Skip to main content

Barnes-Godunova-Levin type inequality of the Sugeno integral for an \((\alpha,m)\)-concave function

Abstract

In this paper, a Barnes-Godunova-Levin type inequality for the Sugeno integral based on an \(( {\alpha,m} )\)-concave function is proved. Some examples are given to illustrate the validity of these inequalities. Finally, several important results, as special cases of an \(( {\alpha,m} )\)-concave function, are also obtained.

Introduction

As a tool for modeling non-deterministic problems, the theory of fuzzy measures and fuzzy integrals was introduced by Sugeno in [1]. Many authors generalized the Sugeno integral by using some other operators to replace the special operator(s) and/or and introduced Choquet-like integral [2], Shilkret integral [3], -integral [4], and pseudo-integral [5]. Suárez and Gil [6] presented two families of fuzzy integrals, the so-called seminormed fuzzy integral and semiconormed fuzzy integral. Wang and Klir [7] provided a general overview on fuzzy measurement and fuzzy integration.

Recently, Flores-Franulič et al. [821] generalized several classical integral inequalities of the Sugeno integral. Agahi et al. [22] proved a general Barnes-Godunova-Levin type inequality of the Sugeno integral for a concave function. In [23], Mihesan introduced the concept of \(( {\alpha,m} )\)-convex function. For recent results and generalizations concerning m-convex and \(( {\alpha,m} )\)-convex functions, we refer to [2426]. The purpose of this paper is to prove a Barnes-Godunova-Levin type inequality for the Sugeno integral based on an \(( {\alpha,m} )\)-concave function. Some examples are given to illustrate the results.

After some preliminaries and summarization of previous known results in Section 2, Section 3 deals with a Barnes-Godunova-Levin type inequality for the Sugeno integral, and some examples are given to illustrate the results. Finally, as special cases, some remarks are obtained.

Preliminaries

In this section, we recall some basic definitions or properties of a fuzzy integral and an \(( {\alpha,m} )\)-concave function. For details, we refer the reader to Refs. [1, 7, 23].

Suppose that is a σ-algebra of the subsets of X, and let \(\mu:\wp \to[0,\infty)\) be a non-negative, extended real-valued set function. We say that μ is a fuzzy measure if it satisfies:

  1. (1)

    \(\mu ( \emptyset ) = 0\);

  2. (2)

    \(E,F \in\wp\) and \(E \subset F\) imply \(\mu ( E ) \le\mu ( F)\);

  3. (3)

    \(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \subset {E_{2}} \subset \cdots\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcup_{n = 1}^{\infty}{{E_{n}}} } )\);

  4. (4)

    \(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \supset {E_{2}} \supset \cdots\), \(\mu ( {{E_{1}}} ) < \infty\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcap_{n = 1}^{\infty}{{E_{n}}} } )\).

Definition 2.1

(Mihesan [23])

The function \(f: [ {0,b} ] \to R\) is said to be \(( {\alpha,m} )\)-concave, where \(( {\alpha,m} ) \in { [ {0,1} ]^{2}}\), if for every \(x,y \in [ {0,b} ]\) and \(t \in [ {0,1} ]\), it satisfies

$$ f \bigl( {tx + m ( {1 - t} )y} \bigr) \ge{t^{\alpha}}f ( x ) + m \bigl( {1 - {t^{\alpha}}} \bigr)f ( y ). $$
(2.1)

Note that for \(( {\alpha,m} ) \in \{ { ( {0,0} ), ( {\alpha,0} ), ( {1,0} ), ( {1,m} ), ( {1,1} ), ( {\alpha,1} )} \}\) one obtains the following classes of functions: decreasing, α-starshaped, starshaped, m-concave, concave and α-concave.

If f is a non-negative real-valued function defined on X, we denote the set \(\{ x \in X: f ( x ) \ge\alpha \} = \{ {x \in X:f \ge\alpha} \}\) by \({F_{\alpha }}\) for \(\alpha \ge0\). Note that if \(\alpha \le\beta\) then \({F_{\beta }} \subset {F_{\alpha }}\).

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, we denote by \({M^{+} }\) the set of all non-negative measurable functions with respect to .

Definition 2.2

(Sugeno [1])

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(f \in{M^{+} }\) and \(A \in\wp\). The Sugeno integral (or the fuzzy integral) of f on A, with respect to the fuzzy measure μ, is defined as

$$ (S)\int_{A} {f\,d\mu} = \bigvee _{\alpha \ge0} \bigl[ { \alpha \wedge\mu ( {A \cap{F_{\alpha }}} )} \bigr], $$
(2.2)

when \(A = X\),

$$ (S)\int_{X} {f\,d\mu} = \bigvee _{\alpha \ge0} \bigl[ { \alpha \wedge\mu ( {{F_{\alpha }}} )} \bigr], $$
(2.3)

where and denote the operations sup and inf on \([ {0,\infty} )\), respectively.

The properties of the Sugeno integral are well known and can be found in [7].

