Skip to main content

Two kinds of Hilbert-type integral inequalities in the whole plane

Abstract

By the way of using real analysis and estimating the weight functions, two kinds of Hilbert-type integral inequalities in the whole plane with a non-homogeneous kernel and a homogeneous kernel are given. The constant factor related to the triangle functions is proved to be the best possible. We also consider the equivalent forms, the reverses, some particular cases, and two kinds of operator expressions.

Introduction

Assuming that \(f(x),g(y)\geq0\), \(0<\int_{0}^{\infty}f^{2}(x)\,dx<\infty\) and \(0<\int_{0}^{\infty}g^{2}(y)\,dy<\infty\), we have the following Hilbert integral inequality (cf. [1]):

$$ \int_{0}^{\infty}\int_{0}^{\infty} \frac{f(x)g(y)}{x+y}\,dx\,dy<\pi \biggl( \int_{0}^{\infty}f^{2}(x)\,dx \int_{0}^{\infty}g^{2}(y)\,dy \biggr)^{\frac{1}{2}}, $$
(1)

where the constant factor π is the best possible. Inequality (1) together with the discrete form is important in analysis and its applications (cf. [1, 2]). In recent years, applying weight functions and introducing parameters, many extensions of (1) were given by Yang (cf. [3]). Noticing that inequality (1) is a homogeneous kernel of degree −1, in 2009, a survey of the study of Hilbert-type inequalities with the homogeneous kernels of negative number degrees was given by [4]. Recently, some inequalities with the homogeneous kernels of degree 0 and non-homogeneous kernels were studied (cf. [510]). The other kinds of Hilbert-type inequalities were provided by [1115]. All of the above integral inequalities are built in the quarter plane of the first quadrant.

In 2007, Yang [16] first gave a Hilbert-type integral inequality in the whole plane as follows:

$$\begin{aligned} &\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{f(x)g(y)}{(1+e^{x+y})^{\lambda}}\,dx\,dy \\ &\quad< B\biggl(\frac{\lambda}{2},\frac{\lambda}{2}\biggr) \biggl( \int _{-\infty }^{\infty }e^{-\lambda x}f^{2}(x)\,dx\int _{-\infty}^{\infty}e^{-\lambda y}g^{2}(y)\,dy \biggr) ^{\frac{1}{2}}, \end{aligned}$$
(2)

where the constant factor \(B(\frac{\lambda}{2},\frac{\lambda }{2})\) (\(\lambda>0\)) is the best possible, and \(B(u,v)\) (\(u,v>0\)) is the beta function (cf. [17]). He et al. [1828] also provided some Hilbert-type integral inequalities in the whole plane.

In this paper, by the way of using real analysis and estimating the weight functions, two kinds of Hilbert-type integral inequalities in the whole plane with a non-homogeneous kernel and a homogeneous kernel are given. The constant factor related to the triangle functions is proved to be the best possible. We also consider the equivalent forms, the reverses, some particular cases, and two kinds of operator expressions.

Some lemmas

In the following, we use the following formula (cf. [1]):

$$ \int_{0}^{\infty}\frac{(\ln t)t^{a-1}}{t-1}\,dt=\bigl[B(1-a,a) \bigr]^{2}=\biggl[\frac{\pi}{\sin a\pi}\biggr]^{2}\quad(0< a<1). $$
(3)

Lemma 1

If \(0<\alpha_{1}\leq\alpha_{2}<\pi\), \(\mu,\sigma>0\), \(\mu+\sigma=\lambda\), \(\gamma\in\{a;a=\frac{1}{2k+1},2k-1\ (k\in\mathbf {N}=\{1,2,\ldots\})\}\), \(\delta\in\{-1,1\}\), we define two weight functions \(\omega(\sigma,y)\) and \(\varpi(\sigma,x)\) (\(y,x\in\mathbf{R}=(-\infty,\infty)\)) as follows:

$$\begin{aligned}& \omega(\sigma,y):=\int_{-\infty}^{\infty}\max _{i\in\{1,2\}}\frac {\ln [|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]}{[|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-1}\frac{|y|^{\sigma}}{|x|^{1-\delta\sigma}}\,dx, \end{aligned}$$
(4)
$$\begin{aligned}& \varpi(\sigma,x):=\int_{-\infty}^{\infty}\max _{i\in\{1,2\}}\frac {\ln [|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]}{[|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-1}\frac{|x|^{\delta\sigma}}{|y|^{1-\sigma}}\,dy. \end{aligned}$$
(5)

Then for \(y,x\in\mathbf{R}\backslash\{0\}\), we have

$$\begin{aligned} &\omega(\sigma,y)=\varpi(\sigma,x)=K(\sigma), \\ &K(\sigma):=\frac{\gamma}{2^{\frac{\sigma}{\gamma}}}\biggl[\biggl(\sec\frac {\alpha _{2}}{2} \biggr)^{\frac{2\sigma}{\gamma}} +\biggl(\csc\frac{\alpha_{1}}{2}\biggr)^{\frac{2\sigma}{\gamma}}\biggr] \biggl[\frac{\pi}{\lambda\sin(\frac{\pi\sigma }{\lambda})}\biggr]^{2}\in\mathbf{R}_{+}. \end{aligned}$$
(6)

