Skip to main content

Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces

Abstract

Let ω 1 , ω 2 be slowly increasing weight functions, and let ω 3 be any weight function on R n . Assume that m(ξ,η) is a bounded, measurable function on R n × R n . We define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,g C c ( R n ). We say that m(ξ,η) is a bilinear multiplier on R n of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) if B m is a bounded operator from W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 ) to W( L p 3 , L ω 3 q 3 ), where 1 p 1 q 1 <, 1 p 2 q 2 <, 1< p 3 , q 3 . We denote by BM(W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) the vector space of bilinear multipliers of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )). In the first section of this work, we investigate some properties of this space and we give some examples of these bilinear multipliers. In the second section, by using variable exponent Wiener amalgam spaces, we define the bilinear multipliers of type (W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )) from W( L p 1 ( x ) , L ω 1 q 1 )×W( L p 2 ( x ) , L ω 2 q 2 ) to W( L p 3 ( x ) , L ω 3 q 3 ), where p 1 , p 2 , p 3 <, p 1 (x) q 1 , p 2 (x) q 2 , 1 q 3 for all p 1 (x), p 2 (x), p 3 (x)P( R n ). We denote by BM(W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )) the vector space of bilinear multipliers of type (W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )). Similarly, we discuss some properties of this space.

MSC:42A45, 42B15, 42B35.

1 Introduction

Throughout this paper we will work on R n with Lebesgue measure dx. We denote by C c ( R n ), C c ( R n ) and S( R n ) the space of infinitely differentiable complex-valued functions with compact support on R n , the space of all continuous, complex-valued functions with compact support on R n and the space of infinitely differentiable complex-valued functions on R n that rapidly decrease at infinity, respectively. Let f be a complex-valued measurable function on R n . The translation, character and dilation operators T x , M x and D s are defined by T x f(y)=f(yx), M x f(y)= e 2 π i x , y f(y) and D t p f(y)= t n p f( y t ), respectively, for x,y R n , 0<p,t<. With this notation out of the way, one has, for 1p and 1 p + 1 p =1,

( T x f) g ˆ (ξ)= M x f ˆ (ξ),( M x f) g ˆ (ξ)= T x f ˆ (ξ), ( D t p f ) g ˆ (ξ)= D t 1 p f ˆ (ξ).

For 1p, L p ( R n ) denotes the usual Lebesgue space. A continuous function ω satisfying 1ω(x) and ω(x+y)ω(x)ω(y) for x,y R n will be called a weight function on R n . If ω 1 (x) ω 2 (x) for all x R n , we say that ω 1 ω 2 . For 1p, we set

L ω p ( R n ) = { f : f ω L p ( R n ) } .

It is known that L ω p ( R n ) is a Banach space under the norm

f p , ω = f ω p = { R n | f ( x ) ω ( x ) | p d x } 1 p ,1p<

or

f , ω = f ω = ess sup x R n |f(x)ω(x)|,p=.

The dual of the space L ω p ( R n ) is the space L ω 1 q ( R n ), where 1 p + 1 q =1 and ω 1 (x)= 1 ω ( x ) . We say that a weight function υ s is of polynomial type if υ s (x)= ( 1 + | x | ) s for s0. Let f be a measurable function on R n . If there exist C>0 and NN such that

|f(x)|C ( 1 + x 2 ) N

for all x R n , then f is said to be a slowly increasing function [1]. It is easy to see that polynomial-type weight functions are slowly increasing. For f L 1 ( R n ), the Fourier transform of f is denoted by f ˆ . We know that f ˆ is a continuous function on R n which vanishes at infinity and it has the inequality f ˆ f 1 . We denote by M( R n ) the space of bounded regular Borel measures, by M(ω) the space of μ in M( R n ) such that

μ ω = R n ωd|μ|<.

If μM( R n ), the Fourier-Stieltjes transform of μ is denoted by μ ˆ [2].

The space ( L p ( R n ) ) loc consists of classes of measurable functions f on R n such that f χ K L p ( R n ) for any compact subset K R n , where χ K is the characteristic function of K. Let us fix an open set Q R n with compact closure and 1p,q. The weighted Wiener amalgam space W( L p , L ω q ) consists of all elements f ( L p ( R n ) ) loc such that F f (z)= f χ z + Q p belongs to L ω q ( R n ); the norm of W( L p , L ω q ) is f W ( L p , L ω q ) = F f q , ω [35].

In this paper, P( R n ) denotes the family of all measurable functions p: R n [1,). We put

p = ess inf x R n p(x), p = ess sup x R n p(x).

We shall also use the notation

Ω = { x R n : p ( x ) = } .

The variable exponent Lebesgue spaces (or generalized Lebesgue spaces) L p ( x ) ( R n ) are defined as the set of all (equivalence classes) measurable functions f on R n such that ϱ p (λf)< for some λ>0, equipped with the Luxemburg norm

f p ( x ) =inf { λ > 0 : ϱ p ( f λ ) 1 } .

If p <, then f L p ( x ) ( R n ) if ϱ p (f)<. The set L p ( x ) ( R n ) is a Banach space with the norm p ( x ) . If p(x)=p is a constant function, then the norm p ( x ) coincides with the usual Lebesgue norm p [6]. The spaces L p ( x ) ( R n ) and L p ( R n ) have many common properties. A crucial difference between L p ( x ) ( R n ) and the classical Lebesgue spaces L p ( R n ) is that L p ( x ) ( R n ) is not invariant under translation in general. If p <, then C c ( R n ) is dense in L p ( x ) ( R n ). The space L p ( x ) ( R n ) is a solid space, that is, if f L p ( x ) ( R n ) is given and g L loc 1 ( R n ) satisfies |g(x)||f(x)| a.e., then g L p ( x ) ( R n ) and g p ( x ) f p ( x ) by [6]. In this paper we will assume that p <.

The space ( L p ( x ) ( R n ) ) loc consists of classes of measurable functions f on R n such that f χ K L p ( x ) ( R n ) for any compact subset K R n . Let us fix an open set Q R n with compact closure, p(x)P( R n ) and 1q. The variable exponent amalgam space W( L p ( x ) , L ω q ) consists of all elements f ( L p ( x ) ( R n ) ) loc such that F f (z)= f χ z + Q p ( x ) belongs to L ω q ( R n ); the norm of W( L p ( x ) , L ω q ) is f W ( L p ( x ) , L ω q ) = F f q , ω [7].

