Skip to main content

Random \(C^{*}\)-ternary algebras and application

Abstract

In this paper, we introduce the concept of random \(C^{*}\)-ternary algebras and consider some properties of them. As an application we approximate a random \(C^{*}\)-ternary algebra homomorphism in these spaces.

Introduction

Ternary algebraic operations were considered in the 19th century by several mathematicians, such as Cayley [1], who introduced the notion of cubic matrix which, in turn, was generalized by Kapranov et al. [2]. The simplest example of such a non-trivial ternary operation is given by the following composition rule:

$$\{a,b,c\}_{ijk}=\sum_{1\leq l,m,n\leq N}a_{nil}b_{ljm}c_{mkn} $$

for each \(i,j,k=1,2,\ldots,N\).

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their applications in physics. Some significant applications are as follows (see [3, 4]):

  1. (1)

    The algebra of nonions generated by two matrices

    $$ \left ( \begin{array}{@{}c@{\quad}c@{\quad}c@{}} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right ),\qquad \left ( \begin{array}{@{}c@{\quad}c@{\quad}c@{}} 0 & 1 & 0 \\ 0 & 0 & \omega \\ \omega^{2} & 0 & 0 \end{array} \right ), $$

    where \(\omega=e^{\frac{2\pi i}{3}}\), was introduced by Sylvester as a ternary analog of Hamilton’s quaternions (see [5]).

  2. (2)

    The quark model inspired a particular brand of ternary algebraic systems. The so-called Nambu mechanics is based on such structures (see [6]).

Random \(C^{*}\)-ternary algebra

In the section, we adopt the usual terminology, notations and conventions of the theory of random \(C^{*}\)-ternary algebra.

Throughout this paper, \(\Delta^{+}\) is the space of distribution functions, that is, the space of all mappings \(F:{\mathbf{R}} \cup\{-\infty,\infty\} \to [0,1]\) such that F is left-continuous and non-decreasing on R, \(F(0)=0\), and \(F(+\infty)=1\). \(D^{+}\) is a subset of \(\Delta^{+}\) consisting of all functions \(F \in\Delta^{+}\) for which \(l^{-}F(+\infty)=1\), where \(l^{-}f(x)\) denotes the left limit of the function f at the point x, that is, \(l^{-}f(x)=\lim_{t \to x^{-}}f(t)\). The space \(\Delta^{+}\) is partially ordered by the usual point-wise ordering of functions, i.e., \(F \leq G\) if and only if \(F(t) \leq G(t)\) for all t in R. For example an element for \(\Delta^{+}\) is the distribution function \(\varepsilon_{a}\) given by \(\varepsilon_{a}(t)= 0\), if \(t\leq a\) and 1 if \(t>a\).

The maximal element for \(\Delta^{+}\) in this order is the distribution function \(\varepsilon_{0}\) (see [79]).

Definition 2.1

([8])

A mapping \(T:[0,1] \times[0,1]\to[0,1]\) is called a continuous triangular norm (briefly, a continuous t-norm) if T satisfies the following conditions:

  1. (a)

    T is commutative and associative;

  2. (b)

    T is continuous;

  3. (c)

    \(T(a,1)=a\) for all \(a\in[0,1]\);

  4. (d)

    \(T(a,b)\leq T(c,d)\) whenever \(a\leq c\) and \(b\leq d\) for all \(a,b,c,d\in[0,1]\).

Typical examples of continuous t-norms are \(T_{P}(a,b)=ab\), \(T_{M} (a,b)=\min(a,b)\), and \(T_{L}(a,b)=\max(a+b-1,0)\) (the Lukasiewicz t-norm).