Proposition 2.3

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(A,B \in \wp\) and \(f,g \in{M^{+} }\) then:

  1. (1)

    \({ ( S )\int_{A} {f\,d\mu \le\mu ( A )} }\);

  2. (2)

    \({ ( S )\int_{A} {k\,d\mu} = k \wedge\mu ( A )}\), k for a non-negative constant;

  3. (3)

    \({ ( S )\int_{A} {f\,d\mu \le} ( S )\int_{A} {g\,d\mu} }\) for \(f \le g\);

  4. (4)

    \({ ( S )\int_{A \cup B} {f\,d\mu \ge} ( S )\int_{A} {f\,d\mu} \vee ( S )\int_{B} {f\,d\mu} }\);

  5. (5)

    \({\mu ( {A \cap \{ {f \ge\alpha} \} } ) \ge\alpha \Rightarrow ( S )\int_{A} {f\,d\mu} \ge \alpha}\);

  6. (6)

    \({\mu ( {A \cap \{ {f \ge\alpha} \} } ) \le\alpha \Rightarrow ( S )\int_{A} {f\,d\mu} \le \alpha}\);

  7. (7)

    \({ ( S )\int_{A} {f\,d\mu} > \alpha \Leftrightarrow}\) there exists \(\gamma > \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) >\alpha\);

  8. (8)

    \({ ( S )\int_{A} {f\,d\mu} < \alpha \Leftrightarrow}\) there exists \(\gamma < \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) < \alpha\).

Remark 2.4

Consider the distribution function F associated to f on A, that is, \(F ( \alpha ) = \mu ( {A \cap \{ {f \ge \alpha} \}} )\). Then, due to (4) and (5) of Proposition 2.3, we have \(F ( \alpha ) = \alpha \Rightarrow ( S )\int_{A} {f\,d\mu} = \alpha\). Thus, from a numerical point of view, the Sugeno integral can be calculated solving the equation \(F ( \alpha ) = \alpha\).

Definition 2.5

Functions \(f,g:X \to R\) are said to be co-monotone if for all \(x,y \in X\),

$$ \bigl( {f ( x ) - f ( y )} \bigr) \bigl( {g ( x ) - g ( y )} \bigr) \ge0, $$
(2.4)

and f and g are said to be counter-monotone if for all \(x,y \in X\),

$$ \bigl( {f ( x ) - f ( y )} \bigr) \bigl( {g ( x ) - g ( y )} \bigr) \leq0. $$
(2.5)

It is clear that if f and g are co-monotone, then for any real numbers s, t either \({F_{s}} \subseteq{G_{t}}\) or \({F_{t}} \subseteq {G_{s}}\).

Barnes-Godunova-Levin type inequality for the Sugeno integral based on an \(( {\alpha,m} )\)-concave function

The classical Barnes-Godunova-Levin type inequality provides the inequality

$$ { \biggl( {\int_{a}^{b} {{f^{p}} ( x )\,dx} } \biggr)^{\frac{1}{p}}} { \biggl( {\int_{a}^{b} {{g^{q}} ( x )\,dx} } \biggr)^{\frac{1}{q}}} \le B ( {p,q} )\int _{a}^{b} {f ( x )g ( x )\,dx}, $$
(2.6)

where \(p,q > 1\), \(B ( {p,q} ) = \frac{{6{{ ( {b - a} )}^{{\frac{1 }{ p}} + {\frac{1 }{ q}} - 1}}}}{{{{ ( {1 + p} )}^{{\frac{1 }{ p}}}}{{ ( {1 + q} )}^{{\frac{1 }{ q}}}}}}\) and f, g are non-negative concave functions on \([ a,b ]\).

Unfortunately, the following example shows that the Barnes-Godunova-Levin type inequality for the Sugeno integral is not valid.

Example

Consider \(X = [ {0,100} ]\) and \(p = q = 4\). Let m be the Lebesgue measure on X. If we take the functions \(f ( x ) = g ( x ) = \sqrt[4]{x}\), then \(f ( x )\), \(g ( x )\) are two \(( {{\frac{1 }{2}},{\frac{1}{3}}} )\)-concave functions. In fact,

$$\sqrt[4]{x} = f \biggl( {{\frac{x }{{100}}} \cdot100 + {\frac{1}{3}} \biggl( {1 - {\frac{x }{{100}}}} \biggr) \cdot0} \biggr) \ge \sqrt{{ \frac{x }{ {100}}}} f ( {100} ) + {\frac{1}{3}} \biggl( {1 - \sqrt{{ \frac{x}{{100}}}} } \biggr)f ( 0 ) = \sqrt{\frac{x}{{10}}} . $$

A straightforward calculus shows that

$$\begin{aligned}& ( S )\int_{0}^{100} {{f^{4}} ( x )\,dm} = ( S )\int_{0}^{100} {{g^{4}} ( x )\,dm} = 50,\\& ( S )\int_{0}^{100} {f ( x )g ( x )\,dm} = 9.5125,\qquad B ( {4,4} ) = 0.26833. \end{aligned}$$

However,

$$\begin{aligned} 7.0711 &= { \biggl( { ( S )\int_{0}^{100} {{f^{4}} ( x )\,dm} } \biggr)^{{\frac{1}{4}}}} { \biggl( { ( S )\int _{0}^{100} {{g^{4}} ( x )\,dm} } \biggr)^{{\frac{1}{4}}}} \\ &\ge B ( {4,4} ) ( S )\int_{0}^{100} {f ( x )g ( x )\,dm} = 2.5525. \end{aligned}$$

This proves that the Barnes-Godunova-Levin type inequality for the Sugeno integral is not satisfied.