Proof

Setting \(u=x^{\delta}y\) in (4), for \(y\in\mathbf{R}\backslash\{0\}\), we find \(x=y^{\frac{-1}{\delta }}u^{\frac{1}{\delta}}\), \(dx=\frac{1}{\delta}y^{\frac{-1}{\delta}}u^{\frac {1}{\delta}-1}\,du\), and

$$\begin{aligned} \omega(\sigma,y) =&\biggl|\frac{1}{\delta}\biggr|\int_{-\infty}^{\infty} \max_{i\in \{1,2\}}\frac{\ln(|u|^{\gamma}+u^{\gamma}\cos\alpha _{i})}{(|u|^{\gamma }+u^{\gamma}\cos\alpha_{i})^{\lambda/\gamma}-1}|u|^{\sigma-1}\,du \\ =&\int_{0}^{\infty}\max_{i\in\{1,2\}} \frac{\ln[u^{\gamma}(1+\cos \alpha _{i})]}{u^{\lambda}(1+\cos\alpha_{i})^{\lambda/\gamma}-1}u^{\sigma-1}\,du \\ &{}+\int_{-\infty}^{0}\max_{i\in\{1,2\}} \frac{\ln[(-u)^{\gamma }(1-\cos \alpha_{i})]}{(-u)^{\lambda}(1-\cos\alpha_{i})^{\lambda/\gamma}-1} (-u)^{\sigma-1}\,du \\ =&\gamma \biggl\{ \int_{0}^{\infty}\max _{i\in\{1,2\}}\frac{\ln [u(1+\cos \alpha_{i})^{1/\gamma}]}{[u(1+\cos\alpha_{i})^{1/\gamma}]^{\lambda }-1}u^{\sigma-1}\,du\\ &{} +\int_{0}^{\infty}\max_{i\in\{1,2\}} \frac{\ln[u(1-\cos \alpha _{i})^{1/\gamma}]}{[u(1-\cos\alpha_{i})^{1/\gamma}]^{\lambda}-1}u^{\sigma-1}\,du \biggr\} . \end{aligned}$$

In view of the function \(\frac{\ln t}{t^{\lambda}-1}\) being strictly decreasing in \(\mathbf{R}_{+}\) (cf. [3]), we have

$$ \begin{aligned}[b] \omega(\sigma,y) ={}&\int_{0}^{\infty} \frac{\ln[u^{\gamma}(1+\cos \alpha_{2})]}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}u^{\sigma-1}\,du \\ &{}+\int_{0}^{\infty}\frac{\ln[u^{\gamma}(1-\cos\alpha _{1})]}{[u(1-\cos \alpha_{1})^{1/\gamma}]^{\lambda}-1}u^{\sigma-1}\,du. \end{aligned} $$
(7)

Setting \(t=[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}\) (\(t=[u(1-\cos \alpha_{1})^{1/\gamma}]^{\lambda}\)) in the above first (second) integral, by calculations and (3), it follows that

$$ \omega(\sigma,y)=\frac{\gamma}{\lambda^{2}}\biggl[\biggl(\frac{\sec^{2}\frac {\alpha _{2}}{2}}{2} \biggr)^{\frac{\sigma}{\gamma}}+\biggl(\frac{\csc^{2}\frac{\alpha _{1}}{2}}{2}\biggr)^{\frac{\sigma}{\gamma}}\biggr] \int_{0}^{\infty}\frac{\ln t}{t-1}t^{\frac{\sigma}{\lambda}-1}\,dt=K( \sigma). $$

Setting \(u=x^{\delta}y\) in (5), for \(x\in\mathbf{R}\backslash\{ 0\}\), we find \(y=x^{-\delta}u\), \(dy=x^{-\delta}\,du\) and

$$ \varpi(\sigma,x)=\int_{-\infty}^{\infty}\max _{i\in\{1,2\}}\frac{\ln (|u|^{\gamma}+u^{\gamma}\cos\alpha_{i})|u|^{\sigma-1}}{(|u|^{\gamma }+u^{\gamma}\cos\alpha_{i})^{\lambda/\gamma}-1}\,du=K(\sigma). $$

Hence we have (6). □

Remark 1

If we replace \(\max_{i\in\{1,2\}}\) by \(\min_{i\in \{1,2\}}\) in (4) and (5), then we must exchange \(\alpha_{1}\) and \(\alpha_{2}\) in (6).

Lemma 2

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(0<\alpha_{1}\leq \alpha_{2}<\pi\), \(\mu,\sigma>0\), \(\mu+\sigma=\lambda\), \(\gamma\in \{a;a=\frac{1}{2k+1},2k-1\ (k\in\mathbf{N})\}\), \(\delta\in\{-1,1\}\), \(K(\sigma)\) is indicated by (6), \(f(x)\) is a non-negative measurable function in R, then we have

$$\begin{aligned} J :=&\int_{-\infty}^{\infty}|y|^{p\sigma-1} \biggl\{ \int_{-\infty }^{\infty}\max_{i\in\{1,2\}} \frac{\ln[|x^{\delta}y|^{\gamma }+(x^{\delta }y)^{\gamma}\cos\alpha_{i}]f(x)}{[|x^{\delta}y|^{\gamma}+(x^{\delta }y)^{\gamma}\cos\alpha_{i}]^{\lambda/\gamma}-1}\,dx \biggr\} ^{p}\,dy \\ \leq&K^{p}(\sigma)\int_{-\infty}^{\infty}|x|^{p(1-\delta\sigma )-1}f^{p}(x)\,dx. \end{aligned}$$
(8)

Proof

For simplifying in the following, we set

$$ h^{(\delta)}(x,y):=\max_{i\in\{1,2\}}\frac{\ln[|x^{\delta}y|^{\gamma }+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]}{[|x^{\delta}y|^{\gamma }+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]^{\lambda/\gamma}-1}\quad(x,y\in \mathbf{R}). $$
(9)

By Hölder’s inequality (cf. [29]), we have

$$\begin{aligned} &\biggl( \int_{-\infty}^{\infty}h^{(\delta)}(x,y)f(x)\,dx \biggr) ^{p} \\ &\quad= \biggl\{ \int_{-\infty}^{\infty}h^{(\delta)}(x,y) \biggl[\frac {|x|^{(1-\delta \sigma)/q}}{|y|^{(1-\sigma)/p}}f(x)\biggr] \biggl[\frac{|y|^{(1-\sigma)/p}}{|x|^{(1-\delta\sigma)/q}}\biggr]\,dx \biggr\} ^{p} \\ &\quad\leq\int_{-\infty}^{\infty}h^{(\delta)}(x,y) \frac{|x|^{(1-\delta \sigma)(p-1)}}{|y|^{1-\sigma}}f^{p}(x)\,dx \biggl[ \int_{-\infty}^{\infty}h^{(\delta)}(x,y) \frac{|y|^{(1-\sigma)(q-1)}}{|x|^{1-\delta\sigma}}\,dx \biggr] ^{p-1} \\ &\quad=\bigl(\omega(\sigma,y)\bigr)^{p-1}|y|^{-p\sigma+1}\int _{-\infty}^{\infty }h^{(\delta)}(x,y)\frac{|x|^{(1-\delta\sigma)(p-1)}}{|y|^{1-\sigma}} f^{p}(x)\,dx. \end{aligned}$$
(10)