Definition 2.2

([9])

A random normed space (briefly, RN-space) is a triple \((X,\mu,T)\), where X is a vector space, T is a continuous t-norm and μ is a mapping from X into \(D^{+}\) such that the following conditions hold:

  1. (RN1)

    \(\mu_{x}(t)=\varepsilon_{0}(t)\) for all \(t>0\) if and only if \(x=0\);

  2. (RN2)

    \(\mu_{\alpha x}(t)=\mu_{x}(\frac{t}{|\alpha|})\) for all \(x\in X\), \(\alpha\neq0\);

  3. (RN3)

    \(\mu_{x+y}(t+s)\geq T(\mu_{x}(t),\mu_{y}(s))\) for all \(x,y\in X\) and \(t,s \geq0\).

Every normed space \((X,\|\cdot\|)\) defines a random normed space \((X,\mu,T_{M})\), where

$$\mu_{x}(t)=\frac{t}{t+\|x\|} $$

for all \(t>0\), and \(T_{M}\) is the minimum t-norm. This space is called the induced random normed space.

Definition 2.3

([10])

A random normed algebra \((X,\mu,T,T')\) is a random normed space \((X,\mu,T)\) with algebraic structure such that

  1. (RN4)

    \(\mu_{xy}(ts)\geq T'(\mu_{x}(t), \mu_{y}(s))\) for all \(x,y\in X\) and \(t,s> 0\), in which \(T'\) is a continuous t-norm.

Every normed algebra \((X,\|\cdot\|)\) defines a random normed algebra \((X,\mu,T_{M},T_{P})\), where

$$\mu_{x}(t)=\frac{t}{t+\|x\|} $$

for all \(t>0\) if and only if

$$\|xy\|\le\|x\|\|y\| + s\|y\| + t\|x\| $$

for all \(x, y \in X\) and \(t,s > 0\). This space is called the induced random normed algebra. For more properties and examples of the theory of random normed spaces, we refer to [1127].

Definition 2.4

Let \(({\mathcal{U}} ,\mu,T,T')\) be a random Banach algebra. Then an involution on \(\mathcal{U}\) is a mapping \(u\to u^{*}\) from \(\mathcal{U}\) into \(\mathcal{U}\) which satisfies the following conditions:

  1. (1)

    \(u^{**}=u\) for \(u\in\mathcal{U}\);

  2. (2)

    \((\alpha u+ \beta v)^{*}=\overline{\alpha} u^{*} + \overline{\beta} v^{*}\);

  3. (3)

    \((uv)^{*}=v^{*}u^{*}\) for \(u,v\in\mathcal{U}\).

If, in addition, \(\mu_{u^{*}u}(ts)=T'(\mu_{u}(t),\mu_{u}(s))\) for all \(u\in\mathcal{U}\) and \(t,s>0\), then \(\mathcal{U}\) is a random \(C^{*}\)-algebra.

Following the terminology of [28], a non-empty set G with a ternary operation \([\cdot, \cdot, \cdot] : G \times G \times G \rightarrow G\) is called a ternary groupoid and is denoted by \((G, [\cdot, \cdot, \cdot])\). The ternary groupoid \((G, [\cdot, \cdot, \cdot])\) is called commutative if \([x_{1}, x_{2}, x_{3}] = [x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}]\) for all \(x_{1}, x_{2}, x_{3} \in G\) and all permutations σ of \(\{1, 2, 3 \}\).

If a binary operation is defined on G such that \([x, y, z] = (x\circ y) \circ z\) for all \(x, y, z\in G\), then we say that \([\cdot, \cdot, \cdot]\) is derived from . We say that \((G, [\cdot, \cdot, \cdot])\) is a ternary semigroup if the operation \([\cdot, \cdot, \cdot]\) is associative, i.e., if

$$\bigl[[x, y, z], u, v\bigr] = \bigl[x, [y, z, u], v\bigr] = \bigl[x, y, [z, u, v]\bigr] $$

for all \(x, y, z, u, v \in G\) (see [29]).

