# RETRACTED ARTICLE: Minimally thin sets associated with the stationary Schrödinger operator

## Abstract

This paper gives some new criteria for a-minimally thin sets at infinity with respect to the Schrödinger operator in a cone, which supplement the results obtained by Long-Gao-Deng.

MSC:31B05, 31B10.

## 1 Introduction and results

Let R and ${\mathbf{R}}_{+}$ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by ${\mathbf{R}}^{n}$ ($n\ge 2$) the n-dimensional Euclidean space. A point in ${\mathbf{R}}^{n}$ is denoted by $P=\left(X,{x}_{n}\right)$, $X=\left({x}_{1},{x}_{2},\dots ,{x}_{n-1}\right)$. The Euclidean distance between two points P and Q in ${\mathbf{R}}^{n}$ is denoted by $|P-Q|$. Also $|P-O|$ with O the origin of ${\mathbf{R}}^{n}$ is simply denoted by $|P|$. The boundary and the closure of a set S in ${\mathbf{R}}^{n}$ are denoted by ∂S and $\overline{S}$, respectively.

We introduce a system of spherical coordinates $\left(r,\mathrm{\Theta }\right)$, $\mathrm{\Theta }=\left({\theta }_{1},{\theta }_{2},\dots ,{\theta }_{n-1}\right)$, in ${\mathbf{R}}^{n}$ which are related to Cartesian coordinates $\left({x}_{1},{x}_{2},\dots ,{x}_{n-1},{x}_{n}\right)$ by ${x}_{n}=rcos{\theta }_{1}$.

Let D be an arbitrary domain in ${\mathbf{R}}^{n}$ and ${\mathcal{A}}_{a}$ denote the class of nonnegative radial potentials $a\left(P\right)$, i.e. $0\le a\left(P\right)=a\left(r\right)$, $P=\left(r,\mathrm{\Theta }\right)\in D$, such that $a\in {L}_{\mathrm{loc}}^{b}\left(D\right)$ with some $b>n/2$ if $n\ge 4$ and with $b=2$ if $n=2$ or $n=3$.

If $a\in {\mathcal{A}}_{a}$, then the stationary Schrödinger operator

${\mathit{Sch}}_{a}=-\mathrm{\Delta }+a\left(P\right)I=0,$

where Δ is the Laplace operator and I is the identical operator, can be extended in the usual way from the space ${C}_{0}^{\mathrm{\infty }}\left(D\right)$ to an essentially self-adjoint operator on ${L}^{2}\left(D\right)$ (see [[1], Ch. 11]). We will denote it ${\mathit{Sch}}_{a}$ as well. This last one has a Green a-function ${G}_{D}^{a}\left(P,Q\right)$. Here ${G}_{D}^{a}\left(P,Q\right)$ is positive on D and its inner normal derivative $\partial {G}_{D}^{a}\left(P,Q\right)/\partial {n}_{Q}\ge 0$, where $\partial /\partial {n}_{Q}$ denotes differentiation at Q along the inward normal into D.

We call a function $u\not\equiv -\mathrm{\infty }$ that is upper semi-continuous in D a subfunction with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$ if it values belong to the interval $\left[-\mathrm{\infty },\mathrm{\infty }\right)$ and at each point $P\in D$ with $0 the generalized mean-value inequality (see [1])

$u\left(P\right)\le {\int }_{S\left(P,r\right)}u\left(Q\right)\frac{\partial {G}_{B\left(P,r\right)}^{a}\left(P,Q\right)}{\partial {n}_{Q}}\phantom{\rule{0.2em}{0ex}}d\sigma \left(Q\right)$

is satisfied, where ${G}_{B\left(P,r\right)}^{a}\left(P,Q\right)$ is the Green a-function of ${\mathit{Sch}}_{a}$ in $B\left(P,r\right)$ and $d\sigma \left(Q\right)$ is a surface measure on the sphere $S\left(P,r\right)=\partial B\left(P,r\right)$. If −u is a subfunction, then we call u a superfunctions (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$). If a function u is both subfunction and superfunction, it is, clearly, continuous and is called an a-harmonic function (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$).