Then by (6) and the Fubini theorem (cf. [30]), it follows that

$$\begin{aligned} J \leq&K^{p-1}(\sigma)\int_{-\infty}^{\infty} \biggl[ \int_{-\infty }^{\infty}h^{(\delta)}(x,y) \frac{|x|^{(1-\delta\sigma)(p-1)}}{|y|^{1-\sigma}}f^{p}(x)\,dx \biggr]\,dy\\ =&K^{p-1}(\sigma)\int_{-\infty}^{\infty}\varpi( \sigma ,x)|x|^{p(1-\delta\sigma)-1}f^{p}(x)\,dx. \end{aligned}$$

Hence, still in view of (6), inequality (8) follows. □

Main results and applications

Theorem 3

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(0<\alpha_{1}\leq \alpha_{2}<\pi\), \(\mu,\sigma>0\), \(\mu+\sigma=\lambda\), \(\gamma\in\{ a;a=\frac{1}{2k+1},2k-1\ (k\in\mathbf{N})\}\), \(\delta\in\{-1,1\}\), \(K(\sigma)\) is indicated by (6), \(f(x),g(y)\geq0\), satisfying \(0<\int_{-\infty }^{\infty}|x|^{p(1-\delta\sigma)-1}f^{p}(x)\,dx<\infty\) and \(0<\int_{-\infty}^{\infty}|y|^{q(1-\sigma)-1}g^{q}(y)\,dy<\infty\), then we have

$$\begin{aligned}& \begin{aligned}[b] I &:=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \max_{i\in\{ 1,2\}}\frac{\ln[|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha _{i}]}{[|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-1}f(x)g(y)\,dx\,dy \\ &< K(\sigma) \biggl[ \int_{-\infty}^{\infty}|x|^{p(1-\delta\sigma )-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty }|y|^{q(1-\sigma)-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(11)
$$\begin{aligned}& \begin{aligned}[b] J &:=\int_{-\infty}^{\infty}|y|^{p\sigma-1} \biggl\{ \int_{-\infty }^{\infty}\max_{i\in\{1,2\}} \frac{\ln[|x^{\delta}y|^{\gamma }+(x^{\delta }y)^{\gamma}\cos\alpha_{i}]}{[|x^{\delta}y|^{\gamma}+(x^{\delta }y)^{\gamma}\cos\alpha_{i}]^{\lambda/\gamma}-1}f(x)\,dx \biggr\} ^{p}\,dy \\ &< K^{p}(\sigma)\int_{-\infty}^{\infty}|x|^{p(1-\delta\sigma )-1}f^{p}(x)\,dx, \end{aligned} \end{aligned}$$
(12)

where the constant factors \(K(\sigma)\) and \(K^{p}(\sigma)\) are the best possible. Inequalities (11) and (12) are equivalent.

In particular, for \(\alpha_{1}=\alpha_{2}=\alpha\in(0,\pi)\), \(\gamma=1\) in (11) and (12), we find

$$ K(\sigma)=k(\sigma):=\frac{1}{2^{\sigma}}\biggl[\biggl(\sec\frac{\alpha}{2}\biggr)^{2\sigma}+\biggl(\csc\frac{\alpha}{2}\biggr)^{2\sigma}\biggr] \biggl[\frac{\pi}{\lambda \sin(\frac{\pi\sigma}{\lambda})}\biggr]^{2}, $$
(13)

and the following equivalent inequalities:

$$\begin{aligned}& \begin{aligned}[b] &\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{\ln (|x^{\delta }y|+x^{\delta}y\cos\alpha)}{(|x^{\delta}y|+x^{\delta}y\cos\alpha )^{\lambda}-1}f(x)g(y)\,dx\,dy \\ &\quad< k(\sigma) \biggl[ \int_{-\infty}^{\infty}|x|^{p(1-\delta\sigma )-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty }|y|^{q(1-\sigma)-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(14)
$$\begin{aligned}& \begin{aligned}[b] &\int_{-\infty}^{\infty}|y|^{p\sigma-1} \biggl[ \int _{-\infty }^{\infty}\frac{\ln(|x^{\delta}y|+x^{\delta}y\cos\alpha)}{(|x^{\delta }y|+x^{\delta}y\cos\alpha)^{\lambda}-1}f(x)\,dx \biggr] ^{p}\,dy \\ &\quad< k^{p}(\sigma)\int_{-\infty}^{\infty}|x|^{p(1-\sigma)-1}f^{p}(x)\,dx. \end{aligned} \end{aligned}$$
(15)

Proof

If (10) takes the form of an equality for a \(y\neq0\), then there exist constants A and B, such that they are not all zero, and

$$ A\frac{|x|^{(1-\delta\sigma)(p-1)}}{|y|^{1-\sigma}}f^{p}(x) =B\frac{|y|^{(1-\sigma)(q-1)}}{|x|^{1-\delta\sigma}}\quad \mbox{a.e. in } \mathbf{R}. $$

We suppose that \(A\neq0\) (otherwise \(B=A=0\)). Then it follows that

$$ |x|^{p(1-\delta\sigma)-1}f^{p}(x)=|y|^{q(1-\sigma)}\frac{B}{A|x|} \quad\mbox{a.e. in }\mathbf{R}, $$

which contradicts the fact that \(0<\int_{-\infty}^{\infty }|x|^{p(1-\delta \sigma)-1}f^{p}(x)\,dx<\infty\). Hence (10) takes the form of a strict inequality. So does (8), and we have (12).