A random \(C^{*}\)-ternary algebra is a random complex Banach space A, equipped with a ternary product \((x, y, z) \mapsto[x, y, z]\) of \(A^{3}\) into A, which are C-linear in the outer variables, conjugate C-linear in the middle variable, associative in the sense that

$$\bigl[x, y, [z, w, v]\bigr] = \bigl[x, [w, z, y], v\bigr] = \bigl[[x, y, z], w,v \bigr], $$

and satisfies

$$\mu_{[x, y, z]}(tsp) \ge T\bigl(\mu_{x}(t),\mu_{y}(s), \mu_{z}(p)\bigr) $$

and

$$\mu_{[x, x, x]}\bigl(t^{3}\bigr) \ge T\bigl(\mu_{x}(t), \mu_{x}(t),\mu_{x}(t)\bigr) $$

(see [28, 30]).

Every random left Hilbert \(C^{*}\)-module is a random \(C^{*}\)-ternary algebra via the ternary product \([x, y, z] := \langle x, y \rangle z\).

If a random \(C^{*}\)-ternary algebra \((A, [\cdot, \cdot, \cdot] )\) has the identity, i.e., an element \(e\in A\) such that \(x = [x, e, e] = [e, e, x]\) for all \(x\in A\), then it is routine to verify that A, endowed with \(x\circ y : = [x, e, y]\) and \(x^{*}:=[e, x, e]\), is a unital \(C^{*}\)-algebra. Conversely, if \((A, \circ)\) is a unital \(C^{*}\)-algebra, then \([x, y, z] : = x \circ y^{*} \circ z\) makes A into a \(C^{*}\)-ternary algebra.

A C-linear mapping \(H : A \rightarrow B\) is called a \(C^{*}\)-ternary algebra homomorphism if

$$H\bigl([x, y, z]\bigr) = \bigl[H(x), H(y), H(z)\bigr] $$

for all \(x, y, z \in A\). If, in addition, the mapping H is bijective, then the mapping \(H : A \rightarrow B\) is called a \(C^{*}\)-ternary algebra isomorphism. A C-linear mapping \(\delta: A \rightarrow A\) is called a \(C^{*}\)-ternary algebra derivation if

$$\delta\bigl([x, y, z]\bigr) = \bigl[\delta(x), y, z\bigr] + \bigl[x, \delta(y), z\bigr] + \bigl[x, y, \delta(z)\bigr] $$

for all \(x, y, z \in A\) (see [28, 31]).

There are some applications, although still hypothetical, in the fractional quantum Hall effect, the non-standard statistics, supersymmetric theory, and the Yang-Baxter equation (cf. [5, 32, 33]).

Throughout this paper, assume that p, d are non-negative integers with \(p+d \ge3\) and A, B are random \(C^{*}\)-ternary algebras.

Definition 2.5

Let \((X,\mu,T)\) be an RN-space.

  1. (1)

    A sequence \(\{x_{n}\}\) in X is said to be convergent to x in X if, for any \(\epsilon>0\) and \(\lambda>0\), there exists a positive integer N such that \(\mu_{x_{n}-x}(\epsilon)>1-\lambda\) whenever \(n\geq N\).

  2. (2)

    A sequence \(\{x_{n}\}\) in X is called a Cauchy sequence if, for any \(\epsilon>0\) and \(\lambda>0\), there exists a positive integer N such that

    $$\mu_{x_{m}-x_{n}}(\epsilon)>1-\lambda $$

    whenever \(n \geq m \geq N\).

  3. (3)

    An RN-space \((X,\mu,T)\) is said to be complete if every Cauchy sequence in X is convergent to a point in X.

Approximation of random \(C^{*}\)-ternary algebras homomorphisms

In this section, we approximate random \(C^{*}\)-ternary algebras homomorphisms of a Cauchy-Jensen additive mapping (see also [3445]).

