134-2138 (2009) View ArticleMATHMathSciNetGoogle Scholar
  22. Agahi, H, Román-Flores, H, Flores-Franulič, A: General Barnes-Godunova-Levin type inequalities for Sugeno integral. Inf. Sci. 181, 1072-1079 (2011) View ArticleMATHGoogle Scholar
  23. Mihesan, VG: A generalization of the convexity. In: Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania (1993) Google Scholar
  24. Özdemir, ME, Avci, M, Kavurmaci, H: Hermite-Hadamard-type inequalities via \((\alpha ,m)\)-convexity. Comput. Math. Appl. 61, 2614-2620 (2011) View ArticleMATHMathSciNetGoogle Scholar
  25. Özdemir, ME, Kavurmaci, H, Set, E: Ostrowski’s type inequalities for \((\alpha ,m)\)-convex functions. Kyungpook Math. J. 50, 371-378 (2010) View ArticleMathSciNetGoogle Scholar
  26. Li, DQ, Song, XQ, Yue, T: Hermite-Hadamard type inequality for Sugeno integrals. Appl. Math. Comput. 237, 632-638 (2014) View ArticleMathSciNetGoogle Scholar

Copyright

© Li et al.; licensee Springer. 2015

Advertisement