By the Hölder inequality (cf. [29]), we find

$$\begin{aligned} I =&\int_{-\infty}^{\infty} \biggl( |y|^{\sigma-\frac{1}{p}}\int _{-\infty }^{\infty}h^{(\delta)}(x,y)f(x)\,dx \biggr) \bigl(|y|^{\frac{1}{p}-\sigma}g(y)\bigr)\,dy \\ \leq& J^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty}|y|^{q(1-\sigma )-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$
(16)

Then by (12), we have (11). On the other hand, suppose that (11) is valid. Setting

$$ g(y):=|y|^{p\sigma-1} \biggl( \int_{-\infty}^{\infty}h^{(\delta )}(x,y)f(x)\,dx \biggr) ^{p-1} \quad(y\in\mathbf{R}), $$

then it follows that \(J=\int_{-\infty}^{\infty}|y|^{q(1-\sigma )-1}g^{q}(y)\,dy\). By (8), we have \(J<\infty\). If \(J=0\), then (12) is trivially true; if \(0< J<\infty\), then by (11), we obtain

$$\begin{aligned}& \begin{aligned}[b] 0 &<\int_{-\infty}^{\infty}|y|^{q(1-\sigma)-1}g^{q}(y)\,dy=J=I\\ &<K(\sigma) \biggl[ \int_{-\infty}^{\infty}|x|^{p(1-\delta\sigma )-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty }|y|^{q(1-\sigma)-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}<\infty, \end{aligned} \end{aligned}$$
(17)
$$\begin{aligned}& J^{\frac{1}{p}}= \biggl[ \int_{-\infty}^{\infty}|y|^{q(1-\sigma )-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{p}}< K(\sigma) \biggl[ \int_{-\infty }^{\infty}|x|^{p(1-\delta\sigma)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$
(18)

Hence we have (12), which is equivalent to (11).

We set \(E_{\delta}:=\{x\in\mathbf{R};|x|^{\delta}\geq1\}\), and \(E_{\delta}^{+}:=E_{\delta}\cap\mathbf{R}_{+}=\{x\in\mathbf{R}_{+};x^{\delta}\geq1\}\). For \(\varepsilon>0\), we define two functions \(\tilde{f}(x)\), \(\tilde{g}(y)\) as follows:

$$\begin{aligned}& \tilde{f}(x) := \left \{ \begin{array}{@{}l@{\quad}l} |x|^{\delta(\sigma-\frac{2\varepsilon}{p})-1}, & x\in E_{\delta}, \\ 0, & x\in\mathbf{R}\backslash E_{\delta},\end{array} \right . \qquad \tilde{g}(y) := \left \{ \begin{array}{@{}l@{\quad}l} 0, & y\in(-\infty,-1)\cup(1,\infty), \\ |y|^{\sigma+\frac{2\varepsilon}{q}-1}, & y\in{}[-1,1]. \end{array} \right . \end{aligned}$$

Then we obtain

$$\begin{aligned} \tilde{L} :=& \biggl[ \int_{-\infty}^{\infty}|x|^{p(1-\delta\sigma )-1}\tilde{f}^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int _{-\infty}^{\infty }|y|^{q(1-\sigma)-1}\tilde{g}^{q}(y)\,dy \biggr] ^{\frac{1}{q}}\\ =&2 \biggl( \int_{E_{\delta}^{+}}x^{-2\delta\varepsilon-1}\,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{0}^{1}y^{2\varepsilon-1}\,dy \biggr) ^{\frac {1}{q}}=\frac{1}{\varepsilon}. \end{aligned}$$

We find

$$ I(x):=\int_{-1}^{1}\max_{i\in\{1,2\}} \frac{\ln[|x^{\delta}y|^{\gamma }+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]|y|^{\sigma+\frac {2\varepsilon}{q}-1}}{[|x^{\delta}y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-1}\,dy=I(-x), $$

and then \(I(x)\) is an even function. In fact, setting \(Y=-y\), we obtain

$$\begin{aligned} I(-x) =&\int_{-1}^{1}\max_{i\in\{1,2\}} \frac{\ln[|(-x)^{\delta }y|^{\gamma}+((-x)^{\delta}y)^{\gamma}\cos\alpha_{i}]|y|^{\sigma +\frac{2\varepsilon}{q}-1}}{[|(-x)^{\delta}y|^{\gamma}+((-x)^{\delta }y)^{\gamma }\cos\alpha_{i}]^{\lambda/\gamma}-1}\,dy\\ =&\int_{-1}^{1}\max_{i\in\{1,2\}} \frac{\ln[|x^{\delta}Y|^{\gamma }+(x^{\delta}Y)^{\gamma}\cos\alpha_{i}]|Y|^{\sigma+\frac {2\varepsilon}{q}-1}}{[|x^{\delta}Y|^{\gamma}+(x^{\delta}Y)^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-1}\,dY=I(x). \end{aligned}$$

It follows that

$$\begin{aligned} \tilde{I} =&\int_{-\infty}^{\infty}\int _{-\infty}^{\infty }h^{(\delta )}(x,y)\tilde{f}(x) \tilde{g}(y)\,dx\,dy \\ =&\int_{E_{\delta}}|x|^{\delta(\sigma-\frac{2\varepsilon}{p})-1}I(x)\,dx =2\int _{E_{\delta}^{+}}x^{\delta(\sigma-\frac{2\varepsilon }{p})-1}I(x)\,dx \\ \stackrel{u=x^{\delta}y}{=}&2\int_{E_{\delta}^{+}}x^{-2\delta \varepsilon -1} \biggl[ \int_{-x^{\delta}}^{x^{\delta}}\max_{i\in\{1,2\}} \frac{\ln (|u|^{\gamma}+u^{\gamma}\cos\alpha_{i})|u|^{\sigma+\frac {2\varepsilon}{q}-1}}{(|u|^{\gamma}+u^{\gamma}\cos\alpha_{i})^{\lambda/\gamma }-1}\,du \biggr]\,dx. \end{aligned}$$