For a given mapping \(f: A \to B\), we define

$$\begin{aligned}& C_{\mu}f(x_{1},\ldots,x_{p},y_{1}, \ldots,y_{d}) \\& \quad := 2f \Biggl(\frac{\sum_{j=1}^{p}\mu x_{j}}{2}+\sum_{j=1}^{d} \mu y_{j} \Biggr)-\sum_{j=1}^{p} \mu f(x_{j})-2\sum_{j=1}^{d}\mu f(y_{j}) \end{aligned}$$

for all \(\mu\in{{\mathbf{T}}}^{1}:=\{ \lambda\in\mathbf{C}: |\lambda|=1 \}\) and \(x_{1},\ldots,x_{p},y_{1},\ldots,y_{d}\in A\).

One can easily show that a mapping \(f:A \rightarrow B\) satisfies

$$C_{\mu}f(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}) =0 $$

for all \(\mu\in{\mathbf{T}}^{1}\) and \(x_{1},\ldots,x_{p},y_{1},\ldots ,y_{d}\in A\) if and only if

$$f(\mu x+\lambda y)=\mu f(x)+\lambda f(y) $$

for all \(\mu, \lambda\in {\mathbf{T}}^{1}\) and \(x, y \in A\).

We use the following lemma in this paper.

Lemma 3.1

([46])

Let \(f : A \rightarrow B\) be an additive mapping such that \(f(\mu x) = \mu f(x)\) for all \(x\in A\) and \(\mu\in{\mathbf{T}}^{1}\). Then the mapping f is C-linear.

Theorem 3.2

Let r, s, and θ be non-negative real numbers such that \(0< r\neq1\), \(0< s\neq3\). Let \(\varphi: A^{p+d}\to D^{+}\) (\(d\geq2\)) and \(\psi:A^{3}\to D^{+}\) such that

$$ \varphi_{a(x_{1},\ldots,x_{p},y_{1},\ldots,y_{d})}(t)=\varphi_{ x_{1},\ldots ,x_{p},y_{1},\ldots,y_{d} } \biggl( \frac{t}{a^{r}} \biggr) $$
(1)

and

$$ \psi_{a(x,y,z)}(t)=\psi_{ x,y,z } \biggl( \frac{t}{a^{s}} \biggr) $$
(2)

for all \(x_{1},\ldots,x_{p},y_{1},\ldots,y_{d},x,y,z\in A\) and \(a\in\mathbf{C}\). Suppose that \(f : A \rightarrow B\) is a mapping with \(f(0)=0\), satisfying

$$ \mu_{C_{\mu}f(x_{1},\ldots,x_{p},y_{1},\ldots,y_{d})}(t) \ge\varphi_{x_{1},\ldots,x_{p},y_{1},\ldots,y_{d}}(t) $$
(3)

and

$$ \mu_{f([x,y,z])-[f(x),f(y),f(z)]}(t)\ge\psi_{x,y,z}(t) $$
(4)

for all \(\mu\in\mathbf{T}^{1}\), \(x_{1},\ldots,x_{p},y_{1},\ldots,y_{d},x,y,z \in A\), and \(t>0\). Then there exists a unique \(C^{*}\)-ternary algebra homomorphism \(H : A \rightarrow B\) such that

(5)

for all \(x \in A\) and \(t>0\).

Proof

We prove the theorem when \(0< r<1\) and \(0< s<3\). Similarly, one can prove the theorem for other cases. Letting \(\mu=1\), \(x_{1}=\cdots=x_{p}=0\), and \(y_{1}=\cdots=y_{d}=x\) in (3), we get

(6)

for all \(x\in A\) and \(t>0\). If we replace x by \(d^{n} x\) in (6), we get

for all \(x\in A\), all non-negative integers n and \(t>0\). Therefore,

(7)

for all \(x\in A\), non-negative integers \(n,m\) and \(t>0\). From this, it follows that the sequence \(\{\frac{1}{d^{n}} f(d^{n} x)\}\) is a Cauchy sequence for all \(x \in A\). Since B is complete, the sequence \(\{\frac{1}{d^{n}} f(d^{n} x)\}\) converges. Thus one can define the mapping \(H : A \rightarrow B\) by

