- Research
- Open Access
- Published:
Symmetric duality for a higher-order nondifferentiable multiobjective programming problem
Journal of Inequalities and Applications volume 2015, Article number: 3 (2015)
Abstract
In this paper, a pair of Wolfe type higher-order nondifferentiable symmetric dual programs over arbitrary cones has been studied and then well-suited duality relations have been established considering K-F convexity assumptions. An example which satisfies the weak duality relation has also been depicted.
MSC:90C29, 90C30, 49N15.
1 Introduction
Consider the following multiobjective programming problem:

where be open,
,
, K, and C are closed convex pointed cones with nonempty interiors in
and
, respectively.
Several researchers have studied the duality relations for different dual problems of (P) under various generalized convexity assumptions. Chen [1] considered a pair of symmetric higher-order Mond-Weir type nondifferentiable multiobjecive programming problems and established duality relations under higher-order F-convexity assumptions. Later on, Agarwal et al. [2] have filled some of the gap in the work of Chen [1] and proved a strong duality theorem for a Mond-Weir type multiobjective higher-order nondifferentiable symmetric dual program. Khurana [3] considered a pair of Mond-Weir type symmetric dual multiobjective programs over arbitrary cones and established duality results under cone-pseudoinvex and strongly cone-pseudoinvex assumptions. Later on, Kim and Kim [4] extended the results in Khurana [3] to the nondifferentiable multiobjective symmetric dual problem. Gupta and Jayswal [5] studied the higher-order Mond-Weir type multiobjective symmetric duality over cones using higher-order cone-preinvex and cone-pseudoinvex functions, which further extends some of the results in [3, 6, 7].
Agarwal et al. [8] formulated a pair of Mond-Weir type nondifferentiable multiobjective higher-order symmetric dual programs over arbitrary cones and established duality theorems under higher-order K-F convexity assumptions. In the recent work of Suneja and Louhan [9], the authors have considered Wolfe and Mond-Weir type differentiable symmetric higher-order dual pairs. The Mond-Weir type model studied in [9] is similar to the problem considered in Gupta and Jayswal [5]. However, the strong duality result in [9] is for arbitrary cones in instead of only those cones which contain the nonnegative orthant of
as considered in [5].
In the present paper, a pair of Wolfe type higher-order multiobjective nondifferentiable symmetric dual program have been formulated and we established weak, strong, and converse duality theorems under K-F convexity assumptions. We also illustrate a nontrivial example of a function which satisfies the weak duality relation.
2 Definitions and preliminaries
Let and
be closed convex cones with nonempty interiors and let
and
be nonempty open sets in
and
, respectively such that
. For a real valued twice differentiable function
defined on
,
denotes the gradient vector of f with respect to x at
,
denotes the Hessian matrix with respect to x at
. Similarly,
,
, and
are also defined.
Definition 2.1 [8]
A point is a weak efficient solution of (P) if there exists no
such that

Definition 2.2 [5]
A point is an efficient solution of (P) if there exists no
such that

Definition 2.3 The positive dual cone of K is defined by

Definition 2.4 For all , a functional
is said to be sublinear with respect to the third variable, if
-
(i)
for all
,
-
(ii)
, for all
and for all
.
For convenience, we write .
Definition 2.5 [8]
Let be a sublinear functional with respect to the third variable. Also, let
,
be a differentiable function. Then the function
is said to be higher-order K-F convex in the first variable at
for fixed
with respect to h, such that for
,
,
,

Definition 2.6 [10]
Let φ be a compact convex set in . The support function of φ is defined by

The subdifferentiable of is given by

For any set , the normal cone to S at a point
is defined by

For each , let
,
and
be differentiable functions.
and
, for
and
,
.
and
are the positive dual cones of
and
, respectively. D and E are the compact convex sets in
and
, respectively. Also, we use the following notations:

3 Problem formulation
Consider the following pair of Wolfe type higher-order nondifferentiable multiobjective symmetric dual programs:




where is fixed.
Remark 3.1 If and
, then our problems (WHP) and (WHD) become the problem studied in Suneja and Louhan [9].
Next, we will prove weak, strong, and converse duality results between (WHP) and (WHD).
Theorem 3.1 (Weak duality)
Letand
be feasible solutions for (WHP) and (WHD), respectively. Assume the following conditions hold:
-
(I)
is higher-orderK-Fconvex atuwith respect to
for fixedv,
-
(II)
is higher-orderK-Gconvex atywith respect to
for fixed x,
-
(III)
,
whereand
are the sublinear functionals with respect to the third variable and satisfy the following conditions:


Then

Proof We shall obtain the proof by contradiction. Let (5) not hold. Then

It follows from and
that

Now, since is higher-order K-F convex at u with respect to
for fixed v, we get

Using and
, it follows that

Since (by hypothesis (III)), hence
. Therefore, using (2) and sublinearity of F in the above expression, we obtain

It follows from (A) and the dual constraint (3) that

for .
Similarly, using hypothesis (II), (B), , (1), (2), and sublinearity of G, we obtain

for .
Now, adding (7) and (8), we have

Finally, it follows from and
that

which contradicts (6). Hence the result. □
Example 3.1 Let ,
. Let
,
, and
.
Then and
. Obviously,
.
Let ,
and
be defined as

Let and
. Then
and
. Suppose
. Also, suppose the sublinear functionals F and G are defined as

Now, substituting the above defined expressions in the problems (WHP) and (WHD), we get

Now, we shall show that for the primal-dual pair (EP) and (ED), the hypotheses of Theorem 3.1 hold.
(A.1) is higher-order K-F convex at
with respect to
for fixed v and for all
,
, and we have