Setting \(v=x^{\delta}\) in the above integral, by the Fubini theorem (cf. [30]), we find

$$\begin{aligned} \tilde{I} =&2\int_{1}^{\infty}v^{-2\varepsilon-1} \biggl[ \int_{-v}^{v}\max_{i\in\{1,2\}} \frac{\ln(|u|^{\gamma}+u^{\gamma}\cos\alpha _{i})|u|^{\sigma+\frac{2\varepsilon}{q}-1}}{(|u|^{\gamma}+u^{\gamma }\cos \alpha_{i})^{\lambda/\gamma}-1}\,du \biggr]\,dv \\ =&2\int_{1}^{\infty}v^{-2\varepsilon-1} \biggl\{ \int _{0}^{v}\biggl[\max_{i\in \{1,2\}} \frac{\ln[u^{\gamma}(1+\cos\alpha_{i})]}{[u(1+\cos\alpha _{i})^{1/\gamma}]^{\lambda}-1} \\ &{} +\max_{i\in\{1,2\}}\frac{\ln[u^{\gamma}(1-\cos\alpha _{i})]}{[u(1-\cos\alpha_{i})^{1/\gamma}]^{\lambda}-1}\biggr]u^{\sigma+\frac{2\varepsilon}{q}-1}\,du \biggr\} \,dv \\ =&2\int_{1}^{\infty}v^{-2\varepsilon-1} \biggl\{ \int _{0}^{v}\biggl[\frac{\ln [u^{\gamma}(1+\cos\alpha_{2})]}{[u(1+\cos\alpha_{2})^{1/\gamma }]^{\lambda}-1} +\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]u^{\sigma+\frac{2\varepsilon}{q}-1}\,du \biggr\} \,dv\\ =&2\int_{1}^{\infty}v^{-2\varepsilon-1}\biggl\{ \int _{0}^{1}\biggl[\frac{\ln [u^{\gamma}(1+\cos\alpha_{2})]}{[u(1+\cos\alpha_{2})^{1/\gamma }]^{\lambda}-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]u^{\sigma+\frac{2\varepsilon }{q}-1}\,du\biggr\} \,dv\\ &{}+2\int_{1}^{\infty}v^{-2\varepsilon-1} \biggl\{ \int _{1}^{v}\biggl[\frac{\ln [u^{\gamma}(1+\cos\alpha_{2})]}{[u(1+\cos\alpha_{2})^{1/\gamma }]^{\lambda}-1}\\ &{} +\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]u^{\sigma+\frac{2\varepsilon}{q}-1}\,du \biggr\} \,dv\\ =&\frac{1}{\varepsilon}\int_{0}^{1}\biggl[ \frac{\ln[u^{\gamma}(1+\cos \alpha _{2})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1+\cos\alpha _{2})^{1/\gamma}]^{\lambda}-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha _{1})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]\,du\\ &{}+2\int_{1}^{\infty} \biggl( \int _{u}^{\infty}v^{-2\varepsilon -1}\,dv \biggr)\\ &{}\times\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma+\frac {2\varepsilon}{q}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du \\ =&\frac{1}{\varepsilon} \biggl\{ \int_{0}^{1} \biggl[\frac{\ln[u^{\gamma }(1+\cos \alpha_{2})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1+\cos\alpha _{2})^{1/\gamma}]^{\lambda}-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha _{1})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]\,du\\ &{} +\int_{1}^{\infty}\biggl[\frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1+\cos\alpha _{2})^{1/\gamma}]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha _{1})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]\,du \biggr\} . \end{aligned}$$

If the constant factor \(K(\sigma)\) in (11) is not the best possible, then there exists a positive number k, with \(K(\sigma)< k\), such that (11) is valid when replacing \(K(\sigma)\) by k. Then we have \(\varepsilon \tilde{I}<\varepsilon k\tilde{L}\), and

$$\begin{aligned} &\int_{0}^{1}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma +\frac{2\varepsilon}{q}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma+\frac {2\varepsilon}{q}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du \\ &\qquad{}+\int_{1}^{\infty}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma }]^{\lambda}-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma-\frac {2\varepsilon}{p}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du \\ &\quad=\varepsilon\tilde{I}<\varepsilon k\tilde{L}=k. \end{aligned}$$
(19)

By (7) and the Levi theorem (cf. [30]), we have

$$\begin{aligned} K(\sigma)={}&\int_{0}^{\infty}\frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-1}\,du}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1} +\int_{0}^{\infty}\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma -1}\,du}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\\ ={}&\int_{0}^{1}\lim_{\varepsilon\rightarrow0^{+}}\biggl\{ \frac{\ln[u^{\gamma }(1+\cos\alpha_{2})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1+\cos \alpha_{2})^{1/\gamma}]^{\lambda}-1}+\frac{\ln[u^{\gamma}(1-\cos \alpha _{1})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du\\ &{}+\int_{1}^{\infty}\lim_{\varepsilon\rightarrow0^{+}}\biggl\{ \frac{\ln [u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{ [u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}+\frac{\ln[u^{\gamma }(1-\cos\alpha_{1})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1-\cos \alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du\\ ={}&\lim_{\varepsilon\rightarrow0^{+}} \biggl\{ \int_{0}^{1} \biggl[\frac{\ln [u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{ [u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}+\frac{\ln[u^{\gamma }(1-\cos\alpha_{1})]u^{\sigma+\frac{2\varepsilon}{q}-1}}{[u(1-\cos \alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr]\,du\\ &{}+\int_{1}^{\infty}\biggl[\frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1+\cos\alpha _{2})^{1/\gamma}]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha _{1})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr]\,du \biggr\} \leq k, \end{aligned}$$

which contradicts the fact that \(k< K(\sigma)\). Hence the constant factor \(K(\sigma)\) in (11) is the best possible.

If the constant factor in (12) is not the best possible, then by (16), we would reach a contradiction: that the constant factor in (11) is not the best possible. □

Theorem 4

On the assumptions of Theorem  3, replacing \(p>1\) by \(0< p<1\), we have the equivalent reverses of (11) and (12) with the same best constant factors.

Proof

By the reverse Hölder inequality (cf. [29]), we have the reverses of (9) and (16). It is easy to obtain the reverse of (12). In view of the reverses of (12) and (16), we obtain the reverse of (11). On the other hand, suppose that the reverse of (11) is valid. Setting the same \(g(y)\) as Theorem 3, by the reverse of (9), we have \(J>0\). If \(J=\infty\), then the reverse of (12) is trivially value; if \(J<\infty\), then by the reverse of (11), we obtain the reverses of (17) and (18). Hence we have the reverse of (12), which is equivalent to the reverse of (11).