The aim of this work is to show a Barnes-Godunova-Levin type inequality for the Sugeno integral with respect to an \(( {\alpha,m} )\)-concave function.

Theorem 2.6

Let \(X= [ {0,1} ]\), \(\alpha,m \in ( {0,1} )\) and f, g be \((\alpha,m )\)-concave functions for all \(x \in X\). If m is a Lebesgue measure on X, then

Case (i). If \(f ( 0 ) \le f ( 1 )\) and \(g ( 0 ) \le g ( 1 )\), then

$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( 1 - \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}} \biggr) \wedge \biggl( {1 - { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}} \biggr), \end{aligned}$$
(2.7)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f ( 0 ) > f ( 1 )\) and \(g ( 0 ) > g ( 1 )\), then

Case (a). If \(\frac{{f ( 1 )}}{{f ( 0 )}} < \frac{{g ( 1 )}}{{g ( 0 )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{{f ( 0 )}}}} )\), then

$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), \end{aligned}$$
(2.8)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}}\wedge1 \wedge f ( 1 ) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), $$
(2.9)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},{\frac{{g ( 1 )} }{{g ( 0 )}}}} )\), then

$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}}\wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), $$
(2.10)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 4. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}}\wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge 1\wedge g ( 1 ), $$
(2.11)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 5. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},1} )\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx}\ge {t_{1}} {t_{2}}\wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.12)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (b). If \(\frac{{f ( 1 )}}{{f ( 0 )}} = \frac{{g ( 1 )}}{{g ( 0 )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{ {f ( 0 )}}}} )\), then

$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac {1}{\alpha}}}} \biggr), \end{aligned}$$
(2.13)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( 1 )\wedge g ( 1 )\wedge1, $$
(2.14)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.15)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (c). If \(\frac{{f ( 1 )}}{{f ( 0 )}} > \frac{{g ( 1 )}}{{g ( 0 )}}\), then

Case 1. If \(m \in ( {0,{\frac{{g ( 1 )} }{ {g ( 0 )}}}} )\), then

$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr), \end{aligned}$$
(2.16)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac {1}{\alpha}}}} \biggr) \wedge g ( 1 )\wedge1, $$
(2.17)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},{\frac{{f ( 1 )} }{{f ( 0 )}}}} )\), then

$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge { \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.18)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 4. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( 1 ) \wedge{ \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.19)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 5. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}, $$
(2.20)

where \({t_{1}} = { ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Proof

Let \(p,q \in ( {0,\infty} )\), \({ ( { ( S )\int_{0}^{1} {{f^{p}} ( x )\,dx} } )^{{\frac{1 }{ p}}}} = {t_{1}}\) and \({ ( { ( S )\int_{0}^{1} {{g^{q}} ( x )\,dx} } )^{{\frac{1 }{ q}}}} = {t_{2}}\). Since \(f,g: [ {0,1} ] \to [ {0,\infty} )\) are two \(( {\alpha,m} )\)-concave functions for \(x \in [ {0,1} ]\), we have

$$\begin{aligned}& f ( x ) = f \bigl( {m ( {1 - x} ) \cdot0 + x \cdot 1} \bigr) \ge m \bigl( {1 - {x^{\alpha}}} \bigr)f ( 0 ) + {x^{\alpha}}f ( 1 ) = {h_{1}}( x ), \end{aligned}$$
(2.21)
$$\begin{aligned}& g ( x ) = g \bigl( {m ( {1 - x} ) \cdot0 + x \cdot 1} \bigr) \ge m \bigl( {1 - {x^{\alpha}}} \bigr)g ( 0 ) + {x^{\alpha}}g ( 1 ) = {h_{2}} ( x ). \end{aligned}$$
(2.22)

Case (i). If \(f ( 0 ) \le f ( 1 )\) and \(g ( 0 ) \le g ( 1 )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have

$$\begin{aligned} & ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{0}^{1} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ & \quad\ge{t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)f ( 0 ) + {x^{\alpha}}f ( 1 ) \ge{t_{1}}} \bigr\} } \bigr) \\ &\qquad{} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)g ( 0 ) + {x^{\alpha}}g ( 1 ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {0,1} ] \cap \biggl\{ {x \ge{{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {0,1} ] \cap \biggl\{ {x \ge{{ \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr). \end{aligned}$$
(2.23)

Case (ii). If \(f ( 0 ) > f ( 1 )\) and \(g ( 0 ) > g ( 1 )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have

$$\begin{aligned} & ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{0}^{1} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)f ( 0 ) + {x^{\alpha}}f ( 1 ) \ge{t_{1}}} \bigr\} } \bigr) \\ &\qquad{}\wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {m \bigl( {1 - {x^{\alpha}}} \bigr)g ( 0 ) + {x^{\alpha}}g ( 1 ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {mf ( 0 ) + \bigl( {f ( 1 ) - mf ( 0 )} \bigr){x^{\alpha}} \ge{t_{1}}} \bigr\} } \bigr) \\ &\qquad{}\wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {mg ( 0 ) + \bigl( {g ( 1 ) - mg ( 0 )} \bigr){x^{\alpha}} \ge{t_{2}}} \bigr\} } \bigr). \end{aligned}$$
(2.24)