$$H(x) : = \lim_{n\to\infty} \frac{1}{d^{n}} f\bigl(d^{n} x \bigr) $$

for all \(x \in A\). Moreover, letting \(m =0\) and passing to the limit \(n \to\infty\) in (7), we get (5). It follows from (3) that

$$\begin{aligned}& \mu_{2H (\frac{\sum_{j=1}^{p} \mu x_{j}}{2}+\sum_{j=1}^{d} \mu y_{j} ) - \sum_{j=1}^{p} \mu H(x_{j})-2 \sum_{j=1}^{d} \mu H(y_{j}) }(t) \\& \quad = \lim_{n\to\infty} \mu_{ \frac{1}{d^{n}} ( 2 f (d^{n}\frac{\sum_{j=1}^{p} \mu x_{j}}{2}+d^{n}\sum_{j=1}^{d} \mu y_{j} ) - \sum_{j=1}^{p} \mu f(d^{n} x_{j})-2 \sum_{j=1}^{d} \mu f(d^{n}y_{j}) )}(t) \\& \quad \ge \lim_{n\to\infty} \varphi_{d^{n}(x_{1},\ldots,x_{p},y_{1},\ldots ,y_{d})} \bigl( {d^{n}} t \bigr) \\& \quad \ge \lim_{n\to\infty} \varphi_{ x_{1},\ldots,x_{p},y_{1},\ldots,y_{d} } \biggl( \frac{d^{n}}{d^{nr}}t \biggr) \\& \quad =1 \end{aligned}$$

for all \(\mu\in\mathbf{T}^{1}\), \(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A \), and \(t>0\). Hence we have

$$2H \Biggl(\frac{\sum_{j=1}^{p} \mu x_{j}}{2}+\sum_{j=1}^{d} \mu y_{j} \Biggr) = \sum_{j=1}^{p} \mu H(x_{j})+2 \sum_{j=1}^{d} \mu H(y_{j}) $$

for all \(\mu\in\mathbf{T}^{1}\) and \(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A\) and so

$$H(\lambda x+\mu y)=\lambda H(x)+\mu H(y) $$

for all \(\lambda, \mu\in\mathbf{T}^{1}\) and \(x, y \in A\). Therefore, by Lemma 3.1, the mapping \(H : A \rightarrow B\) is C-linear. It follows from (4) that

$$\begin{aligned}& \mu_{H([x, y, z])- [H(x), H(y), H(z)]}(t) \\& \quad = \lim_{n\to\infty}\mu_{\frac{1}{d^{3n}} (f ([d^{n} x, d^{n} y, d^{n} z] ) - [f(d^{n} x), f(d^{n} y), f(d^{n} z) ] )}(t) \\& \quad = \lim_{n\to \infty}\mu_{ (f ([d^{n} x, d^{n} y, d^{n} z] ) - [f(d^{n} x), f(d^{n} y), f(d^{n} z) ] )}\bigl({d^{3n}}t \bigr) \\& \quad \ge \lim_{n\to\infty}\psi_{d^{n} x, d^{n} y, d^{n} z}\bigl({d^{3n}}t \bigr) \\& \quad \ge \lim_{n\to\infty}\psi_{x,y,z} \biggl( \frac{d^{3n}}{d^{ns}} \biggr)=1 \end{aligned}$$

for all \(x, y, z \in A\) and \(t>0\) and so

$$H\bigl([x, y, z]\bigr) = \bigl[H(x), H(y), H(z)\bigr] $$

for all \(x, y, z \in A\).