The unit sphere and the upper half unit sphere in ${\mathbf{R}}^{n}$ are denoted by ${\mathbf{S}}^{n-1}$ and ${\mathbf{S}}_{+}^{n-1}$, respectively. For simplicity, a point $\left(1,\mathrm{\Theta }\right)$ on ${\mathbf{S}}^{n-1}$ and the set $\left\{\mathrm{\Theta };\left(1,\mathrm{\Theta }\right)\in \mathrm{\Omega }\right\}$ for a set Ω, $\mathrm{\Omega }\subset {\mathbf{S}}^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\mathrm{\Xi }\subset {\mathbf{R}}_{+}$ and $\mathrm{\Omega }\subset {\mathbf{S}}^{n-1}$, the set $\left\{\left(r,\mathrm{\Theta }\right)\in {\mathbf{R}}^{n};r\in \mathrm{\Xi },\left(1,\mathrm{\Theta }\right)\in \mathrm{\Omega }\right\}$ in ${\mathbf{R}}^{n}$ is simply denoted by $\mathrm{\Xi }×\mathrm{\Omega }$. By ${C}_{n}\left(\mathrm{\Omega }\right)$, we denote the set ${\mathbf{R}}_{+}×\mathrm{\Omega }$ in ${\mathbf{R}}^{n}$ with the domain Ω on ${\mathbf{S}}^{n-1}$. We call it a cone. We denote the set $I×\mathrm{\Omega }$ with an interval on R by ${C}_{n}\left(\mathrm{\Omega };I\right)$.

From now on, we always assume $D={C}_{n}\left(\mathrm{\Omega }\right)$. For the sake of brevity, we shall write ${G}_{\mathrm{\Omega }}^{a}\left(P,Q\right)$ instead of ${G}_{{C}_{n}\left(\mathrm{\Omega }\right)}^{a}\left(P,Q\right)$. Throughout this paper, let c denote various positive constants, because we do not need to specify them.

Let Ω be a domain on ${\mathbf{S}}^{n-1}$ with smooth boundary. Consider the Dirichlet problem

where ${\mathrm{\Lambda }}_{n}$ is the spherical part of the Laplace operator ${\mathrm{\Delta }}_{n}$

${\mathrm{\Delta }}_{n}=\frac{n-1}{r}\frac{\partial }{\partial r}+\frac{{\partial }^{2}}{\partial {r}^{2}}+\frac{{\mathrm{\Lambda }}_{n}}{{r}^{2}}.$

We denote the least positive eigenvalue of this boundary value problem by λ and the normalized positive eigenfunction corresponding to λ by $\phi \left(\mathrm{\Theta }\right)$. In order to ensure the existence of λ and a smooth $\phi \left(\mathrm{\Theta }\right)$, we put a rather strong assumption on Ω: if $n\ge 3$, then Ω is a ${C}^{2,\alpha }$-domain ($0<\alpha <1$) on ${\mathbf{S}}^{n-1}$ surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see [[2], pp.88-89] for the definition of ${C}^{2,\alpha }$-domain).

For any $\left(1,\mathrm{\Theta }\right)\in \mathrm{\Omega }$, we have (see [[3], pp.7-8])

${c}^{-1}r\phi \left(\mathrm{\Theta }\right)\le \delta \left(P\right)\le cr\phi \left(\mathrm{\Theta }\right),$
(1)

where $P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega }\right)$ and $\delta \left(P\right)=dist\left(P,\partial {C}_{n}\left(\mathrm{\Omega }\right)\right)$.

We study solutions of an ordinary differential equation,

$-{Q}^{″}\left(r\right)-\frac{n-1}{r}{Q}^{\prime }\left(r\right)+\left(\frac{\lambda }{{r}^{2}}+a\left(r\right)\right)Q\left(r\right)=0,\phantom{\rule{1em}{0ex}}0
(2)

It is well known (see, for example, [4]) that if the potential $a\in {\mathcal{A}}_{a}$, then equation (2) has a fundamental system of positive solutions $\left\{V,W\right\}$ such that V is nondecreasing with (see [5])

and W is monotonically decreasing with

We will also consider the class ${\mathcal{B}}_{a}$, consisting of the potentials $a\in {\mathcal{A}}_{a}$ such that the finite limit ${lim}_{r\to \mathrm{\infty }}{r}^{2}a\left(r\right)=k\in \left[0,\mathrm{\infty }\right)$ exists, and moreover, ${r}^{-1}|{r}^{2}a\left(r\right)-k|\in L\left(1,\mathrm{\infty }\right)$. If $a\in {\mathcal{B}}_{a}$, then the (sub)superfunctions are continuous (see [6]). In the rest of this paper, we assume that $a\in {\mathcal{B}}_{a}$ and we shall suppress this assumption for simplicity.