2 The bilinear multipliers space BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]

Lemma 2.1 Let 1pq< and ω be a slowly increasing weight function. Then C c ( R n ) is dense in the Wiener amalgam space W( L p , L ω q ).

Proof Since C c ( R n ) ¯ = L ω q ( R n ) [8], we have C c ( R n ) ¯ =W( L p , L ω q ) by a lemma in [9]. Also we have the inclusion

C c ( R n ) C c ( R n ) W ( L p , L ω q ) .

For the proof that C c ( R n ) is dense in W( L p , L ω q ), take any fW( L p , L ω q ). For given ε>0, there exists g C c ( R n ) such that

f g W ( L p , L ω q ) < ε 2 .
(2.1)

Also, since g C c ( R n ) L ω q ( R n ) and C c ( R n ) is dense in L ω q ( R n ), by Lemma 2.1 in [10], there exists h C c ( R n ) such that

g h q , ω < ε 2 .

Furthermore, by using the inequality pq, we write

g h W ( L p , L ω q ) g h q , ω < ε 2
(2.2)

(see [11] and [5]). Combining (2.1) and (2.2), we obtain

f h W ( L p , L ω q ) f g W ( L p , L ω q ) + h g W ( L p , L ω q ) <ε.

This completes the proof. □

Definition 2.1 Let 1 p 1 q 1 <, 1 p 2 q 2 <, 1< p 3 , q 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Assume that ω 1 , ω 2 are slowly increasing functions and m(ξ,η) is a bounded, measurable function on R n × R n . Define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,g C c ( R n ).

m is said to be a bilinear multiplier on R n of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) if there exists C>0 such that

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 )

for all f,g C c ( R n ). That means that B m extends to a bounded bilinear operator from W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 ) to W( L p 3 , L ω 3 q 3 ).

We denote by BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] the space of all bilinear multipliers of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) and m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = B m .

The following theorem is an example to a bilinear multiplier on R n of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )).

Theorem 2.1 Let 1 p 1 + 1 p 2 = 1 p 3 , 1 q 1 + 1 q 2 = 1 q 3 and ω 3 ω 1 . If K L ω 3 1 ( R n ), then m(ξ,η)= K ˆ (ξη) defines a bilinear multiplier and m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) K 1 , ω 3 .

Proof We know by Theorem 2.1 in [10] that for f,g C c ( R n ),

B m (f,g)(t)= R n f(ty)g(t+y)K(y)dy.
(2.3)

Also by Proposition 11.4.1 in [5], T y fW( L p 1 , L ω 1 q 1 ), T y gW( L p 2 , L ω 2 q 2 ). So, we write F T y f L ω 1 q 1 ( R n ), F T y g L ω 2 q 2 ( R n ).

Using the Minkowski inequality and the generalized Hölder inequality, we have

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = B m ( f , g ) χ Q + x p 3 q 3 , ω 3 = { R n f ( t y ) g ( t + y ) K ( y ) d y } χ Q + x p 3 q 3 , ω 3 R n f ( t y ) g ( t + y ) χ Q + x ( t ) p 3 q 3 , ω 3 | K ( y ) | d y R n f ( t y ) χ Q + x ( t ) p 1 g ( t + y ) χ Q + x ( t ) p 2 q 3 , ω 3 | K ( y ) | d y = R n F T y f ( x ) ω 3 ( x ) F T y g ( x ) q 3 | K ( y ) | d y .
(2.4)

Again, by using Proposition 11.4.1 in [5] and the assumption ω 3 ω 1 , we write

F T y f ω 3 q 1 ω 3 (y) f W ( L p 1 , L ω 1 q 1 ) <.
(2.5)

From this result, we find F T y f L ω 3 q 1 ( R n ). Hence by (2.4), (2.5) and the generalized Hölder inequality, we obtain

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n F T y f ( x ) ω 3 ( x ) q 1 F T y g ( x ) q 2 | K ( y ) | d y R n f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) | K ( y ) | ω 3 ( y ) d y = f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) K 1 , ω 3 = C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) ,
(2.6)

where C= K 1 , ω 3 . Then m(ξ,η)= K ˆ (ξη) defines a bilinear multiplier. Finally, using (2.6), we obtain

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) K 1 , ω 3 .

 □

Definition 2.2 Let 1 p 1 p 2 <, 1 q 1 q 2 <, 1< p 3 , q 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Suppose that ω 1 , ω 2 are slowly increasing functions. We denote by M ˜ [( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] the space of measurable functions M: R n C such that m(ξ,η)=M(ξη)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], that is to say,

B M (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)M(ξη) e 2 π i ξ + η , x dξdη

extends to a bounded bilinear map from W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 ) to W( L p 3 , L ω 3 q 3 ). We denote M ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = B M .

Let ω be a weight function. The continuous function ω 1 cannot be a weight function. But the following lemma can be proved easily by using the technique of the proof of Lemma 2.1.

Lemma 2.2 Let 1pq< and ω be a slowly increasing continuous weight function. Then C c ( R n ) is dense in W( L p , L ω 1 q ) Wiener amalgam space.

Theorem 2.2 Let 1 p 3 + 1 p 3 =1, 1 q 3 + 1 q 3 =1, q 3 p 3 1 and ω 3 be a continuous, symmetric slowly increasing weight function. Then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] if and only if there exists C>0 such that

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 1 q 3 )

for all f,g,h C c ( R n ).