If the constant factor \(K(\sigma)\) in the reverse of (11) is not the best possible, then there exists a positive constant k, with \(k>K(\sigma)\), such that the reverse of (11) is still valid when replacing \(K(\sigma)\) by k. By the reverse of (19), we have

$$\begin{aligned} &\int_{0}^{1}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma +\frac{2\varepsilon}{q}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma+\frac {2\varepsilon}{q}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du \\ &\quad{}+\int_{1}^{\infty}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma }]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma-\frac {2\varepsilon}{p}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du>k. \end{aligned}$$
(20)

For \(\varepsilon\rightarrow0^{+}\), by the Levi theorem (cf. [30]), we find

$$\begin{aligned} &\int_{1}^{\infty}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-\frac{2\varepsilon}{p}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma }]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma-\frac {2\varepsilon}{p}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du \\ &\quad\rightarrow\int_{1}^{\infty}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda }-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du. \end{aligned}$$
(21)

There exists a constant \(\delta_{0}>0\), such that \(\sigma-\frac{1}{2}\delta_{0}>0\), and then \(K(\sigma-\frac{\delta_{0}}{2})\in\mathbf {R}_{+}\). For \(0<\varepsilon<\frac{\delta_{0}|q|}{4}\) (\(q<0\)), since \(u^{\sigma+\frac{2\varepsilon}{q}-1}\leq u^{\sigma-\frac{\delta_{0}}{2}-1}\), \(u\in(0,1]\), and

$$\begin{aligned} 0 <&\int_{0}^{1}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma -\frac{\delta_{0}}{2}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda }-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma-\frac{\delta _{0}}{2}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du\\ \leq&K\biggl(\sigma-\frac{\delta_{0}}{2}\biggr), \end{aligned}$$

then by the Lebesgue control convergence theorem (cf. [30]), for \(\varepsilon\rightarrow0^{+}\), we have

$$\begin{aligned} &\int_{0}^{1}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha_{2})]u^{\sigma +\frac{2\varepsilon}{q}-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda}-1}+ \frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma+\frac {2\varepsilon}{q}-1}}{[u(1-\cos\alpha_{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du \\ &\quad\rightarrow\int_{0}^{1}\biggl\{ \frac{\ln[u^{\gamma}(1+\cos\alpha _{2})]u^{\sigma-1}}{[u(1+\cos\alpha_{2})^{1/\gamma}]^{\lambda }-1}+\frac{\ln[u^{\gamma}(1-\cos\alpha_{1})]u^{\sigma-1}}{[u(1-\cos\alpha _{1})^{1/\gamma}]^{\lambda}-1}\biggr\} \,du. \end{aligned}$$
(22)

By (20), (21), and (22), for \(\varepsilon\rightarrow 0^{+}\), we find \(K(\sigma)\geq k\), which contradicts the fact that \(k>K(\sigma)\). Hence, the constant factor \(K(\sigma)\) in the reverse of (11) is the best possible.

If the constant factor in reverse of (12) is not the best possible, then by the reverse of (16), we would reach a contradiction: that the constant factor in the reverse of (11) is not the best possible. □

Corollary 5

For \(\delta=-1\) in (11) and (12), replacing \(|x|^{\lambda}f(x)\) by \(f(x)\), we obtain

$$ 0<\int_{-\infty}^{\infty}|x|^{p(1-\mu)-1}f^{p}(x)\,dx< \infty, $$

and the following equivalent inequalities with the homogeneous kernel and the best possible constant factors:

$$\begin{aligned}& \begin{aligned}[b] &\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \max_{i\in\{1,2\} }\frac{\ln[(|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha_{i})/|x|^{\gamma}]}{[|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha_{i}]^{\lambda/\gamma }-|x|^{\lambda}}f(x)g(y)\,dx\,dy \\ &\quad< K(\sigma) \biggl[ \int_{-\infty}^{\infty}|x|^{p(1-\mu)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty}|y|^{q(1-\sigma )-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(23)
$$\begin{aligned}& \begin{aligned}[b] &\int_{-\infty}^{\infty}|y|^{p\sigma-1} \biggl\{ \int _{-\infty }^{\infty }\max_{i\in\{1,2\}} \frac{\ln[(|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos \alpha _{i})/|x|^{\gamma}]}{[|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-|x|^{\lambda}}f(x)\,dx \biggr\} ^{p}\,dy \\ &\quad< K^{p}(\sigma)\int_{-\infty}^{\infty}|x|^{p(1-\mu)-1}f^{p}(x)\,dx. \end{aligned} \end{aligned}$$
(24)

In particular, for \(\alpha_{1}=\alpha_{2}=\alpha\in(0,\pi)\), \(\gamma=1\) in (23) and (24), we obtain the following equivalent inequalities:

$$\begin{aligned}& \begin{aligned}[b] &\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{\ln[(|y|+\operatorname{sgn}(x)y\cos\alpha)/|x|]}{[|y|+\operatorname{sgn}(x)y\cos\alpha]^{\lambda }-|x|^{\lambda}}f(x)g(y)\,dx\,dy \\ &\quad< k(\sigma) \biggl[ \int_{-\infty}^{\infty}|x|^{p(1-\mu)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty}|y|^{q(1-\sigma )-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(25)
$$\begin{aligned}& \begin{aligned}[b] &\int_{-\infty}^{\infty}|y|^{p\sigma-1} \biggl\{ \int _{-\infty }^{\infty}\frac{\ln[(|y|+\operatorname{sgn}(x)y\cos\alpha)/|x|]}{[|y|+\operatorname{sgn}(x)y\cos\alpha ]^{\lambda}-|x|^{\lambda}}f(x)\,dx \biggr\} ^{p}\,dy \\ &\quad< k^{p}(\sigma)\int_{-\infty}^{\infty}|x|^{p(1-\mu)-1}f^{p}(x)\,dx, \end{aligned} \end{aligned}$$
(26)

where \(k(\sigma)\) is indicated by (13).