Denote

${\iota }_{k}^{±}=\frac{2-n±\sqrt{{\left(n-2\right)}^{2}+4\left(k+\lambda \right)}}{2},$

then the solutions to equation (2) have the asymptotic (see [2])

(3)

It is well known that the Martin boundary of ${C}_{n}\left(\mathrm{\Omega }\right)$ is the set $\partial {C}_{n}\left(\mathrm{\Omega }\right)\cup \left\{\mathrm{\infty }\right\}$, each point of which is a minimal Martin boundary point. For $P\in {C}_{n}\left(\mathrm{\Omega }\right)$ and $Q\in \partial {C}_{n}\left(\mathrm{\Omega }\right)\cup \left\{\mathrm{\infty }\right\}$, the Martin kernel can be defined by ${M}_{\mathrm{\Omega }}^{a}\left(P,Q\right)$. If the reference point P is chosen suitably, then we have

${M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)=V\left(r\right)\phi \left(\mathrm{\Theta }\right)\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{M}_{\mathrm{\Omega }}^{a}\left(P,O\right)=cW\left(r\right)\phi \left(\mathrm{\Theta }\right)$
(4)

for any $P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega }\right)$.

In [5], Long-Gao-Deng introduce the notations of a-thin (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$) at a point, a-polar set (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$) and a-minimal thin sets at infinity (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$), which generalized earlier notations obtained by Brelot and Miyamoto (see [7, 8]). A set H in ${\mathbf{R}}^{n}$ is said to be a-thin at a point Q if there is a fine neighborhood E of Q which does not intersect $H\mathrm{\setminus }\left\{Q\right\}$. Otherwise H is said to be not a-thin at Q on ${C}_{n}\left(\mathrm{\Omega }\right)$. A set H in ${\mathbf{R}}^{n}$ is called a polar set if there is a superfunction u on some open set E such that $H\subset \left\{P\in E;u\left(P\right)=\mathrm{\infty }\right\}$. A subset H of ${C}_{n}\left(\mathrm{\Omega }\right)$ is said to be a-minimal thin at $Q\in \partial {C}_{n}\left(\mathrm{\Omega }\right)\cup \left\{\mathrm{\infty }\right\}$ on ${C}_{n}\left(\mathrm{\Omega }\right)$, if there exists a point $P\in {C}_{n}\left(\mathrm{\Omega }\right)$ such that

${\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,Q\right)}^{H}\left(P\right)\ne {M}_{\mathrm{\Omega }}^{a}\left(P,Q\right),$

where ${\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,Q\right)}^{H}$ is the regularized reduced function of ${M}_{\mathrm{\Omega }}^{a}\left(\cdot ,Q\right)$ relative to H (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$).

Let H be a bounded subset of ${C}_{n}\left(\mathrm{\Omega }\right)$. Then ${\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{H}\left(P\right)$ is bounded on ${C}_{n}\left(\mathrm{\Omega }\right)$ and hence the greatest a-harmonic minorant of ${\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{H}$ is zero. When by ${G}_{\mathrm{\Omega }}^{a}\mu \left(P\right)$ we denote the Green a-potential with a positive measure μ on ${C}_{n}\left(\mathrm{\Omega }\right)$, we see from the Riesz decomposition theorem (see [[1], Theorem 2]) that there exists a unique positive measure ${\lambda }_{H}^{a}$ on ${C}_{n}\left(\mathrm{\Omega }\right)$ such that (see [[5], p.6])

${\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{H}\left(P\right)={G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right)$

for any $P\in {C}_{n}\left(\mathrm{\Omega }\right)$ and ${\lambda }_{H}^{a}$ is concentrated on ${I}_{H}$, where

The Green a-energy ${\gamma }_{\mathrm{\Omega }}^{a}\left(H\right)$ (with respect to the Schrödinger operator ${\mathit{Sch}}_{a}$) of ${\lambda }_{H}^{a}$ is defined by

${\gamma }_{\mathrm{\Omega }}^{a}\left(H\right)={\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}{G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\phantom{\rule{0.2em}{0ex}}d{\lambda }_{H}^{a}.$

Also, we can define a measure ${\sigma }_{\mathrm{\Omega }}^{a}$ on ${C}_{n}\left(\mathrm{\Omega }\right)$

${\sigma }_{\mathrm{\Omega }}^{a}\left(H\right)={\int }_{H}{\left(\frac{{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)}{\delta \left(P\right)}\right)}^{2}\phantom{\rule{0.2em}{0ex}}dP.$

Recently, Long-Gao-Deng (see [[5], Theorem 2.5]) gave a criterion that characterizes a-minimally thin sets at infinity in a cone.