Proof We assume that mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. By Theorem 2.2 in [10], we write, for all f,g,h C c ( R n ),

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = | R n h ( y ) B ˜ m ( f , g ) ( y ) d y | R n | h ( y ) | | B ˜ m ( f , g ) ( y ) | d y ,
(2.7)

where B ˜ m (f,g)(y)= B m (f,g)(y). If we set t=u, we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = F B ˜ m ( f , g ) Q q 3 , ω 3 = B m ( f , g ) ( u ) χ Q + x ( u ) p 3 q 3 , ω 3 = B m ( f , g ) ( u ) χ Q x ( u ) p 3 q 3 , ω 3 = F B m ( f , g ) Q ( x ) q 3 , ω 3 .
(2.8)

Since ω 3 is a symmetric weight function, if we set x=y, we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = F B m ( f , g ) Q ( y ) q 3 , ω 3 .
(2.9)

We know from [3] and [5] that the definition of W( L p 3 , L ω 3 q 3 ) is independent of the choice of Q. Then there exists C>0 such that

F B m ( f , g ) Q ( y ) q 3 , ω 3 C 1 F B m ( f , g ) Q ( y ) q 3 , ω 3 .
(2.10)

Hence, by (2.9) and (2.10), we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 1 F B m ( f , g ) Q ( y ) q 3 , ω 3 = C 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) .
(2.11)

Since from the assumption mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] the right-hand side of (2.11) is finite, thus B ˜ m (f,g)W( L p 3 , L ω 3 q 3 ). On the other hand, since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], there exists C 2 >0 such that

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .
(2.12)

Combining (2.11) and (2.12), we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 1 C 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .
(2.13)

If we apply the Hölder inequality to the right-hand side of inequality (2.7) and use inequality (2.13), we obtain

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) h W ( L p 3 , L ω 1 q 3 ) C 1 C 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 ) .

For the proof of converse, assume that there exists a constant C>0 such that

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 )
(2.14)

for all f,g,h C c ( R n ). From the assumption and (2.14), we write

| R n h(y) B ˜ m (f,g)(y)dy|C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 ) .
(2.15)

Define a function from C c ( R n )W( L p 3 , L ω 1 q 3 ) to such that

(h)= R n h(y) B ˜ m (f,g)(y)dy.

is linear and bounded by (2.15). Also, since q 3 p 3 1, we have C c ( R n ) ¯ =W( L p 3 , L ω 3 1 q 3 ) by Lemma 2.2. Thus extends to a bounded function from W( L p 3 , L ω 3 1 q 3 ) to . Then ( W ( L p 3 , L ω 3 1 q 3 ) ) =W( L p 3 , L ω 3 q 3 ). Again, since the definition of W( L p 3 , L ω 3 q 3 ) is independent of the choice of Q, there exists C 3 >0 such that

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 3 B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) .
(2.16)

Combining (2.15) and (2.16), we obtain

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 3 B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = C 3 = C 3 sup h W ( L p 3 , L ω 3 1 q 3 ) 1 | ( h ) | h W ( L p 3 , L ω 3 1 q 3 ) C 3 C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .

This completes proof. □

The following theorem is a generalization of Theorem 2.1.

Theorem 2.3 Let 1 p 1 + 1 p 2 = 1 p 3 , 1 q 1 + 1 q 2 = 1 q 3 , ω 3 ω 1 and υ(x)=C ( 1 + x 2 ) N , C0, NN be a weight function. If μM(υ) and m(ξ,η)= μ ˆ (αξ+βη) for α,βR, then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. Moreover,

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) μ υ if  | α | 1 , m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) | α | 2 N μ υ if  | α | > 1 .

Proof Let f,g C c ( R n ). By Theorem 2.3 in [10], we have

B m (f,g)(t)= R n f(tαy)g(tβy)dμ(y).
(2.17)

Also by [5] we write the inequalities

T α y f W ( L p 1 , L ω 1 q 1 ) ω 1 (αy) f W ( L p 1 , L ω 1 q 1 )
(2.18)

and

T β y g W ( L p 2 , L ω 2 q 2 ) ω 2 (αy) g W ( L p 2 , L ω 2 q 2 ) .
(2.19)

From these inequalities, we have F T α y f L ω 1 q 1 ( R n ) and F T β y g L ω 2 q 2 ( R n ). If we use the inequality ω 3 ω 1 and set xαt=u, we obtain

F T α y f ω 3 q 1 F T α y f ω 1 q 1 ω 1 (αy) f W ( L p 1 , L ω 1 q 1 ) ,
(2.20)

and hence F T α y f ω 3 L q 1 ( R n ). Then by (2.17), (2.18), (2.19), (2.20) and the Hölder inequality, we have

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n f ( t α y ) g ( t β y ) χ Q + x ( t ) p 3 d | μ | ( y ) q 3 , ω 3 R n f ( t α y ) χ Q + x ( t ) p 1 g ( t β y ) χ Q + x ( t ) p 2 d | μ | ( y ) q 3 , ω 3 R n F T α y f ( x ) F T β y g ( x ) q 3 , ω 3 d | μ | ( y ) R n F T α y f ( x ) ω 3 ( x ) q 1 F T β y g ( x ) q 2 d | μ | ( y ) R n ω 1 ( α y ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L q 2 ) d | μ | ( y ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) R n ω 1 ( α y ) d | μ | ( y ) .
(2.21)

Now, suppose that α1. Since ω 1 is a slowly increasing weight function, there exist C0 and NN such that

ω 1 (x)C ( 1 + x 2 ) N =υ(x).

Then

R n ω 1 (αy)d|μ|(y) R n C ( 1 + α 2 y 2 ) N d|μ|(y) R n C ( 1 + y 2 ) N d|μ|(y)= μ υ .

Hence by (2.21)

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ υ .
(2.22)

Thus mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], and by (2.22) we obtain

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ υ .

Similarly, if α>1, then

R n ω 1 (αy)d|μ|(y) R n C ( α 2 + α 2 y 2 ) N d|μ|(y)= α 2 N R n υ(y)d|μ|(y)= α 2 N μ υ .

Therefore by (2.21) we have

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) α 2 N f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ υ .
(2.23)

Hence, we obtain mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], and by (2.23)

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) α 2 N μ υ .