Two kinds of operator expressions

Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(0<\alpha_{1}\leq\alpha _{2}<\pi\), \(\mu,\sigma>0\), \(\mu+\sigma=\lambda\), \(\gamma\in\{a;a=\frac {1}{2k+1},2k-1\ (k\in\mathbf{N})\}\), \(\delta\in\{-1,1\}\). We set the following functions:

$$ \varphi(x):=|x|^{p(1-\delta\sigma)-1},\qquad \psi(y):=|y|^{q(1-\sigma )-1},\qquad \phi(x):=|x|^{p(1-\mu)-1}\quad (x,y\in\mathbf{R}), $$

therefore, \(\psi^{1-p}(y)=|y|^{p\sigma-1}\). Define the following real normed linear space:

$$\begin{aligned}& L_{p,\varphi}(\mathbf{R}) := \biggl\{ f:\|f\|_{p,\varphi}:= \biggl( \int_{-\infty}^{\infty}\varphi(x)\bigl|f(x)\bigr|^{p}\,dx \biggr) ^{\frac{1}{p} }<\infty \biggr\} ,\\& L_{p,\psi^{1-p}}(\mathbf{R}) = \biggl\{ h:\|h\|_{p,\psi^{1-p}}= \biggl( \int _{-\infty}^{\infty}\psi^{1-p}(y)\bigl|h(y)\bigr|^{p}\,dy \biggr) ^{\frac{1}{p} }<\infty \biggr\} ,\\& L_{p,\phi}(\mathbf{R}) = \biggl\{ g:\|g\|_{p,\phi}= \biggl( \int _{-\infty }^{\infty}\phi(x)\bigl|g(x)\bigr|^{p}\,dx \biggr) ^{\frac{1}{p}}<\infty \biggr\} . \end{aligned}$$

(a) In view of Theorem 3, for \(f\in L_{p,\varphi}(\mathbf{R})\), setting

$$ H_{1}(y):=\int_{-\infty}^{\infty}\max _{i\in\{1,2\}}\frac{\ln [|x^{\delta }y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]}{[|x^{\delta }y|^{\gamma}+(x^{\delta}y)^{\gamma}\cos\alpha_{i}]^{\lambda /\gamma}-1}f(x)\,dx\quad (y\in \mathbf{R}), $$

by (12), we have

$$ \|H_{1}\|_{p,\psi^{1-p}}= \biggl( \int_{-\infty}^{\infty} \psi ^{1-p}(y)H_{1}^{p}(y)\,dy \biggr) ^{\frac{1}{p}}< K(\sigma)\|f\|_{p,\varphi }<\infty. $$
(27)

Definition 1

Define a Hilbert-type integral operator with the non-homogeneous kernel in the whole plane \(T_{1}: L_{p,\varphi }(\mathbf{R})\rightarrow L_{p,\psi^{1-p}}(\mathbf{R})\) as follows: For any \(f\in L_{p,\varphi}(\mathbf{R})\), there exists a unique representation \(T_{1}f=H_{1}\in L_{p,\psi^{1-p}}(\mathbf{R})\), satisfying, for any \(y\in\mathbf{R}\), \(T_{1}f(y)=H_{1}(y)\).

In view of (27), it follows that \(\|T_{1}f\|_{p,\psi ^{1-p}}=\|H_{1}\|_{p,\psi^{1-p}}\leq K(\sigma)\|f\|_{p,\varphi}\), and then the operator \(T_{1}\) is bounded satisfying

$$ \|T_{1}\|=\sup_{f(\neq\theta)\in L_{p,\varphi}(\mathbf{R})}\frac{\|T_{1}f\|_{p,\psi^{1-p}}}{\|f\|_{p,\varphi}}\leq K( \sigma). $$

Since the constant factor \(K(\sigma)\) in (27) is the best possible, we have \(\|T_{1}\|=K(\sigma)\).

If we define the formal inner product of \(T_{1}f\) and g as

$$\begin{aligned} (T_{1}f,g) :=&\int_{-\infty}^{\infty} \biggl( \int_{-\infty}^{\infty }h^{(\delta)}(x,y)f(x)\,dx \biggr) g(y)\,dy\\ =&\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}h^{(\delta )}(x,y)f(x)g(y)\,dx\,dy, \end{aligned}$$

then we can rewrite (11) and (12) as follows:

$$ (T_{1}f,g)<\|T_{1}\|\cdot\|f\|_{p,\varphi}\|g\|_{q,\psi },\qquad \|T_{1}f\|_{p,\psi^{1-p}}<\|T_{1}\| \cdot\|f\|_{p,\varphi}. $$

(b) In view of Corollary 5, for \(f\in L_{p,\phi}(\mathbf{R})\), setting

$$ H_{2}(y):=\int_{-\infty}^{\infty}\max _{i\in\{1,2\}}\frac{\ln [(|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha_{i})/|x|^{\gamma}]}{[|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha_{i}]^{\lambda/\gamma }-|x|^{\lambda}}f(x)\,dx\quad (y\in\mathbf{R}), $$

by (24), we have

$$ \|H_{2}\|_{p,\psi^{1-p}}= \biggl( \int_{-\infty}^{\infty} \psi ^{1-p}(y)H_{2}^{p}(y)\,dy \biggr) ^{\frac{1}{p}}< K(\sigma)\|f\|_{p,\phi }<\infty. $$
(28)

Definition 2

Define a Hilbert-type integral operator with the homogeneous kernel in the whole plane \(T_{2}: L_{p,\phi}(\mathbf{R})\rightarrow L_{p,\psi^{1-p}}(\mathbf{R})\) as follows: For any \(f\in L_{p,\phi}(\mathbf{R})\), there exists a unique representation \(T_{2}f=H_{2}\in L_{p,\psi^{1-p}}(\mathbf{R})\), satisfying, for any \(y\in\mathbf{R}\), \(T_{2}f(y)=H_{2}(y)\).