Theorem A A subset H of ${C}_{n}\left(\mathrm{\Omega }\right)$ is a-minimally thin at infinity on ${C}_{n}\left(\mathrm{\Omega }\right)$ if and only if

$\sum _{j=0}^{\mathrm{\infty }}{\gamma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)W\left({2}^{j}\right){V}^{-1}\left({2}^{j}\right)<\mathrm{\infty },$

where ${H}_{j}=H\cap {C}_{n}\left(\mathrm{\Omega };\left[{2}^{j},{2}^{j+1}\right)\right)$ and $j=0,1,2,\dots$ .

In this paper, we shall obtain a series of new criteria for a-minimally thin sets at infinity on ${C}_{n}\left(\mathrm{\Omega }\right)$, which complemented Theorem A by the way completely different from theirs. Our results are essentially based on Ren and Su (see [9, 10]).

First we have the following.

Theorem 1 The following statements are equivalent.

1. (I)

A subset H of ${C}_{n}\left(\mathrm{\Omega }\right)$ is a-minimally thin at infinity on ${C}_{n}\left(\mathrm{\Omega }\right)$.

2. (II)

There exists a positive superfunction $v\left(P\right)$ on ${C}_{n}\left(\mathrm{\Omega }\right)$ such that

$\underset{P\in {C}_{n}\left(\mathrm{\Omega }\right)}{inf}\frac{v\left(P\right)}{{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)}=0$
(5)

and

$H\subset \left\{P\in {C}_{n}\left(\mathrm{\Omega }\right);v\left(P\right)\ge {M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)\right\}.$
3. (III)

There exists a positive superfunction $v\left(P\right)$ on ${C}_{n}\left(\mathrm{\Omega }\right)$ such that even if $v\left(P\right)\ge c{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)$ for any $P\in H$, there exists ${P}_{0}\in {C}_{n}\left(\mathrm{\Omega }\right)$ satisfying $v\left({P}_{0}\right).

Next we shall state Theorem 2, which is the main result in this paper.

Theorem 2 If a subset H of ${C}_{n}\left(\mathrm{\Omega }\right)$ is a-minimally thin at infinity on ${C}_{n}\left(\mathrm{\Omega }\right)$, then we have

${\int }_{H}\frac{dP}{{\left(1+|P|\right)}^{n}}<\mathrm{\infty }.$

## 2 Lemmas

In our discussions, the following estimate for the Green a-potential ${G}_{\mathrm{\Omega }}^{a}\left(P,Q\right)$ is fundamental, as follows from [1].

Lemma 1

${c}^{-1}V\left(r\right)W\left(t\right)\phi \left(\mathrm{\Theta }\right)\phi \left(\mathrm{\Phi }\right)\le {G}_{\mathrm{\Omega }}^{a}\left(P,Q\right)\le cV\left(r\right)W\left(t\right)\phi \left(\mathrm{\Theta }\right)\phi \left(\mathrm{\Phi }\right)$

for any $P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega }\right)$ and any $Q=\left(t,\mathrm{\Phi }\right)\in {C}_{n}\left(\mathrm{\Omega }\right)$ satisfying $t\ge 2r$.