 □

Now, we will give some properties of the space BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

Theorem 2.4 Let mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

  1. (a)

    T ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] for each ( ξ 0 , η 0 ) R 2 n and

    T ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .
  2. (b)

    M ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] for each ( ξ 0 , η 0 ) R 2 n and

    M ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

Proof (a) Let f,g C c ( R n ). From Theorem 2.4 in [10], we write the equality

B T ( ξ 0 , η 0 ) m (f,g)(x)= e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f, M η 0 g)(x).
(2.24)

Also the equalities M ξ 0 f W ( L p 1 , L ω 1 q 1 ) = f W ( L p 1 , L ω 1 q 1 ) and M η 0 g W ( L p 2 , L ω 2 q 2 ) = g W ( L p 2 , L ω 2 q 2 ) are satisfied. Then, using equality (2.24) and the assumption mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we have

B T ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f , M η 0 g ) W ( L p 3 , L ω 3 q 3 ) = B m ( M ξ 0 f , M η 0 g ) W ( L p 3 , L ω 3 q 3 ) C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 )

for some C>0. Thus T ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. Moreover, we obtain

T ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = B T ( ξ 0 , η 0 ) m = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B T ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) = sup M ξ 0 f W ( L p 1 , L ω 1 q 1 ) 1 , M η 0 g W ( L p 2 , L ω 2 q 2 ) 1 B T ( ξ 0 , η 0 ) m ( M ξ 0 f , M η 0 g ) W ( L p 3 , L ω 3 q 3 ) M ξ 0 f W ( L p 1 , L ω 1 q 1 ) M η 0 g W ( L p 2 , L ω 2 q 2 ) = B m = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

(b) For any f,g C c ( R n ), we write

B M ( ξ 0 , η 0 ) m (f,g)(x)= B m ( T ξ 0 f, T η 0 g)(x)
(2.25)

by Theorem 2.4 in [10]. Also, the inequalities T ξ 0 f W ( L p 1 , L ω 1 q 1 ) ω 1 ( ξ 0 ) f W ( L p 1 , L ω 1 q 1 ) and T η 0 g W ( L p 2 , L ω 2 q 2 ) ω 2 ( η 0 ) g W ( L p 2 , L ω 2 q 2 ) are satisfied [5]. Since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], by (2.25) we have

B M ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = B m ( T ξ 0 f , T η 0 g ) W ( L p 3 , L ω 3 q 3 ) B m T ξ 0 f W ( L p 1 , L ω 1 q 1 ) T η 0 g W ( L p 2 , L ω 2 q 2 ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) B m f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 )
(2.26)

and hence M ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. So, by (2.26) we obtain

M ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B M ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) B m = ω 1 ( ξ 0 ) ω 2 ( η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

 □

Lemma 2.3 If ω is a slowly increasing weight function such that ω(x) C 1 ( 1 + x 2 ) N =υ(x) and fW( L p , L ω q ), then D y p fW( L p , L υ q ). Moreover,

D y p f W ( L p , L ω q ) C f W ( L p , L υ q ) if  y 1 , D y p f W ( L p , L ω q ) < C y n q + 2 N f W ( L p , L υ q ) if  y > 1

for some C>0.

Proof Take any fW( L p , L ω q ). If we get t y =u, we obtain

D y p f W ( L p , L ω q ) = { R n | D y p f ( t ) χ Q + x ( t ) | p d t } 1 p q , ω = { R n | y n p f ( t y ) | p χ Q + x ( t ) d t } 1 p q , ω = { R n | f ( u ) | p χ y 1 Q + y 1 x ( u ) d u } 1 p q , ω = F f y 1 Q ( y 1 x ) q , ω .
(2.27)

Again, if we say y 1 x=s and use ω to be slowly increasing, then there exist C 1 >0 and NN such that

D y p f W ( L p , L ω q ) = { R n | F f y 1 Q ( y 1 x ) | q ω ( x ) q d x } 1 q = y n q { R n | F f y 1 Q ( s ) | q ω ( y s ) q d s } 1 q y n q { R n | F f y 1 Q ( s ) | q ( C 1 ( 1 + y 2 s 2 ) N ) q d s } 1 q
(2.28)

by equation (2.27).

Let y1. Using inequality (2.28), we have

D y p f W ( L p , L ω q ) { R n | F f y 1 Q ( s ) | q ( C 1 ( 1 + s 2 ) N ) q d s } 1 q = F f y 1 Q q , υ .
(2.29)

Since y 1 Q is a compact set and the definition of W( L p , L υ q ) is independent of the choice of a compact set Q, then there exists C>0 such that

F f y 1 Q q , υ C F f Q q , υ
(2.30)

by [3, 5]. Then by (2.29) we write

D y p f W ( L p , L ω q ) F f y 1 Q q , υ C F f Q q , υ =C f W ( L p , L υ q ) .

Thus we have D y p fW( L p , L υ q ).

Now, assume that y>1. Similarly, by (2.28) and (2.30), we get

D y p f W ( L p , L ω q ) < y n q { R n | F f y 1 Q ( s ) | q ( C 1 ( y 2 + y 2 s 2 ) N ) q d s } 1 q = y n q + 2 N { R n | F f y 1 Q ( s ) | q υ ( s ) q d s } 1 q y n q + 2 N f W ( L p , L υ q ) .

Hence D y p fW( L p , L υ q ). □

Theorem 2.5 Let υ i (x)= C i ( 1 + x 2 ) N i , C i >0, N i >0 for i=1,2,3, and let ω 3 be a slowly increasing weight function. If 2 q = 1 p 1 + 1 p 2 1 p 3 , 0<y< and mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 )], then D y q mBM[W( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 )]. Moreover, then

D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) C y n q 3 2 N 3 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) if  y 1 , D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) < C y n q 1 + n q 2 + 2 N 1 + 2 N 2 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) if  y > 1 .

Proof Let fW( L p 1 , L ω 1 q 1 ) and gW( L p 2 , L ω 2 q 2 ) be given. From Lemma 2.3, we have D y p 1 fW( L p 1 , L ω 1 q 1 ) and D y p 2 gW( L p 2 , L ω 2 q 2 ). Also it is known by Theorem 2.5 in [10] that

B D y q m (f,g)(y)= D y 1 p 3 B m ( D y p 1 f , D y p 2 g ) (y).