Now, let \(T : A \rightarrow B\) be another generalized Cauchy-Jensen additive mapping satisfying (5). Then we have

for all \(x \in A\) and \(t>0\). So we can conclude that \(H(x)=T(x)\) for all \(x \in A\). This proves the uniqueness of H. Thus the mapping \(H : A\rightarrow B\) is a unique \(C^{*}\)-ternary algebra homomorphism satisfying (5). This completes the proof. □

Theorem 3.3

Let \(r<1\), \(s<2\), θ be non-negative real numbers and let \(f : A \rightarrow B\) be a mapping satisfying (1), (2), (3) and (4). If there exist a real number \(\lambda>1\) (\(0<\lambda<1\)) and an element \(x_{0}\in A\) such that

$$\lim_{n\rightarrow\infty} \frac{1}{\lambda^{n}} f\bigl(\lambda^{n} x_{0}\bigr) = e'\qquad \biggl(\lim_{n\rightarrow\infty} \lambda^{n} f\biggl(\frac{x_{0}}{\lambda^{n}}\biggr) = e' \biggr), $$

then the mapping \(f : A \rightarrow B\) is a \(C^{*}\)-ternary algebra homomorphism.

Proof

By using the proof of Theorem 3.2, there exists a unique \(C^{*}\)-ternary algebra homomorphism \(H : A \rightarrow B\) satisfying (5). Now,

$$ H(x)=\lim_{n\rightarrow\infty} \frac{1}{\lambda^{n}} f\bigl( \lambda^{n} x\bigr)\qquad \biggl(H(x)=\lim_{n\rightarrow\infty} \lambda^{n} f \biggl(\frac{x}{\lambda^{n}} \biggr) \biggr) $$
(8)

for all \(x\in A\) and all real numbers \(\lambda>1\) (\(0<\lambda<1\)). Therefore, by the assumption, we get that \(H(x_{0})=e'\). Let \(\lambda>1\) and \(\lim_{n\rightarrow\infty} \frac{1}{\lambda^{n}} f(\lambda^{n} x_{0}) = e'\). It follows from (4) and (8) that

$$\begin{aligned}& \mu_{[H(x),H(y),H(z)]-[H(x), H(y), f(z)]}(t) \\& \quad = \mu_{H[x,y,z]-[H(x), H(y), f(z)]}(t) \\& \quad = \lim_{n\rightarrow\infty}\mu_{ \frac{1}{\lambda^{2n}}(f([\lambda^{n} x,\lambda^{n} y, z]) - [f(\lambda^{n} x),f(\lambda^{n} y),f(z) ])}(t) \\& \quad = \lim_{n\rightarrow\infty}\mu_{ f([\lambda^{n} x,\lambda^{n} y, z]) - [f(\lambda^{n} x),f(\lambda^{n} y),f(z) ]}\bigl( \lambda^{2n}t\bigr) \\& \quad \ge \lim_{n\rightarrow\infty} \psi_{\lambda^{x}, \lambda^{y}, \lambda^{z}}\bigl( \lambda^{2n}t\bigr) \\& \quad = \psi_{x,y,z} \biggl(\frac{\lambda^{2n}}{\lambda^{2ns}}t \biggr) \\& \quad = 1 \end{aligned}$$

for all \(x\in A\) and \(t>0\) and so

$$\bigl[H(x),H(y),H(z)\bigr]=\bigl[H(x), H(y), f(z)\bigr] $$

for all \(x,y,z\in A\). Letting \(x=y=x_{0}\) in the last equality, we get \(f(z)=H(z)\) for all \(z\in A\).

Similarly, one can show that \(H(x)=f(x)\) for all \(x\in A\) when \(0<\lambda<1\) and \(\lim_{n\rightarrow\infty} \lambda^{n} f(\frac{x_{0}}{\lambda^{n}})=e'\). Therefore, the mapping \(f : A \rightarrow B\) is a \(C^{*}\)-ternary algebra homomorphism. This completes the proof. □

Theorem 3.4

Let \(r>1\), \(s>3\), θ be non-negative real numbers and let \(f:A \rightarrow B\) be a mapping satisfying (3) and (4). If there exists a real number \(0<\lambda<1\) (\(\lambda>1\)) and an element \(x_{0}\in A\) such that

$$\lim_{n\rightarrow\infty} \frac{1}{\lambda^{n}} f\bigl(\lambda^{n} x_{0}\bigr) = e' \qquad \biggl(\lim_{n\rightarrow\infty} \lambda^{n} f\biggl(\frac{x_{0}}{\lambda^{n}}\biggr) = e' \biggr), $$

then the mapping \(f : A \rightarrow B\) is a \(C^{*}\)-ternary algebra homomorphism.