Case (a). If \(\frac{{f ( 1 )}}{{f ( 0 )}} < \frac{{g ( 1 )}}{{g ( 0 )}}\), then by (2.24) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{ {f ( 0 )}}}} )\), then

$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). \end{aligned}$$
(2.25)

Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge1 \wedge f ( 1 ) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). $$
(2.26)

Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},{\frac{{g ( 1 )} }{{g ( 0 )}}}} )\), then

$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge { \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac {1}{\alpha}}} \wedge \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). $$
(2.27)

Case 4. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge g ( 1 )\wedge1. $$
(2.28)

Case 5. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},1} )\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.29)

Case (b). If \(\frac{{f ( 1 )}}{{f ( 0 )}} = \frac{{g ( 1 )}}{{g ( 0 )}}\), then by (2.24) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( 1 )} }{ {f ( 0 )}}}} )\), then

$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). $$
(2.30)

Case 2. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( 1 ) \wedge g ( 1 )\wedge1. $$
(2.31)

Case 3. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.32)

Case (c). If \(\frac{{f ( 1 )}}{{f ( 0 )}} > \frac{{g ( 1 )}}{{g ( 0 )}}\), then by (2.24) we obtain

Case 1. If \(m \in ( {0,{\frac{{g ( 1 )} }{ {g ( 0 )}}}} )\), then

$$\begin{aligned} ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \\ &{}\wedge \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr). \end{aligned}$$
(2.33)

Case 2. If \(m = {\frac{{g ( 1 )} }{{g ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac {1}{\alpha}}}} \biggr) \wedge g ( 1 )\wedge1. $$
(2.34)

Case 3. If \(m \in ( {{\frac{{g ( 1 )} }{{g ( 0 )}}},{\frac{{f ( 1 )} }{{f ( 0 )}}}} )\), then

$$ ( S ) \int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( {1 - {{ \biggl( { \frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr) \wedge { \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.35)

Case 4. If \(m = {\frac{{f ( 1 )} }{{f ( 0 )}}}\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge1\wedge f ( 1 ) \wedge{ \biggl( { \frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.36)

Case 5. If \(m \in ( {{\frac{{f ( 1 )} }{{f ( 0 )}}},1} )\), then

$$ ( S )\int_{0}^{1} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge{ \biggl( {\frac{{{t_{1}} - mf ( 0 )}}{{f ( 1 ) - mf ( 0 )}}} \biggr)^{\frac{1}{\alpha}}} \wedge { \biggl( {\frac{{{t_{2}} - mg ( 0 )}}{{g ( 1 ) - mg ( 0 )}}} \biggr)^{\frac{1}{\alpha}}}. $$
(2.37)

This completes the proof. □

Example

Consider \(X = [ {0,1} ]\) and \(p = 2\), \(q = 4\). If we take the functions \(f ( x ) =\sqrt[2]{x}\), \(g ( x ) = \sqrt[4]{x}\), then \(f ( x )\), \(g ( x )\) are two \(( {{\frac{2 }{3}},{\frac{1 }{3}}} )\) -concave functions. In fact, \(\sqrt[t]{x} = f ( {x \cdot1 + {\frac{1 }{3}} ( {1 - x} ) \cdot0} ) \ge{x^{{\frac{2 }{3}}}}f ( 1 ) + {\frac{1 }{3}} ( {1 - {x^{{\frac{2 }{ 3}}}}} )f ( 0 ) = {x^{{\frac{2 }{3}}}}\) for \(t \ge{\frac{3 }{2}}\). Let m be the Lebesgue measure on X. A straightforward calculus shows that

$$( S )\int_{0}^{1} {{f^{2}} ( x )\,dm} = ( S )\int_{0}^{1} {{g^{4}} ( x )\,dm} = 0.5,\qquad ( S )\int_{0}^{1} {f ( x )g ( x )\,dm} = 0.5497. $$

By Theorem 2.6, we have

$$\begin{aligned} 0.5497 ={}& ( S )\int_{0}^{1} f ( x )g ( x )\,dx \ge \biggl( ( S )\int_{0}^{1} {{f^{2}} ( x )\,dx} \biggr)^{\frac{1}{2}} \biggl( ( S )\int _{0}^{1} {{g^{4}} ( x )\,dx} \biggr)^{\frac{1}{4}} \\ &{} \wedge \biggl( 1 - \biggl( \biggl( { ( S )\int_{0}^{1} {{f^{2}} ( x )\,dx} } \biggr)^{\frac{1}{2}} \biggr)^{\frac{3}{2}} \biggr) \wedge \biggl( 1 - \biggl( \biggl( { ( S )\int _{0}^{1} {{g^{4}} ( x )\,dx} } \biggr)^{\frac{1}{4}} \biggr)^{\frac{3}{2}} \biggr) \\ ={}& 0.0156 \wedge0.8750 \wedge0.9844=0.0156. \end{aligned}$$
(2.38)

Now, we will prove the general cases of Theorem 2.6.