If we use this equality, we write

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = { R n | D y 1 p 3 B m ( D y p 1 f , D y p 2 g ) ( t ) χ Q + x ( t ) | p 3 d t } 1 p 3 q 3 , ω 3 = { R n | y n p 3 B m ( D y p 1 f , D y p 2 g ) ( t y 1 ) χ Q + x ( t ) | p 3 d t } 1 p 3 q 3 , ω 3 = { R n y n | B m ( D y p 1 f , D y p 2 g ) ( t y ) χ Q + x ( t ) | p 3 d t } 1 p 3 q 3 , ω 3 .

If we say yt=u in the last equality, we have

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = { R n | B m ( D y p 1 f , D y p 2 g ) ( u ) χ y Q + y x ( u ) | p 3 d t } 1 p 3 q 3 , ω 3 = F B m ( D y p 1 f , D y p 2 g ) y Q ( y x ) q 3 , ω 3 .
(2.31)

On the other hand, since ω 3 is a slowly increasing weight function, there exist C 3 >0, N 3 >0 such that ω 3 (x) C 3 ( 1 + x 2 ) N 3 = υ 3 (x). If we make the substitution yx=s in equality (2.31), we obtain

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = F B m ( D y p 1 f , D y p 2 g ) y Q ( y x ) q 3 , ω 3 = { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ω 3 ( y 1 s ) q 3 y n d s } 1 q 3 = y n q 3 { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ω 3 ( y 1 s ) q 3 d s } 1 q 3 y n q 3 { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ( C 3 ( 1 + y 2 s 2 ) N 3 ) q 3 d s } 1 q 3 .

We assume that y1. Then

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) y n q 3 { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ( C 3 ( y 2 + y 2 s 2 ) N 3 ) q 3 d s } 1 q 3 = y n q 3 2 N 3 F B m ( D y p 1 f , D y p 2 g ) y Q q 3 , υ 3 .

Also, since yQ is a compact set, we have

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C y n q 3 2 N 3 F B m ( D y p 1 f , D y p 2 g ) Q q 3 , υ 3 = C y n q 3 2 N 3 B m ( D y p 1 f , D y p 2 g ) W ( L p 3 , L υ 3 q 3 ) .
(2.32)

Since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 )], by Lemma 2.3 and inequality (2.32), we obtain

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C y n q 3 2 N 3 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) f W ( L p 1 , L υ 1 q 1 ) g W ( L p 2 , L υ 2 q 2 ) .
(2.33)

Then D y q mBM[W( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 )], and by (2.33) we have

D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) C y n q 3 2 N 3 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) .

Now let y>1. Again, since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 )], by Lemma 2.3 and inequality (2.32), we obtain

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) < C B m ( D y p 1 f , D y p 2 g ) W ( L p 3 , L υ 3 q 3 ) < C y n q 1 + n q 2 + 2 N 1 + 2 N 2 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) f W ( L p 1 , L υ 1 q 1 ) g W ( L p 2 , L υ 2 q 2 ) .
(2.34)

Thus D y q mBM[W( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 )], and by (2.34) we have

D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) <C y n q 1 + n q 2 + 2 N 1 + 2 N 2 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) .

 □

Theorem 2.6 Let mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

  1. (a)

    If Φ L 1 ( R 2 n ), then ΦmBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

    Φ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .
  2. (b)

    If Φ L ω 1 ( R 2 n ) such that ω(u,υ)= ω 1 (u) ω 2 (υ), then Φ ˆ mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

    Φ ˆ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 , ω m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

Proof (a) Let f,g C c ( R n ) be given. By Proposition 2.5 in [12]

B Φ m (f,g)(y)= R n R n Φ(u,v) B T ( u , v ) m (f,g)(y)dudv.

If we use Theorem 2.4 and the assumption mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we have

B Φ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n R n Φ ( u , v ) B T ( u , v ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) d u d v R n R n | Φ ( u , v ) | T ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) d u d v = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) < .
(2.35)

Hence ΦmBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], and by (2.35) we obtain

Φ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

(b) Let Φ L ω 1 ( R 2 n ). Take any f,g C c ( R n ). It is known by Proposition 2.5 in [12] that

B Φ ˆ m (f,g)(x)= R n R n Φ(u,v) B M ( u , v ) m (f,g)(x)dudv.

Since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we have M ( u , v ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

M ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) ω 1 (u) ω 2 (v) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) )

by Theorem 2.4. Then

B Φ ˆ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n R n Φ ( u , v ) B M ( u , v ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) d u d v R n R n | Φ ( u , v ) | M ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f p 1 , ω 1 g p 2 , ω 2 d u d v R n R n | Φ ( u , v ) | ω 1 ( u ) ω 2 ( υ ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) × f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) d u d v = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) Φ 1 , ω .
(2.36)

Thus from (2.36) we obtain Φ ˆ mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

Φ ˆ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 , ω m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

 □

Theorem 2.7 Let mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. If Q 1 , Q 2 are bounded measurable sets in R n , then

h ( ξ , η ) = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 m ( ξ + u , η + v ) d u d v BM [ W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ] .

Proof Let f,g C c ( R n ). We know by Theorem 2.9 in [10] that

B h (f,g)(x)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m (f,g)(x)dudv.

From Theorem 2.4, we have

B h ( f , g ) W ( L p 3 , L ω 3 q 3 ) 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) d u d v 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 T ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) × f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) d u d v = 1 μ ( Q 1 × Q 2 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) × f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ ( Q 1 × Q 2 ) = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .

Hence, we obtain h(ξ,η)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. □

Theorem 2.8 Let ω 3 be a continuous, symmetric, slowly increasing weight function, ω(u,v)= ω 1 (u) ω 2 (v), ω 3 ω 1 , 1 q 1 + 1 q 2 = 1 q 3 , 1 p 1 + 1 p 2 = 1 p 3 , 1 p 3 + 1 p 3 =1, 1 q 3 + 1 q 3 =1 and q 3 p 3 . Assume that Φ L ω 1 ( R 2 n ), Ψ 1 L ω 1 1 ( R n ) and Ψ 2 L ω 2 1 ( R n ). If m(ξ,η)= Ψ ˆ 1 (ξ) Φ ˆ (ξ,η) Ψ ˆ 2 (η), then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

Proof Take any f,g,h C c ( R n ). Then, by Theorem 2.10 in [10], we write

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη| R n |h(y) B ˜ Φ ˆ (f Ψ 1 ,g Ψ 2 )(y)|dy.