Proof

The proof is similar to the proof of Theorem 3.3 and we omit it. □

References

  1. Cayley, A: On the 34 concomitants of the ternary cubic. Am. J. Math. 4, 1-15 (1881)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kapranov, M, Gelfand, IM, Zelevinskii, A: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Berlin (1994)

    MATH  Google Scholar 

  3. Kerner, R: Ternary algebraic structures and their applications in physics. Univ. P. and M. Curie preprint, Paris (2000)

  4. Kerner, R: The cubic chessboard: geometry and physics. Class. Quantum Gravity 14(1A), A203-A225 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Abramov, V, Kerner, R, Le Roy, B: Hypersymmetry: a \(\mathbf{Z}_{3}\)-graded generalization of supersymmetry. J. Math. Phys. 38, 1650-1669 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daletskii, YL, Takhtajan, L: Leibniz and Lie algebra structures for Nambu algebras. Lett. Math. Phys. 39, 127-141 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, SS, Cho, YJ, Kang, SM: Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Science Publishers, New York (2001)

    MATH  Google Scholar 

  8. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North-Holland, New York (1983)

    MATH  Google Scholar 

  9. Sherstnev, AN: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149, 280-283 (1963) (in Russian)

    MathSciNet  Google Scholar 

  10. Mirmostafaee, AK: Perturbation of generalized derivations in fuzzy Menger normed algebras. Fuzzy Sets Syst. 195, 109-117 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cho, YJ, Rassias, TM, Saadati, R: Stability of Functional Equations in Random Normed Spaces. Springer Optimization and Its Applications, vol. 86. Springer, New York (2013)

    MATH  Google Scholar 

  12. Lee, SJ, Saadati, R: On stability of functional inequalities at random lattice ϕ-normed spaces. J. Comput. Anal. Appl. 15(8), 1403-1412 (2013)

    MATH  MathSciNet  Google Scholar 

  13. Vahidi, J, Park, C, Saadati, R: A functional equation related to inner product spaces in non-Archimedean -random normed spaces. J. Inequal. Appl. 2012, 168 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kang, JI, Saadati, R: Approximation of homomorphisms and derivations on non-Archimedean random Lie \(C^{\ast}\)-algebras via fixed point method. J. Inequal. Appl. 2012, 251 (2012)

    Article  MathSciNet  Google Scholar 

  15. Park, C, Eshaghi Gordji, M, Saadati, R: Random homomorphisms and random derivations in random normed algebras via fixed point method. J. Inequal. Appl. 2012, 194 (2012)

    Article  MathSciNet  Google Scholar 

  16. Rassias, JM, Saadati, R, Sadeghi, G, Vahidi, J: On nonlinear stability in various random normed spaces. J. Inequal. Appl. 2011, 62 (2011)

    Article  MathSciNet  Google Scholar 

  17. Cho, YJ, Saadati, R: Lattictic non-Archimedean random stability of ACQ functional equation. Adv. Differ. Equ. 2011, 31 (2011)

    Article  MathSciNet  Google Scholar 

  18. Miheţ, D, Saadati, R: On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 24(12), 2005-2009 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Miheţ, D, Saadati, R, Vaezpour, SM: The stability of the quartic functional equation in random normed spaces. Acta Appl. Math. 110(2), 797-803 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mohamadi, M, Cho, YJ, Park, C, Vetro, P, Saadati, R: Random stability on an additive-quadratic-quartic functional equation. J. Inequal. Appl. 2010, Article ID 754210 (2010)