Lemma 2 If H is a bounded Borel subset of ${C}_{n}\left(\mathrm{\Omega }\right)$, then

${\sigma }_{\mathrm{\Omega }}^{a}\left(H\right)\le c{\gamma }_{\mathrm{\Omega }}^{a}\left(H\right).$

Proof For any $P\in {\mathbf{R}}^{n}\mathrm{\setminus }{C}_{n}\left(\mathrm{\Omega }\right)$ and any positive number $r>0$, there exists a positive constant ${c}_{0}$ such that

$Cap\left(\left\{P+{r}^{-1}\left(Q-P\right)\in {\mathbf{R}}^{n};Q\in B\left(P,r\right)\cap \left({\mathbf{R}}^{n}\mathrm{\setminus }{C}_{n}\left(\mathrm{\Omega }\right)\right)\right\}\right)\ge {c}_{0}$

from [[11], p.178], where Cap denotes the Newtonian capacity. Then there exists a positive constant c depending only on ${c}_{0}$ and n such that

${\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}|\frac{\mathrm{\Psi }\left(P\right)}{\delta \left(P\right)}{|}^{2}\phantom{\rule{0.2em}{0ex}}dP\le c{\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}|\mathrm{\nabla }\mathrm{\Psi }\left(P\right){|}^{2}\phantom{\rule{0.2em}{0ex}}dP$
(6)

for every $\mathrm{\Psi }\left(P\right)\in {C}_{0}^{\mathrm{\infty }}\left({C}_{n}\left(\mathrm{\Omega }\right)\right)$ (see [[11], Theorem 2]).

It is well known that the Green a-energy also can be represented as (see [[12], p.57])

${\gamma }_{\mathrm{\Omega }}^{a}\left(H\right)={\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}|\mathrm{\nabla }{G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right){|}^{2}\phantom{\rule{0.2em}{0ex}}dP.$
(7)

From equation (1) and Lemma 1 we have

${\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}|\frac{{G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right)}{\delta \left(P\right)}{|}^{2}\phantom{\rule{0.2em}{0ex}}dP<\mathrm{\infty }.$
(8)

From equations (7) and (8) we obtain ${G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right)\in {\mathrm{\Gamma }}_{\mathrm{\Omega }}$, where

${\mathrm{\Gamma }}_{\mathrm{\Omega }}=\left\{f\in {L}_{\mathrm{loc}}^{2}\left({C}_{n}\left(\mathrm{\Omega }\right)\right);\mathrm{\nabla }f\in {L}^{2}\left({C}_{n}\left(\mathrm{\Omega }\right)\right),{\delta }^{-1}f\in {L}^{2}\left({C}_{n}\left(\mathrm{\Omega }\right)\right)\right\}$

equipped with the norm

${\parallel f\parallel }_{{\mathrm{\Gamma }}_{\mathrm{\Omega }}}={\left({\parallel \mathrm{\nabla }f\parallel }_{{L}^{2}\left({C}_{n}\left(\mathrm{\Omega }\right)\right)}^{2}+{\parallel {\delta }^{-1}f\parallel }_{{L}^{2}\left({C}_{n}\left(\mathrm{\Omega }\right)\right)}^{2}\right)}^{\frac{1}{2}},$

and further ${G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right)\in {\mathrm{\Gamma }}_{\mathrm{\Omega }}^{0}$, where ${\mathrm{\Gamma }}_{\mathrm{\Omega }}^{0}$ denotes the closure of ${C}_{0}^{\mathrm{\infty }}\left({C}_{n}\left(\mathrm{\Omega }\right)\right)$ in ${\mathrm{\Gamma }}_{\mathrm{\Omega }}$.

Thus we obtain from equation (6) (see [[13], p.288])

${\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}|\frac{{G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right)}{\delta \left(P\right)}{|}^{2}\phantom{\rule{0.2em}{0ex}}dP\le c{\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}|\mathrm{\nabla }{G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right){|}^{2}\phantom{\rule{0.2em}{0ex}}dP.$

Since ${G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}={M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)$ quasi everywhere on H and hence a.e. on H, we have from equation (7)

$\begin{array}{rcl}{\gamma }_{\mathrm{\Omega }}^{a}\left(H\right)& \ge & {c}^{-1}{\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}{\left(\frac{{G}_{\mathrm{\Omega }}^{a}{\lambda }_{H}^{a}\left(P\right)}{\delta \left(P\right)}\right)}^{2}\phantom{\rule{0.2em}{0ex}}dP\\ \ge & {c}^{-1}{\int }_{{C}_{n}\left(\mathrm{\Omega }\right)}{\left(\frac{{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)}{\delta \left(P\right)}\right)}^{2}\phantom{\rule{0.2em}{0ex}}dP\\ =& {c}^{-1}{\sigma }_{\mathrm{\Omega }}^{a}\left(H\right),\end{array}$

which gives the conclusion of Lemma 2. □

## 3 Proof of Theorem 1

We shall show that (II) follows from (I). Since

${\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{{H}_{j}}\left(Q\right)={M}_{\mathrm{\Omega }}^{a}\left(Q,\mathrm{\infty }\right)$

for any $Q\in {I}_{{H}_{j}}$ and ${\lambda }_{{H}_{j}}$ is concentrated on ${I}_{{H}_{j}}$, we have