Theorem 2.7

Let \(X= [ {a,b} ]\), \(\alpha,m \in ( {0,1} )\) and f, g be \(( {\alpha,m} )\)-concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f ( a ) \le f ( b )\) and \(g ( a ) \le g ( b )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( 1 - \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)^{\frac{1}{\alpha}} \biggr)} \biggr), \end{aligned}$$
(2.39)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then

Case (a). If \(\frac{{f ( b )}}{{f ( a )}} < \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned}$$
(2.40)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge ( {b - a} ) \wedge f ( b ) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned}$$
(2.41)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},{\frac{{g ( b )} }{{g ( a )}}}} )\), then

$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr)\\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned} $$
(2.42)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 4. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge g ( b ) \wedge ( {b - a} ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.43)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 5. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.44)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (b). If \(\frac{{f ( b )}}{{f ( a )}} = \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned}$$
(2.45)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ), $$
(2.46)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{f ( b )} }{ {f ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.47)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (c). If \(\frac{{f ( b )}}{{f ( a )}} > \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{g ( b )} }{ {g ( a )}}}} )\), then

$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr), \end{aligned} $$
(2.48)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then

$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \wedge g ( b ) \wedge ( {b - a} ), \end{aligned}$$
(2.49)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},{\frac{{f ( b )} }{{f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.50)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 4. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge ( {b - a} )\wedge f ( b ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma -a} \biggr), \end{aligned}$$
(2.51)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 5. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then

$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{} \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr), \end{aligned}$$
(2.52)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Proof

Let \(p,q \in ( {0,\infty} )\), \({ ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{{\frac{1 }{ p}}}} = {t_{1}}\) and \({ ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{{\frac{1 }{ q}}}} = {t_{2}}\). Since \(f,g: [ {a,b} ] \to [ {0,\infty} )\) are two \(( {\alpha,m} )\)-concave functions for \(x \in [ {a,b} ]\), we have

$$\begin{aligned}& \begin{aligned}[b] f ( x ) &= f \biggl( {m \biggl( {1 - \frac{{x - ma}}{{b - ma}}} \biggr) \cdot a + \frac{{x - ma}}{{b - ma}} \cdot b} \biggr)\\ &\ge m \biggl( 1 - \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}\biggr)f ( a ) + { \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}}f ( b ) = {h_{1}} ( x ), \end{aligned} \end{aligned}$$
(2.53)
$$\begin{aligned}& \begin{aligned}[b] g ( x ) &= g \biggl( {m \biggl( {1 - \frac{{x - ma}}{{b - ma}}} \biggr) \cdot a + \frac{{x - ma}}{{b - ma}} \cdot b} \biggr)\\ &\ge m \biggl( {1 - { \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}}} \biggr)g ( a ) + { \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)^{\alpha}}g ( b ) = {h_{2}} ( x ). \end{aligned} \end{aligned}$$
(2.54)

Case (i). If \(f ( a ) \le f ( b )\) and \(g ( a ) \le g ( b )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have

$$\begin{aligned} & ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{a}^{b} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)f ( a ) + {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}f ( b ) \ge{t_{1}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)g ( a ) + {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}g ( b ) \ge{t_{2}}} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {x \ge{{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} ( {b - ma} ) + ma} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {x \ge{{ \biggl( { \frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}} ( {b - ma} ) + ma} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &\qquad{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.55)

Case (ii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then by (3) of Proposition 2.3 and the co-monotonicity of \({h_{1}} ( x )\) and \({h_{2}} ( x )\), we have

$$\begin{aligned} & ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \\ &\quad\ge ( S ) \int_{a}^{b} {{h_{1}} ( x ){h_{2}} ( x )\,dx} \\ &\quad= \bigvee _{\beta \ge0} \bigl( {\beta \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge\beta} \bigr\} } \bigr)} \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ){h_{2}} ( x ) \ge{t_{1}} {t_{2}}} \bigr\} } \bigr) \\ &\quad\ge {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{1}} ( x ) \ge{t_{1}}} \bigr\} } \bigr) \wedge\mu \bigl( { [ {a,b} ] \cap \bigl\{ {{h_{2}} ( x ) \ge{t_{2}}} \bigr\} } \bigr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)f ( a ) + {{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}f ( b ) \ge{t_{1}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {m \biggl( {1 - {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}} \biggr)g ( a ) + {{ \biggl( { \frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}}g ( b ) \ge{t_{2}}} \biggr\} } \biggr) \\ &\quad= {t_{1}} {t_{2}} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {mf ( a ) + \bigl( {f ( b ) - mf ( a )} \bigr){{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}} \ge {t_{1}}} \biggr\} } \biggr) \\ &\qquad{} \wedge\mu \biggl( { [ {a,b} ] \cap \biggl\{ {mg ( a ) + \bigl( {g ( b ) - mg ( a )} \bigr){{ \biggl( {\frac{{x - ma}}{{b - ma}}} \biggr)}^{\alpha}} \ge{t_{2}}} \biggr\} } \biggr). \end{aligned}$$
(2.56)

Case (a). If \(\frac{{f ( b )}}{{f ( a )}} < \frac{{g ( b )}}{{g ( a )}}\), then by (2.56) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.57)

Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge ( {b - a} ) \wedge f ( b ) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.58)

Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},{\frac{{g ( b )} }{{g ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.59)

Case 4. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge g ( b ) \wedge ( {b - a} ) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.60)

Case 5. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.61)

Case (b). If \(\frac{{f ( b )}}{{f ( a )}} = \frac{{g ( b )}}{{g ( a )}}\), then by (2.56) we obtain

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.62)

Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ). $$
(2.63)

Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.64)

Case (c). If \(\frac{{f ( b )}}{{f ( a )}} > \frac{{g ( b )}}{{g ( a )}}\), then by (2.56) we obtain

Case 1. If \(m \in ( {0,{\frac{{g ( b )} }{ {g ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr). \end{aligned}$$
(2.65)

Case 2. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then

$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}&{t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr) \\ &{} \wedge g ( b ) \wedge ( {b - a} ). \end{aligned}$$
(2.66)

Case 3. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},{\frac{{f ( b )} }{{f ( a )}}}} )\), then

$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}}} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned} $$
(2.67)

Case 4. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge ( {b - a} ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.68)

Case 5. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{\frac{1}{\alpha}}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}^{\frac {1}{\alpha}}} + ma-a} \biggr). \end{aligned}$$
(2.69)

This completes the proof. □

Example

Consider \(X = [ {2,5} ]\) and \(p = 2\), \(q = 4\). Let m be the Lebesgue measure on X. If we take the function \(f ( x ) = \sqrt[2]{{6 - x}}\), \(g ( x ) = \sqrt[4]{{6 - x}}\), then \(f ( x )\), \(g ( x )\) are two \(( {{\frac{1 }{2}},{\frac{{\sqrt{5} } }{2}}} )\) -concave functions. In fact,

$$\begin{aligned} \sqrt{6 - x} &= f \biggl( {{\frac{{\sqrt{5} } }{4}} \cdot \biggl( {1 - { \frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{ {5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr)2 + \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr) \cdot5} \biggr) \\ &\ge \biggl( \frac{{x - {\frac{{\sqrt{5} } }{4}} \times 2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}} \biggr)^{{\frac{1 }{2}}}f ( 5 ) + { \frac{{\sqrt{5} } }{4}} \biggl( 1 - \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times 2}}}} \biggr)^{{\frac{1 }{2}}} \biggr)f ( 2 ) \\ &= \frac{{ ( {2 - \sqrt{5} } )x + 4\sqrt{5} }}{{10 - \sqrt{5} }} \end{aligned}$$
(2.70)

and

$$\begin{aligned} \sqrt[4]{{6 - x}} &= g \biggl( {{\frac{{\sqrt{5} } }{4}} \cdot \biggl( {1 - { \frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr) \times 2 + \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr) \times 5} \biggr) \\ &\ge { \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times 2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times2}}}} \biggr)^{{\frac{1 }{2}}}}g ( 5 ) + { \frac{{\sqrt{5} } }{4}} \biggl( 1 - \biggl( {{\frac{{x - {\frac{{\sqrt{5} } }{4}} \times2} }{{5 - {\frac{{\sqrt{5} } }{4}} \times 2}}}} \biggr)^{{\frac{1 }{2}}} \biggr)g ( 2 ) \\ &= \frac{{ ( {4 - \sqrt{10} } )x + 5\sqrt{10} - 5}}{{20 - 2\sqrt{5} }}. \end{aligned}$$
(2.71)

A straightforward calculus shows that

$$( S )\int_{2}^{5} {{f^{2}} ( x )\,dm} = ( S )\int_{2}^{5} {{g^{4}} ( x )\,dm} = 2,\qquad ( S )\int_{2}^{5} {f ( x )g ( x )\,dm} = 1.8040. $$

By Theorem 2.7, we have

$$\begin{aligned} 1.8040 ={}& ( S )\int_{2}^{5} {f ( x )g ( x )\,dx} \ge \biggl( { ( S )\int_{2}^{5} {{f^{2}} ( x )\,dx} } \biggr)^{\frac{1}{2}} \biggl( { ( S )\int_{2}^{5} {{g^{4}} ( x )\,dx} } \biggr)^{\frac{1}{4}} \\ &{}\wedge \biggl( { \biggl( {5 - {\frac{{\sqrt{5} } }{4}} \times2} \biggr) \biggl( { \frac{{{{ ( { ( S )\int_{2}^{5} {{f^{2}} ( x )\,dx} } )}^{\frac{1}{2}}} - {\frac{{\sqrt{5} } }{ 4}}f ( 2 )}}{{f ( 5 ) - {\frac{{\sqrt{5} } }{4}}f ( 2 )}}} \biggr)^{2} + {\frac{{\sqrt{5} } }{4}} \times2 - 2} \biggr) \\ &{}\wedge \biggl( \biggl( {5 - {\frac{{\sqrt{5} } }{4}} \times2} \biggr) \biggl( { \frac{{{{ ( { ( S )\int_{2}^{5} {{g^{4}} ( x )\,dx} } )}^{\frac{1}{4}}} - {\frac{{\sqrt{5} } }{ 4}}g ( 2 )}}{{g ( 5 ) - {\frac{{\sqrt{5} } }{4}}g ( 2 )}}} \biggr)^{2} \biggr) \\ ={}& 1.6818 \wedge23.5607 \wedge34.4227 = 1.6818. \end{aligned}$$
(2.72)

As some special cases of \((\alpha,m )\)-concave functions in Theorem 2.7, we have the following results.