    Article  MathSciNet  Google Scholar 

  21. Saadati, R, Vaezpour, SM, Cho, YJ: A note to paper ‘On the stability of cubic mappings and quartic mappings in random normed spaces’. J. Inequal. Appl. 2009, Article ID 214530 (2009)

    Article  MathSciNet  Google Scholar 

  22. Chauhan, S, Pant, BD: Fixed point theorems for compatible and subsequentially continuous mappings in Menger spaces. J. Nonlinear Sci. Appl. 7(2), 78-89 (2014)

    MATH  MathSciNet  Google Scholar 

  23. Miheţ, D: Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. J. Nonlinear Sci. Appl. 6(1), 35-40 (2013)

    MATH  MathSciNet  Google Scholar 

  24. Park, C, Eshaghi Gordji, M, Najati, A: Generalized Hyers-Ulam stability of an AQCQ-functional equation in non-Archimedean Banach spaces. J. Nonlinear Sci. Appl. 3(4), 272-281 (2010)

    MATH  MathSciNet  Google Scholar 

  25. Shakeri, S: A contraction theorem in Menger probabilistic metric spaces. J. Nonlinear Sci. Appl. 1(3), 189-193 (2008)

    MATH  MathSciNet  Google Scholar 

  26. Shakeri, S: A note on the ‘A contraction theorem in Menger probabilistic metric spaces’. J. Nonlinear Sci. Appl. 2(1), 25-26 (2009)

    MATH  MathSciNet  Google Scholar 

  27. Zaharia, C: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6(1), 51-59 (2013)

    MATH  MathSciNet  Google Scholar 

  28. Amyari, M, Moslehian, MS: Approximately ternary semigroup homomorphisms. Lett. Math. Phys. 77, 1-9 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bazunova, N, Borowiec, A, Kerner, R: Universal differential calculus on ternary algebras. Lett. Math. Phys. 67, 195-206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zettl, H: A characterization of ternary rings of operators. Adv. Math. 48, 117-143 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Moslehian, MS: Almost derivations on \(C^{*}\)-ternary rings. Bull. Belg. Math. Soc. Simon Stevin 14, 135-142 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Kerner, R: Ternary algebraic structures and their applications in physics. Preprint

  33. Vainerman, L, Kerner, R: On special classes of n-algebras. J. Math. Phys. 37, 2553-2565 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)

    Google Scholar 

  35. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)

    Article  MathSciNet  Google Scholar 

  36. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)

    Article  MATH  Google Scholar 

  37. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)

    Article  MATH  Google Scholar 

  38. Rassias, TM: Problem 16; 2. Report of the 27th International Symp. on Functional Equations. Aequ. Math. 39, 292-293 (1990)

    Google Scholar 

  39. Gajda, Z: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431-434 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rassias, TM, Šemrl, P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc. 114, 989-993 (1992)

    Article  MATH  Google Scholar 

  41. Gǎvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994)

    Article  MathSciNet  Google Scholar 

  42. Jung, S: On the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 204, 221-226 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Czerwik, P: Functional Equations and Inequalities in Several Variables. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  44. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)

    Book  MATH  Google Scholar 

  45. Isac, G, Rassias, TM: Stability of ψ-additive mappings: applications to nonlinear analysis. Int. J. Math. Math. Sci. 19, 219-228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  46. Park, C: Homomorphisms between Poisson \(JC^{*}\)-algebras. Bull. Braz. Math. Soc. 36, 79-97 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for giving useful comments and suggestions for the improvement of this paper. The third author was supported by the 2015 scientific promotion program funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Oh Yang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, Y.J., Saadati, R. & Yang, YO. Random \(C^{*}\)-ternary algebras and application. J Inequal Appl 2015, 26 (2015). https://doi.org/10.1186/s13660-014-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-014-0527-x

MSC

  • 39B52
  • 17A40
  • 46B03

Keywords

  • random \(C^{*}\)-ternary algebra
  • \(C^{*}\)-ternary algebra homomorphism
  • random complex Banach spaces