$\begin{array}{rcl}{\gamma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)& =& {\int }_{{I}_{{H}_{j}}}{M}_{\mathrm{\Omega }}^{a}\left(Q,\mathrm{\infty }\right)\phantom{\rule{0.2em}{0ex}}d{\lambda }_{{H}_{j}}^{a}\left(Q\right)\\ \ge & V\left({2}^{j}\right){\int }_{{I}_{{H}_{j}}}\phi \left(\mathrm{\Phi }\right)\phantom{\rule{0.2em}{0ex}}d{\lambda }_{{H}_{j}}^{a}\left(Q\right)\end{array}$

for any $Q=\left(t,\mathrm{\Phi }\right)\in {C}_{n}\left(\mathrm{\Omega }\right)$ and hence from Lemma 1

$\begin{array}{rcl}{\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{{H}_{j}}\left(P\right)& \le & cV\left(r\right)\phi \left(\mathrm{\Theta }\right){\int }_{{I}_{{H}_{j}}}W\left(t\right)\phi \left(\mathrm{\Phi }\right)\phantom{\rule{0.2em}{0ex}}d{\lambda }_{{H}_{j}}^{a}\left(Q\right)\\ \le & cV\left(r\right)\phi \left(\mathrm{\Theta }\right)W\left({2}^{j}\right){V}^{-1}\left({2}^{j}\right){\gamma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)\end{array}$
(9)

for any $P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega }\right)$ and any integer j satisfying ${2}^{j}\ge 2r$.

If we define a measure μ on ${C}_{n}\left(\mathrm{\Omega }\right)$ by

$\mu =\sum _{j=0}^{\mathrm{\infty }}{\lambda }_{{H}_{j}}^{a},$

then

${G}_{\mathrm{\Omega }}^{a}\mu \left(P\right)=\sum _{j=0}^{\mathrm{\infty }}{\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{{H}_{j}}\left(P\right).$

From equation (9), (I), and Theorem A, we know that ${G}_{\mathrm{\Omega }}^{a}\mu \left(P\right)$ is a finite superfunction on ${C}_{n}\left(\mathrm{\Omega }\right)$ and

${G}_{\mathrm{\Omega }}^{a}\mu \left(P\right)\ge {\stackrel{ˆ}{R}}_{{M}_{\mathrm{\Omega }}^{a}\left(\cdot ,\mathrm{\infty }\right)}^{{H}_{j}}\left(P\right)=V\left(r\right)\phi \left(\mathrm{\Theta }\right)$

for any $P=\left(r,\mathrm{\Theta }\right)\in {I}_{{H}_{j}}$ ($j=0,1,2,3,\dots$) and from Lemma 1

${G}_{\mathrm{\Omega }}^{a}\mu \left(P\right)\ge {c}_{1}V\left(r\right)\phi \left(\mathrm{\Theta }\right)$

for any $P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega };\left(0,1\right)\right)$ and

${c}_{1}={c}^{-1}{\int }_{{C}_{n}\left(\mathrm{\Omega };\left[2r,\mathrm{\infty }\right)\right)}W\left(t\right)\phi \left(\mathrm{\Phi }\right)\phantom{\rule{0.2em}{0ex}}d\mu \left(Q\right).$

If we set ${H}^{\prime }={\bigcup }_{j=-1}^{\mathrm{\infty }}{I}_{{H}_{j}}$, where

${H}_{-1}=H\cap {C}_{n}\left(\mathrm{\Omega };\left(0,1\right)\right),$
(10)

and ${c}_{2}=min\left\{{c}_{1},1\right\}$, then

${H}^{\prime }\subset \left\{P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega }\right);{G}_{\mathrm{\Omega }}^{a}\mu \left(P\right)\ge {c}_{2}V\left(r\right)\phi \left(\mathrm{\Theta }\right)\right\}$

and ${H}^{\prime }$ is equal to H except a polar set ${H}_{0}$. If we define a positive measure η on ${C}_{n}\left(\mathrm{\Omega }\right)$ such that ${G}_{\mathrm{\Omega }}^{a}\mu$ is identically +∞ on ${H}_{0}$ and define a measure ν on ${C}_{n}\left(\mathrm{\Omega }\right)$ by $\nu ={c}_{2}^{-1}\left(\mu +\eta \right)$, then