In view of (28), it follows that \(\|T_{2}f\|_{p,\psi ^{1-p}}=\|H_{2}\|_{p,\psi^{1-p}}\leq K(\sigma)\|f\|_{p,\phi}\), and then the operator \(T_{2}\) is bounded satisfying

$$ \|T_{2}\|=\sup_{f(\neq\theta)\in L_{p,\phi}(\mathbf{R})}\frac{\|T_{2}f\|_{p,\psi^{1-p}}}{\|f\|_{p,\phi}}\leq K( \sigma). $$

Since the constant factor \(K(\sigma)\) in (28) is the best possible, we have \(\|T_{2}\|=K(\sigma)\).

If we define the formal inner product of \(T_{2}f\) and g as

$$ (T_{2}f,g):=\int_{-\infty}^{\infty}\int _{-\infty}^{\infty}\max_{i\in \{1,2\}} \frac{\ln[(|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha _{i})/|x|^{\gamma}]}{[|y|^{\gamma}+\operatorname{sgn}(x)y^{\gamma}\cos\alpha _{i}]^{\lambda/\gamma}-|x|^{\lambda}}f(x)g(y)\,dx\,dy, $$

then we can rewrite (23) and (24) as follows:

$$ (T_{2}f,g)<\|T_{2}\|\cdot\|f\|_{p,\phi}\|g\|_{q,\psi },\qquad\|T_{2}f\|_{p,\psi ^{1-p}}<\|T_{2}\| \cdot\|f\|_{p,\phi}. $$

References

  1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  2. Mitrinović, DS, Pecaric, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

    Book  MATH  Google Scholar 

  3. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  4. Yang, BC: A survey of the study of Hilbert-type inequalities with parameters. Adv. Math. 38(3), 257-268 (2009)

    MathSciNet  Google Scholar 

  5. Yang, BC: On the norm of an integral operator and applications. J. Math. Anal. Appl. 321, 182-192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xu, JS: Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63-76 (2007)

    Google Scholar 

  7. Yang, BC: On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 325, 529-541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Xin, DM: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70-74 (2010)

    MathSciNet  Google Scholar 

  9. Yang, BC: A Hilbert-type integral inequality with the homogeneous kernel of degree 0. J. Shandong Univ. Nat. Sci. 45(2), 103-106 (2010)

    MathSciNet  Google Scholar 

  10. Debnath, L, Yang, BC: Recent developments of Hilbert-type discrete and integral inequalities with applications. Int. J. Math. Math. Sci. 2012, Article ID 871845 (2012)

    MathSciNet  Google Scholar 

  11. Rassias, MT, Yang, BC: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75-93 (2013)

    Article  MathSciNet  Google Scholar 

  12. Yang, BC, Krnic, M: A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequal. 6(3), 401-417 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Rassias, MT, Yang, BC: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013)

    Article  MathSciNet  Google Scholar 

  14. Rassias, MT, Yang, BC: On a multidimensional half - discrete Hilbert - type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2013)

    Article  MathSciNet  Google Scholar 

  15. Rassias, MT, Yang, BC: A multidimensional Hilbert-type integral inequality related to the Riemann zeta function. In: Daras, NJ (ed.) Applications of Mathematics and Informatics in Science and Engineering, pp. 417-433. Springer, New York (2014)

    Chapter  Google Scholar 

  16. Yang, BC: A new Hilbert-type integral inequality. Soochow J. Math. 33(4), 849-859 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Wang, ZQ, Guo, DR: Introduction to Special Functions. Science Press, Beijing (1979)

    Google Scholar 

  18. He, B, Yang, BC: On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometric function. Math. Pract. Theory 40(18), 105-211 (2010)

    MathSciNet  Google Scholar 

  19. Yang, BC: A new Hilbert-type integral inequality with some parameters. J. Jilin Univ. Sci. Ed. 46(6), 1085-1090 (2008)

    Google Scholar 

  20. Yang, BC: A Hilbert-type integral inequality with a non-homogeneous kernel. J. Xiamen Univ. Natur. Sci. 48(2), 165-169 (2008)

    Google Scholar 

  21. Zeng, Z, Xie, ZT: On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane. J. Inequal. Appl. 2010, Article ID 256796 (2010)

    Article  MathSciNet  Google Scholar 

  22. Yang, BC: A reverse Hilbert-type integral inequality with some parameters. J. Xinxiang Univ. Natur. Sci. Ed. 27(6), 1-4 (2010)

    MATH  Google Scholar 

  23. Wang, AZ, Yang, BC: A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, Article ID 123 (2011). doi:10.1186/1029-24X-2011-123

    Article  Google Scholar 

  24. Xin, DM, Yang, BC: A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree −2. J. Inequal. Appl. 2011, Article ID 401428 (2011)

    Article  MathSciNet  Google Scholar 

  25. He, B, Yang, BC: On an inequality concerning a non-homogeneous kernel and the hypergeometric function. Tamsui Oxf. J. Inf. Math. Sci. 27(1), 75-88 (2011)

    MATH  MathSciNet  Google Scholar 

  26. Yang, BC: A reverse Hilbert-type integral inequality with a non-homogeneous kernel. J. Jilin Univ. Sci. Ed. 49(3), 437-441 (2011)

    Google Scholar 

  27. Xie, ZT, Zeng, Z, Sun, YF: A new Hilbert-type inequality with the homogeneous kernel of degree −2. Adv. Appl. Math. Sci. 12(7), 391-401 (2013)

    MATH  MathSciNet  Google Scholar 

  28. Zeng, Z, Raja Rama Gandhi, K, Xie, ZT: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11-20 (2014)

    Google Scholar 

  29. Kuang, J: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004)

    Google Scholar 

  30. Kuang, J: Introduction to Real Analysis. Hunan Education Press, Changsha (1996)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61370186), and 2013 Knowledge Construction Special Foundation Item of Guangdong Institution of Higher Learning College and University (No. 2013KJCX0140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bicheng Yang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Chen, Q. Two kinds of Hilbert-type integral inequalities in the whole plane. J Inequal Appl 2015, 21 (2015). https://doi.org/10.1186/s13660-014-0545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-014-0545-8

MSC

  • 26D15

Keywords

  • Hilbert-type integral inequality
  • weight function
  • equivalent form
  • reverse
  • operator expression