On the other hand, we know that the inequalities

f Ψ 1 W ( L p 1 , L ω 1 q 1 ) C 1 f W ( L p 1 , L ω 1 q 1 ) Ψ 1 1 , ω 1
(2.37)

and

g Ψ 2 W ( L p 2 , L ω 2 q 2 ) C 2 g W ( L p 2 , L ω 2 q 2 ) Ψ 2 1 , ω 2
(2.38)

hold, where C 1 >0, C 2 >0 by [3]. That means f Ψ 1 W( L p 1 , L ω 1 q 1 ) and g Ψ 2 W( L p 2 , L ω 2 q 2 ). Also, every constant function is bilinear multiplier of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) under the given conditions. So, by Theorem 2.6, we have Φ ˆ BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. Now, if we say that y=u, we have

B ˜ Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( y ) W ( L p 3 , L ω 3 q 3 ) = { R n | B Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( u ) | p 3 χ Q x ( u ) d u } 1 p 3 q 3 , ω 3 = F B Φ ˆ ( f Ψ 1 , g Ψ 2 ) Q ( x ) q 3 , ω 3 .

In this here, we set x=u and use ω 3 to be symmetric. Then we have

B ˜ Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( y ) W ( L p 3 , L ω 3 q 3 ) C 3 F B Φ ˆ ( f Ψ 1 , g Ψ 2 ) Q q 3 , ω 3 = C 3 B Φ ˆ ( f Ψ 1 , g Ψ 2 ) W ( L p 3 , L ω 3 q 3 )
(2.39)

by [5]. Using the Hölder inequality, inequalities (2.37), (2.38), (2.39) and Φ ˆ BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we find

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | h W ( L p 3 , L ω 3 1 q 3 ) B Φ ˆ ( f Ψ 1 , g Ψ 2 ) W ( L p 3 , L ω 3 q 3 ) C 1 C 2 C 3 h W ( L p 3 , L ω 3 1 q 3 ) B Φ ˆ Ψ 1 1 , ω 1 Ψ 2 1 , ω 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .

If we say C= C 1 C 2 C 3 B Φ ˆ Ψ 1 1 , ω 1 Ψ 2 1 , ω 2 , then we obtain

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 ) .

From Theorem 2.2, we have mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. □

Theorem 2.9 Let 1 p 1 , p 2 p2, 1 q 1 , q 2 r2, p 3 p , q 3 r and q 3 p 3 such that 1 p 3 = 1 p 1 + 1 p 2 2 p and 1 q 3 = 1 q 1 + 1 q 2 2 r . Assume that ω 3 is a continuous, bounded, symmetric weight function. If mW( L p ( R 2 n ), L r ( R 2 n )) L ( R 2 n ), then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

Proof Firstly, we show that mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )]. Take any f,g,h C c ( R n ). Let A×B R 2 n be a closed and bounded rectangle. Since the definition of W( L p ( R 2 n ), L r ( R 2 n )) is independent of the choice of a compact set Q, then, by using Fubini’s theorem, we get

f ˆ ( ξ ) g ˆ ( η ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) = F f ˆ g ˆ Q L r ( R 2 n ) C 1 F f ˆ g ˆ A × B L r ( R 2 n ) = C 1 f ˆ χ x + A p g ˆ χ y + B p L r ( R 2 n ) = C 1 F f ˆ A ( x ) F g ˆ B ( y ) L r ( R 2 n ) = C 1 F f ˆ A r F g ˆ B r = C 1 f ˆ W ( L p , L r ) g ˆ W ( L p , L r )
(2.40)

for some C 1 >0. So, we have f ˆ (ξ) g ˆ (η)W( L p ( R 2 n ), L r ( R 2 n )). By using the Hölder inequality, the Hausdorff-Young inequality and equality (2.40), we obtain

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | C 1 h 1 f ˆ ( ξ ) g ˆ ( η ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 1 h 1 f ˆ W ( L p , L r ) g ˆ W ( L p , L r ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 1 C 2 h W ( L 1 , L 1 ) f W ( L p , L r ) g W ( L p , L r ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 1 C 2 ω 3 m W ( L p ( R 2 n ) , L r ( R 2 n ) ) f W ( L p , L ω 1 r ) g W ( L p , L ω 2 r ) h W ( L 1 , L ω 3 1 1 )

for some C 2 >0. Therefore mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )] by Theorem 2.2.

Now, we show that mBM[W(p,r, ω 1 ;1,1, ω 2 ; p , r , ω 3 )]. Again, using Fubini’s theorem, we have

f ˆ ( v ) h ˆ ( u ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 3 f ˆ ( v ) h ˆ ( u ) χ ( x , y ) + A × B L p ( R 2 n ) L r ( R 2 n ) = C 3 f ˆ χ x A p h ˆ χ y + B p L r ( R 2 n ) = C 3 F f ˆ A ( x ) F h ˆ B ( y ) L r ( R 2 n ) = C 3 F f ˆ A r F h ˆ B r C 3 C 4 f ˆ W ( L p , L r ) h ˆ W ( L p , L r )
(2.41)

for some C 3 >0, C 4 >0. So, f ˆ (v) h ˆ (u)W( L p ( R 2 n ), L r ( R 2 n )). Similarly, we have

m ( v , u + v ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 5 F m ( A ) × ( A + B ) L r ( R 2 n ) C 5 C 6 m W ( L p ( R 2 n ) , L r ( R 2 n ) )
(2.42)

for some C 5 >0, C 6 >0. That means m(v,u+v)W( L p ( R 2 n ), L r ( R 2 n )). We set ξ+η=u and ξ=v. Then, by using the Hölder inequality, the Hausdorff-Young inequality, (2.41) and (2.42), we get

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = | R n R n f ˆ ( v ) g ˆ ( u + v ) h ˆ ( u ) m ( v , u + v ) d u d v | g 1 f ˆ ( v ) g ˆ ( u ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) m ( v , u + v ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 3 C 4 C 5 C 6 g 1 f ˆ W ( L p , L r ) h ˆ W ( L p , L r ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 3 C 4 C 5 C 6 C 7 ω 3 m W ( L p ( R 2 n ) , L r ( R 2 n ) ) f W ( L p , L ω 1 r ) g W ( L 1 , L ω 2 1 ) h W ( L p , L ω 3 1 r ) .