$H\subset \left\{P=\left(r,\mathrm{\Theta }\right)\in {C}_{n}\left(\mathrm{\Omega }\right);{G}_{\mathrm{\Omega }}^{a}\nu \left(P\right)\ge V\left(r\right)\phi \left(\mathrm{\Theta }\right)\right\}.$

If we put $v\left(P\right)={G}_{\mathrm{\Omega }}^{a}\nu \left(P\right)$, then this shows that $v\left(P\right)$ is the function required in (II).

Now we shall show that (III) follows from (II). Let $v\left(P\right)$ be the function in (II). It follows that $v\left(P\right)\ge {M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)$ for any $P\in H$. On the other hand, from equation (5) we can find a point ${P}_{0}\in {C}_{n}\left(\mathrm{\Omega }\right)$ such that $v\left({P}_{0}\right)<{M}_{\mathrm{\Omega }}^{a}\left({P}_{0},\mathrm{\infty }\right)$. Therefore $v\left(P\right)$ satisfies (III) with $c=1$.

Finally, we shall prove that (I) follows from (III). Let $v\left(P\right)$ be the function in (III). If we put

$\underset{P\in {C}_{n}\left(\mathrm{\Omega }\right)}{inf}\frac{v\left(P\right)}{{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)}=c\left(\mathrm{\infty },v\right)$

and

$u\left(P\right)=v\left(P\right)-c\left(\mathrm{\infty },v\right){M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right),$

then we have

$\underset{P\in {C}_{n}\left(\mathrm{\Omega }\right)}{inf}\frac{u\left(P\right)}{{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)}=0,$

where $c\left(\mathrm{\infty },v\right)$ is a positive constant depending only on ∞ and v. Since there exists ${P}_{0}\in {C}_{n}\left(\mathrm{\Omega }\right)$ satisfying $v\left({P}_{0}\right)<{c}_{3}{M}_{\mathrm{\Omega }}^{a}\left({P}_{0},\mathrm{\infty }\right)$, we note that ${c}_{3}>c\left(\mathrm{\infty },v\right)$. Now we obtain $u\left(P\right)\ge \left({c}_{3}-c\left(\mathrm{\infty },v\right)\right){M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)$ for any $P\in H$. Hence by a result of [[12], p.69], H is a-minimally thin at infinity on ${C}_{n}\left(\mathrm{\Omega }\right)$ with respect to the Schrödinger operator, which is the statement of (I). Thus we complete the proof of Theorem 1.

## 4 Proof of Theorem 2

First of all, we remark that

$\begin{array}{rcl}{\int }_{H}\frac{dP}{{\left(1+|P|\right)}^{n}}& =& {\int }_{{H}_{-1}}\frac{dP}{{\left(1+|P|\right)}^{n}}+\sum _{j=0}^{\mathrm{\infty }}{\int }_{{H}_{j}}\frac{dP}{{\left(1+|P|\right)}^{n}}\\ \le & |{H}_{-1}|+\sum _{j=0}^{\mathrm{\infty }}{2}^{-jn}|{H}_{j}|,\end{array}$
(11)

where ${H}_{-1}$ is the set in equation (10) and $|{H}_{j}|$ is the n-dimensional Lebesgue measure of ${H}_{j}$.

We have from equations (1) and (3)

$\begin{array}{rcl}{\sigma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)& =& {\int }_{{H}_{j}}{\left(\frac{{M}_{\mathrm{\Omega }}^{a}\left(P,\mathrm{\infty }\right)}{\delta \left(P\right)}\right)}^{2}\phantom{\rule{0.2em}{0ex}}dP\\ \ge & c{\int }_{{H}_{j}}{\left(\frac{V\left(r\right)\phi \left(\mathrm{\Theta }\right)}{r\phi \left(\mathrm{\Theta }\right)}\right)}^{2}\phantom{\rule{0.2em}{0ex}}dP\\ \ge & c{\int }_{{H}_{j}}{r}^{2{\iota }_{k}^{+}-2}\phantom{\rule{0.2em}{0ex}}dP\\ \ge & c{\int }_{{H}_{j}}{2}^{j\left(2{\iota }_{k}^{+}-2\right)}\phantom{\rule{0.2em}{0ex}}dP\\ =& c{2}^{j\left(2{\iota }_{k}^{+}-2\right)}|{H}_{j}|.\end{array}$