(A.2) is higher-order K-G convex at
with respect to
for fixed x and for all
,
, and we have

(A.3)

The points and
are feasible for the problems (EP) and (ED), respectively. These feasible points do satisfy the result of the weak duality theorem since

Theorem 3.2 (Strong duality)
Letbe a weak efficient solution of (WHD). Let
-
(I)
the Hessian matrix
for all
be positive or negative definite;
-
(II)
, for some
imply that
for all
;
-
(III)
, for all
;
-
(IV)
the set of vectors
be linearly independent;
-
(V)
,
,
, for all
.
Then
-
(I)
there exists
such that
is feasible for (WHD) and
-
(II)
the objective values of (WHP) and (WHD) are equal.
Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (WHP) and (WHD), thenis an efficient solution for (WHD).
Proof Since is a weak efficient solution for (WHP), by the Fritz John necessary optimality conditions [11], there exist
,
, and
such that









Now, hypothesis (I) and (12) imply that

Using (18) in (10), we have

which yields

Now, we claim that for all
. On the contrary, suppose that for some
,
, then using hypothesis (II), we have

This contradicts hypothesis (III) (by (20) and (21)). Hence,

Using (22) in (18), we have ,
.
Since ,
for at least one i,

It follows from (11) and (23) that ,
, which from
implies
.
From (19), (22), and hypothesis (V), we get

which from hypothesis (IV) yields

Now, if , then
. Therefore, from (23), we get
and hence,
. This contradicts (17). Thus
. Since
and
, we have

From (23) and (25), we obtain

Further, using inequalities (18), (23)-(25) in (9), we obtain

For , it follows from (22) and hypothesis (V) that

Let . Then
and hence from (26), we have

Therefore, .
Thus, is a feasible solution for the dual problem.
Consider and
in (26), we get

which implies that

Now, (15) and (23) yield . Since
,
.
Again as E is a compact convex set in ,
.
Further, (13), (23), and (25) yield

By hypothesis (V) for , (22), (27)-(28), we obtain

Hence, the two objective values are equal.
Now, let be not an efficient solution of (WHD), then there exists a point
feasible for (WHD) such that

From (27), (28), and hypothesis (V) for and
, we obtain

which contradicts Theorem 3.1. Hence, is the efficient solution of (WHD). □
Theorem 3.3 (Converse duality)
Letbe a weak efficient solution of (WHP). Let
-
(I)
the Hessian matrix
for all
be positive or negative definite;
-
(II)
, for some
implies that
for all
;
-
(III)
, for all
;
-
(IV)
the set of vectors
be linearly independent;
-
(V)
,
,
, for all
.
Then
-
(I)
there exists
such that
is feasible for (WHP) and
-
(II)
the objective values of (WHP) and (WHD) are equal.
Also, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (WHP) and (WHD), thenis an efficient solution for (WHP).
Proof The proof follows along the lines of Theorem 3.2. □
References
Chen X: Higher-order symmetric duality in nondifferentiable multiobjective programming problems.J. Math. Anal. Appl. 2004, 290:423–435. 10.1016/j.jmaa.2003.10.004
Agarwal RP, Ahmad I, Gupta SK: A note on higher-order nondifferentiable symmetric duality in multiobjective programming.Appl. Math. Lett. 2011, 24:1308–1311. 10.1016/j.aml.2011.02.021
Khurana S: Symmetric duality in multiobjective programming involving generalized cone-invex functions.Eur. J. Oper. Res. 2005, 165:592–597. 10.1016/j.ejor.2003.03.004
Kim MH, Kim DS: Nondifferentiable symmetric duality for multiobjective programming with cone constraints.Eur. J. Oper. Res. 2008, 188:652–661. 10.1016/j.ejor.2007.05.005
Gupta SK, Jayswal A: Multiobjective higher-order symmetric duality involving generalized cone-invex functions.Comput. Math. Appl. 2010, 60:3187–3192. 10.1016/j.camwa.2010.10.023
Gulati TR, Gupta SK: Higher-order symmetric duality with cone constraints.Appl. Math. Lett. 2009, 22:776–781. 10.1016/j.aml.2008.08.017
Gulati TR, Mehndiratta G: Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones.Optim. Lett. 2010, 4:293–309. 10.1007/s11590-009-0161-6
Agarwal RP, Ahmad I, Jayswal A: Higher-order symmetric duality in nondifferentiable multiobjective programming problems involving generalized cone convex functions.Math. Comput. Model. 2010, 52:1644–1650. 10.1016/j.mcm.2010.06.030
Suneja SK, Louhan P: Higher-order symmetric duality under cone-invexity and other related concepts.J. Comput. Appl. Math. 2014, 255:825–836.
Gupta SK, Kailey N, Kumar S:Duality for nondifferentiable multiobjective higher-order symmetric programs over cones involving generalized
-convexity.J. Inequal. Appl. 2012., 2012: Article ID 298
Suneja SK, Aggarwal S, Davar S: Multiobjective symmetric duality involving cones.Eur. J. Oper. Res. 2002, 141:471–479. 10.1016/S0377-2217(01)00258-2
Acknowledgements
The authors wish to thank the reviewer for her/his valuable and constructive suggestions, which have considerably improved the presentation of the paper. The first author is also grateful to the Ministry of Human Resource and Development, India for financial support to carry out this work.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All the authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Debnath, I.P., Gupta, S.K. & Kumar, S. Symmetric duality for a higher-order nondifferentiable multiobjective programming problem. J Inequal Appl 2015, 3 (2015). https://doi.org/10.1186/1029-242X-2015-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1029-242X-2015-3
Keywords
- symmetric duality
- higher-order K-F convexity
- multiobjective programming
- support function
- efficient solutions