Thus, by Theorem 2.2, we obtain mBM[W(p,r, ω 1 ;1,1, ω 2 ; p , r , ω 3 )]. Similarly, if we change the variables ξ+η=u and η=v, then

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = f 1 R n R n | g ˆ ( v ) h ˆ ( u ) | | m ( u + v , v ) | d u d v C ω 3 m W ( L p ( R 2 n ) , L r ( R 2 n ) ) f W ( L 1 , L ω 1 1 ) g W ( L p , L ω 2 r ) h W ( L p , L ω 3 1 r ) .

Hence mBM[W(1,1, ω 1 ;p,r, ω 2 ; p , r , ω 3 )].

We take p ˜ 1 , q ˜ 1 , p ˜ 3 and q ˜ 3 such that 1 p ˜ 1 p, 1 q ˜ 1 r, p p ˜ 3 and r q ˜ 3 . Since mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )] and mBM[W(1,1, ω 1 ;p,r, ω 2 ; p , r , ω 3 )], we have mBM[W( p ˜ 1 , q ˜ 1 , ω 1 ;p,r, ω 2 ; p ˜ 3 , q ˜ 3 , ω 3 )] by the interpolation theorem in [13, 14] such that

1 p ˜ 1 = 1 θ p + θ 1 , 1 p ˜ 3 = 1 θ + θ p ,
(2.43)
1 q ˜ 1 = 1 θ r + θ 1 , 1 q ˜ 3 = 1 θ + θ r
(2.44)

for all 0θ1. On the other hand, from equalities (2.43) and (2.44), we obtain the equalities 1 p ˜ 1 1 p ˜ 3 = 1 p and 1 q ˜ 1 1 q ˜ 3 = 1 r . Similarly, we take p ˜ 2 , q ˜ 2 , r ˜ 3 and s ˜ 3 such that 1 p ˜ 2 p, 1 q ˜ 2 r, p r ˜ 3 and r s ˜ 3 . Again, if we use mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )] and mBM[W(p,r, ω 1 ;1,1, ω 2 ; p , r , ω 3 )], we have mBM[W(p,r, ω 1 ; p ˜ 2 , q ˜ 2 , ω 2 ; r ˜ 3 , s ˜ 3 , ω 3 )] by the interpolation theorem in [13, 14] such that

1 p ˜ 2 = 1 θ p + θ 1 , 1 r ˜ 3 = 1 θ + θ p ,
(2.45)
1 q ˜ 2 = 1 θ r + θ 1 , 1 s ˜ 3 = 1 θ + θ r
(2.46)

for all 0θ1. So, from equalities (2.45) and (2.46), we have 1 p ˜ 2 1 r ˜ 3 = 1 p and 1 q ˜ 2 1 s ˜ 3 = 1 r .

Now, we choose p ˜ 1 , p ˜ 2 such that 1 p ˜ 1 p 1 <p and 1 p ˜ 2 p 2 <p. Let these numbers have the following conditions:

1 p 1 1 p =(1θ) ( 1 p ˜ 1 1 p ) ,
(2.47)
1 p 2 1 p =(1θ) ( 1 p ˜ 2 1 p )
(2.48)

for 0<θ<1. Again, we choose q ˜ 1 , q ˜ 2 such that 1 q ˜ 1 q 1 <r and 1 q ˜ 2 q 2 <r. Let these numbers have the following conditions:

1 q 1 1 r =(1θ) ( 1 q ˜ 1 1 r ) ,
(2.49)
1 q 2 1 r =(1θ) ( 1 q ˜ 2 1 r )
(2.50)

for 0<θ<1. If we use equalities (2.45), (2.46), (2.47), (2.48), (2.49) and (2.50), we write

1 p 1 = 1 θ p ˜ 1 + θ p , 1 p 2 = 1 θ p + θ p ˜ 2 ,
(2.51)
1 q 1 = 1 θ q ˜ 1 + θ r , 1 q 2 = 1 θ r + θ q ˜ 2 .
(2.52)

Moreover, using the equalities 1 p ˜ 1 1 p ˜ 3 = 1 p , 1 p ˜ 2 1 r ˜ 3 = 1 p , (2.51) and the assumption 1 p 3 = 1 p 1 + 1 p 2 2 p , we obtain

1 p 3 = 1 θ p ˜ 3 + θ r ˜ 3 .
(2.53)

Similarly, using the equalities 1 q ˜ 1 1 q ˜ 3 = 1 r , 1 q ˜ 2 1 s ˜ 3 = 1 r , (2.52) and the assumption 1 q 3 = 1 q 1 + 1 q 2 2 r , we obtain

1 q 3 = 1 θ q ˜ 3 + θ s ˜ 3 .
(2.54)

Since mBM[W( p ˜ 1 , q ˜ 1 , ω 1 ;p,r, ω 2 ; p ˜ 3 , q ˜ 3 , ω 3 )], mBM[W(p,r, ω 1 ; p ˜ 2 , q ˜ 2 , ω 2 ; r ˜ 3 , s ˜ 3 , ω 3 )], then the bilinear multipliers B m :W( L p ˜ 1 , L ω 1 q ˜ 1 )×W( L p , L ω 2 r )W( L p ˜ 3 , L ω 3 q ˜ 3 ) and B m :W( L p , L ω 1 r )×W( L p ˜ 2 , L ω 2 q ˜ 2 )W( L r ˜ 3 , L ω 3 s ˜ 3 ) are bounded. Also, since 1 p ˜ 1 p 1 <p, 1 q ˜ 1 q 1 <r, 1 q ˜ 2 q 2 <r, 1 p ˜ 2 p 2 <p, by equalities (2.53) and (2.54) and by the interpolation theorem in [13], B m :W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 )W( L p 3 , L ω 3 q 3 ) is bounded. That means mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. This completes the proof. □

3 The bilinear multipliers space BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]

Lemma 3.1 Let 1p(x)q<.

  1. (a)

    If ω is a slowly increasing weight function, then C c ( R n ) is dense in the weighted variable exponent Wiener amalgam space W( L p ( x ) , L ω q ).