Remark 2.8

Let \(X= [ {a,b} ]\), \(\alpha= m= 0 \) and f, g be two decreasing functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

$$\begin{aligned} ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge { \biggl( { ( S ) \int_{a}^{b} {{f^{p}} ( x )\,dx} } \biggr)^{\frac{1}{p}}} { \biggl( { ( S ) \int_{a}^{b} {{g^{q}} ( x )\,dx} } \biggr)^{\frac{1}{q}}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ). \end{aligned}$$
(2.73)

Remark 2.9

Let \(X= [ {a,b} ]\), \(\alpha=1\), \(m= 0 \) and f, g be two starshaped functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge b \biggl( {1 - {\frac{{{t_{1}}} }{{f ( b )}}}} \biggr) \wedge b \biggl( {1 - {\frac{{{t_{2}}} }{ {g ( b )}}}} \biggr), $$
(2.74)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.10

Let \(X= [ {a,b} ]\), \(\alpha=1\), \(m\in ({0,1} ) \) and f, g be two m-concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f ( a ) \le f ( b )\) and \(g ( a ) \le g ( b )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.75)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then

Case (a). If \(\frac{{f ( b )}}{{f ( a )}} < \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.76)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$ ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge{t_{1}} {t_{2}} \wedge ( {b - a} ) \wedge f ( b ) \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), $$
(2.77)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},{\frac{{g ( b )} }{{g ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.78)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 4. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge g ( b ) \wedge ( {b - a} ) \wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr), $$
(2.79)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 5. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.80)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (b). If \(\frac{{f ( b )}}{{f ( a )}} = \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{f ( b )} }{ {f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.81)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge f ( b ) \wedge g ( b ) \wedge ( {b - a} ), $$
(2.82)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{f ( b )} }{ {f ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.83)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (c). If \(\frac{{f ( b )}}{{f ( a )}} > \frac{{g ( b )}}{{g ( a )}}\), then

Case 1. If \(m \in ( {0,{\frac{{g ( b )} }{ {g ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}}} \biggr)} \biggr), \end{aligned}$$
(2.84)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 2. If \(m = {\frac{{g ( b )} }{{g ( a )}}}\), then

$$ ( S ) \int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \wedge g ( b ) \wedge ( {b - a} ), $$
(2.85)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 3. If \(m \in ( {{\frac{{g ( b )} }{{g ( a )}}},{\frac{{f ( b )} }{{f ( a )}}}} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}}} \biggr)} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.86)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 4. If \(m = {\frac{{f ( b )} }{{f ( a )}}}\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge ( {b - a} )\wedge f ( b ) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.87)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case 5. If \(m \in ( {{\frac{{f ( b )} }{{f ( a )}}},1} )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - ma} ){{ \biggl( { \frac{{{t_{1}} - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}} + ma-a} \biggr) \\ &{}\wedge \biggl( { ( {b - ma} ){{ \biggl( {\frac{{{t_{1}} - mg ( a )}}{{g ( b ) - mg ( a )}}} \biggr)}} + ma-a} \biggr), \end{aligned}$$
(2.88)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.11

[22]

Let \(X= [ {a,b} ]\), \(\alpha=1\), \(m=1 \) and f, g be two concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f (a ) < f ( b )\) and \(g ( a ) < g ( b )\), then

$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ) \biggl( {1 - \biggl( {\frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - a} ) \biggl( {1 - \biggl( {\frac{{{t_{2}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)} \biggr)} \biggr), \end{aligned} $$
(2.89)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f (a ) = f ( b )\) and \(g ( a ) = g ( b )\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge f ( a )g ( a ) \wedge ( {b - a} ). $$
(2.90)

Case (iii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ) \biggl( { \frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)} \biggr) \wedge \biggl( { ( {b - a} ) \biggl( {\frac{{{t_{1}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)} \biggr), $$
(2.91)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.12

Let \(X= [ {a,b} ]\), \(\alpha\in ({0,1} )\), \(m=0 \) and f, g be two α-starshaped functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge b \biggl( {1 - {{ \biggl( { \frac{{{t_{1}}}}{{f ( b )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr) \wedge b \biggl( {1 - {{ \biggl( {\frac{{{t_{2}}}}{{g ( b )}}} \biggr)}^{{\frac{1 }{\alpha}}}}} \biggr), $$
(2.92)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Remark 2.13

Let \(X= [ {a,b} ]\), \(\alpha\in ({0,1} )\), \(m=1 \) and f, g be two α-concave functions for all \(x \in X\). If μ is a Lebesgue measure on X, then

Case (i). If \(f (a ) < f ( b )\) and \(g ( a ) < g ( b )\), then

$$ \begin{aligned}[b] ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge{}& {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ) \biggl( {1 - {{ \biggl( {\frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr)} \biggr)\\ &{}\wedge \biggl( { ( {b - a} ) \biggl( {1 - {{ \biggl( {\frac {{{t_{2}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr)} \biggr), \end{aligned} $$
(2.93)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Case (ii). If \(f (a ) = f ( b )\) and \(g ( a ) = g ( b )\), then

$$ ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge f ( a )g ( a ) \wedge ( {b - a} ). $$
(2.94)

Case (iii). If \(f (a ) > f ( b )\) and \(g ( a ) > g ( b )\), then

$$\begin{aligned} ( S )\int_{a}^{b} {f ( x )g ( x )\,dx} \ge {t_{1}} {t_{2}} \wedge \biggl( { ( {b - a} ){{ \biggl( { \frac{{{t_{1}} - f ( a )}}{{f ( b ) - f ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr) \wedge \biggl( { ( {b - a} ){{ \biggl( {\frac{{{t_{1}} - g ( a )}}{{g ( b ) - g ( a )}}} \biggr)}^{{\frac{{{1}} }{\alpha}}}}} \biggr), \end{aligned}$$
(2.95)

where \({t_{1}} = { ( { ( S )\int_{a}^{b} {{f^{p}} ( x )\,dx} } )^{\frac{1}{p}}}\), \({t_{2}} = { ( { ( S )\int_{a}^{b} {{g^{q}} ( x )\,dx} } )^{\frac{1}{q}}}\).