By using Lemma 2, we obtain

${\gamma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)\ge {c}^{-1}{\sigma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)\ge c{2}^{j\left(2{\iota }_{k}^{+}-2\right)}|{H}_{j}|.$
(12)

If H is a-minimally thin at infinity on ${C}_{n}\left(\mathrm{\Omega }\right)$, then from Theorem A, equations (3), (11), and (12), we have

$\begin{array}{rcl}{\int }_{H}\frac{dP}{{\left(1+|P|\right)}^{n}}& \le & |{H}_{-1}|+c\sum _{j=0}^{\mathrm{\infty }}{2}^{j\left(2{\iota }_{k}^{+}-2\right)}|{H}_{j}|W\left({2}^{j}\right){V}^{-1}\left({2}^{j}\right)\\ \le & |{H}_{-1}|+c\sum _{j=0}^{\mathrm{\infty }}{\gamma }_{\mathrm{\Omega }}^{a}\left({H}_{j}\right)W\left({2}^{j}\right){V}^{-1}\left({2}^{j}\right)\\ <& \mathrm{\infty },\end{array}$

which is the conclusion of Theorem 2.

## References

1. Levin B, Kheyfits A: Asymptotic behavior of subfunctions of time-independent Schrödinger operator. In Some Topics on Value Distribution and Differentiability in Complex and P-Adic Analysis. Science Press, Beijing; 2008:323–397. chap. 11

2. Gilbarg D, Trudinger NS: Elliptic Partial Differential Equations of Second Order. Springer, Berlin; 1977.

3. Courant R, Hilbert D 1. In Methods of Mathematical Physics. Interscience, New York; 2008.

4. Verzhbinskii GM, Maz’ya VG: Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary. I. Sib. Math. J. 1971, 12: 874–899.

5. Long PH, Gao ZQ, Deng GT: Criteria of Wiener type for minimally thin sets and rarefied sets associated with the stationary Schrödinger operator in a cone. Abstr. Appl. Anal. 2012., 2012: Article ID 453891

6. Simon B: Schrödinger semigroups. Bull. Am. Math. Soc. 1982, 7: 447–526. 10.1090/S0273-0979-1982-15041-8

7. Brelot M Lecture Notes in Mathematics 175. In On Topologies and Boundaries in Potential Theory. Springer, Berlin; 1971.

8. Miyamoto I, Yoshida H: Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Jpn. 2002, 54: 487–512. 10.2969/jmsj/1191593906

9. Ren YD: Solving integral representations problems for the stationary Schrödinger equation. Abstr. Appl. Anal. 2013., 2013: Article ID 715252

10. Su BY: Dirichlet problem for the Schrödinger operator in a half space. Abstr. Appl. Anal. 2012., 2012: Article ID 578197

11. Lewis IL: Uniformly fat sets. Trans. Am. Math. Soc. 1988, 308: 177–196. 10.1090/S0002-9947-1988-0946438-4

12. Long, PH: The Characterizations of Exceptional Sets and Growth Properties in Classical or Nonlinear Potential Theory. Dissertation of Beijing Normal University, Beijing Normal University, Beijing, China (2012)

13. Ancona A: On strong barriers and an inequality of Hardy for domains in ${\mathbf{R}}^{n}$. J. Lond. Math. Soc. 1986, 34: 274–290.

## Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11301140 and U1304102. The author would like to thank two anonymous referees for numerous insightful comments and suggestions, which have greatly improved the paper.

## Author information

Authors

### Corresponding author

Correspondence to Tao Zhao.

### Competing interests

The author declares that there is no conflict of interests regarding the publication of this article.

## Rights and permissions

Reprints and Permissions

Zhao, T. RETRACTED ARTICLE: Minimally thin sets associated with the stationary Schrödinger operator. J Inequal Appl 2014, 67 (2014). https://doi.org/10.1186/1029-242X-2014-67