Conclusion

In this paper, we have investigated the Barnes-Godunova-Levin type inequality of the Sugeno integral with respect to an \(( {\alpha ,m} )\)-concave function. For further investigations, we will continue to explore other integral inequalities for the Sugeno integral related to \(( {\alpha,m} )\)-concavity.

References

  1. Sugeno, M: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology (1974)

  2. Mesiar, R: Choquet-like integrals. J. Math. Anal. Appl. 2, 477-488 (1995)

    Article  MathSciNet  Google Scholar 

  3. Shilkret, N: Maxitive measure and integration. Indag. Math. 74, 109-116 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. Weber, S: -decomposable measures and integrals for Archimedean t-conorms . J. Math. Anal. Appl. 101, 114-138 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ichihashi, H, Tanaka, H, Asai, K: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 2, 354-364 (1988)

    Article  MathSciNet  Google Scholar 

  6. Suárez, FG, Gil, ÁP: Two families of fuzzy integrals. Fuzzy Sets Syst. 18, 67-81 (1986)

    Article  MATH  Google Scholar 

  7. Wang, Z, Klir, GJ: Generalized Measure Theory. Springer, New York (2009)

    Book  MATH  Google Scholar 

  8. Flores-Franulič, A, Román-Flores, H: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178-1184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flores-Franulič, A, Román-Flores, H, Chalco-Cano, Y: Markov type inequalities for fuzzy integrals. Appl. Math. Comput. 207, 242-247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Hardy-type inequality for fuzzy integrals. Appl. Math. Comput. 204, 178-183 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: The fuzzy integral for monotone functions. Appl. Math. Comput. 185, 492-498 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177, 3129-3201 (2007)

    Article  Google Scholar 

  13. Caballero, J, Sadarangani, K: A Cauchy-Schwarz type inequality for fuzzy integrals. Nonlinear Anal. 73, 3329-3335 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caballero, J, Sadarangani, K: Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst. 161, 1480-1487 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Agahia, H, Mesiar, R, Ouyang, Y: Hölder type inequality for Sugeno integral. Fuzzy Sets Syst. 161, 2337-2347 (2010)

    Article  Google Scholar 

  16. Agahi, H, Mesiar, R, Ouyang, Y, Pap, E, Štrboja, M: Berwald type inequality for Sugeno integral. Appl. Math. Comput. 217, 4100-4108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Agahi, H, Mesiar, R, Ouyang, Y: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708-715 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Caballero, J, Sadarangani, K: Sandor’s inequality for Sugeno integrals. Appl. Math. Comput. 218, 1617-1622 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Caballero, J, Sadarangani, K: Fritz Carlson’s inequality for fuzzy integrals. Comput. Math. Appl. 59, 2763-2767 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mesiar, R, Ouyang, Y: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst. 160, 58-64 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Caballero, J, Sadarangani, K: Hermite-Hadamard inequality for fuzzy integrals. Appl. Math. Comput. 215, 2134-2138 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Agahi, H, Román-Flores, H, Flores-Franulič, A: General Barnes-Godunova-Levin type inequalities for Sugeno integral. Inf. Sci. 181, 1072-1079 (2011)

    Article  MATH  Google Scholar 

  23. Mihesan, VG: A generalization of the convexity. In: Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania (1993)

    Google Scholar 

  24. Özdemir, ME, Avci, M, Kavurmaci, H: Hermite-Hadamard-type inequalities via \((\alpha ,m)\)-convexity. Comput. Math. Appl. 61, 2614-2620 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Özdemir, ME, Kavurmaci, H, Set, E: Ostrowski’s type inequalities for \((\alpha ,m)\)-convex functions. Kyungpook Math. J. 50, 371-378 (2010)

    Article  MathSciNet  Google Scholar 

  26. Li, DQ, Song, XQ, Yue, T: Hermite-Hadamard type inequality for Sugeno integrals. Appl. Math. Comput. 237, 632-638 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61273143, 61472424) and Fundamental Research Funds for the Central Universities (2013RC10, 2013RC12 and 2014YC07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hu Cheng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this paper and they read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, DQ., Cheng, YH., Wang, XS. et al. Barnes-Godunova-Levin type inequality of the Sugeno integral for an \((\alpha,m)\)-concave function. J Inequal Appl 2015, 25 (2015). https://doi.org/10.1186/s13660-015-0556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0556-0

MSC

  • 03E72
  • 28B15
  • 28E10
  • 26D10

Keywords

  • Barnes-Godunova-Levin type inequality
  • Sugeno integral
  • \((\alpha, m )\)-concave function