  2. (b)

    If ω is a continuous, slowly increasing weight function, then C c ( R n ) is dense in the weighted variable exponent Wiener amalgam space W( L p ( x ) , L ω 1 q ).

This lemma can be proved easily by using the proof technique in Lemma 2.1.

Definition 3.1 Let p 1 (x), p 2 (x), p 3 (x)P( R n ), p 1 <, p 2 <, p 3 <, p 1 (x) q 1 , p 2 (x) q 2 , 1 q 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Assume that ω 1 , ω 2 are slowly increasing functions and m(ξ,η) is a bounded, measurable function on R n × R n . Define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,g C c ( R n ). m is said to be a bilinear multiplier on R n of type (W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )) if there exists C>0 such that

B m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) C f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 )

for all f,g C c ( R n ). That means B m extends to a bounded bilinear operator from W( L p 1 ( x ) , L ω 1 q 1 )×W( L p 2 ( x ) , L ω 2 q 2 ) to W( L p 3 ( x ) , L ω 3 q 3 ). We denote by BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] the space of all bilinear multipliers of type (W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )) and

m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = B m .

The following theorem can be proved easily by using Lemma 3.1 and the technique of proof of Theorem 2.2.

Theorem 3.1 Let 1 p 3 ( x ) + 1 p 3 ( x ) =1, 1 q 3 + 1 q 3 =1, q 3 p 3 (x), p 3 (x)= p 3 (x) and ω 3 be a continuous, symmetric, slowly increasing weight function. Then mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] if and only if there exists C>0 such that

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | C f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) h W ( L p 3 ( x ) , L ω 3 1 q 3 )

for all f,g,h C c ( R n ).

Now we will give some properties of the space BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. Since some properties of usual Lebesgue spaces are not true in general in the variable exponent Lebesgue spaces, like translation invariance, then also some properties of the spaces BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] do not hold true in general in the spaces BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )].

Theorem 3.2 If mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], then T ( ξ 0 , η 0 ) mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] and

T ( ξ 0 , η 0 ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) )

for all ( ξ 0 , η 0 ) R 2 n .

Proof Let f,g C c ( R n ). Then we have

M ξ 0 f W ( L p 1 ( x ) , L ω 1 q 1 ) = e 2 π i ξ 0 , f ( ) χ z + Q ( ) p 1 ( x ) q 1 , ω 1 = f W ( L p 1 ( x ) , L ω 1 q 1 ) .

Similarly, the equality M η 0 g W ( L p 2 ( x ) , L ω 2 q 2 ) = g W ( L p 2 ( x ) , L ω 2 q 2 ) is written. So, by using these results and the assumption mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], we have

B T ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) = B m ( M ξ 0 f , M η 0 g ) W ( L p 3 ( x ) , L ω 3 q 3 ) B m M ξ 0 f W ( L p 1 ( x ) , L ω 1 q 1 ) M η 0 g W ( L p 2 ( x ) , L ω 2 q 2 ) = B m f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) .

Thus T ( ξ 0 , η 0 ) mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. Moreover, by using the same technique as in the proof of Theorem 2.4, we obtain

T ( ξ 0 , η 0 ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) .

 □

Theorem 3.3 Let mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. Then ΦmBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], and there exists C>0 such that

Φ m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) C Φ 1 m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) )

for all Φ L 1 ( R 2 n ).

Proof Take any f,g C c ( R n ). By Proposition 2.5 in [12], we know that

B Φ m (f,g)(x)= R n R n Φ(u,v) B T ( ξ u , η v ) m (f,g)(x)dudv.
(3.1)

Since mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], then by Theorem 3.2, T ( u , v ) m in the space BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] and

T ( u , v ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) .

Using (3.1) and the Minkowski inequality in [15], we find C>0 such that

B Φ m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) = ( R n R n Φ ( u , v ) B T ( u , v ) m ( f , g ) d u d v ) χ z + Q p 3 ( x ) q 3 , ω 3 C R n R n | Φ ( u , v ) | B T ( u , v ) m ( f , g ) χ z + Q p 3 ( x ) q 3 , ω 3 d u d v = C R n R n | Φ ( u , v ) | B T ( u , v ) m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) d u d v C R n R n | Φ ( u , v ) | T ( u , v ) m BM [ W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ] × f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) d u d v = C m BM [ W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ] × f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) Φ 1 .
(3.2)

Hence ΦmBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], and by (3.2) we have

Φ m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) C Φ 1 m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) .

 □

Theorem 3.4 Let 1 p 3 ( x ) + 1 p 3 ( x ) =1, 1 q 3 + 1 q 3 =1, q 3 p 3 (x), p 3 (x)= p 3 (x) and ω 3 be a continuous, symmetric, slowly increasing weight function. If Ψ 1 L ω 1 1 ( R n ), Ψ 2 L ω 2 1 ( R n ) and mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], then Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )].

Proof Take any f,g,h C c ( R n ). Then, by Theorem 2.10 in [10], we write the following:

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη| R n |h(y) B ˜ m (f Ψ 1 ,g Ψ 2 )(y)|dy.

So, by Theorem 11.7.1 in [5] and inequalities (2.37), (2.38), there exists C>0 such that

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) Ψ ˆ 1 ( ξ ) m ( ξ , η ) Ψ ˆ 2 ( η ) d ξ d η | h W ( L p 3 ( x ) , L ω 1 q 3 ) B ˜ m ( f Ψ 1 , g Ψ 2 ) W ( L p 3 ( x ) , L ω 3 q 3 ) C h W ( L p 3 ( x ) , L ω 1 q 3 ) B m ( f Ψ 1 , g Ψ 2 ) W ( L p 3 ( x ) , L ω 3 q 3 ) C h W ( L p 3 ( x ) , L ω 1 q 3 ) B m f Ψ 1 W ( L p 1 , L ω 1 q 1 ) g Ψ 2 W ( L p 2 , L ω 2 q 2 ) C B m Ψ 1 1 , ω 1 Ψ 2 1 , ω 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 ( x ) , L ω 1 q 3 ) .

Hence, Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] by Theorem 3.1. □

Theorem 3.5 Let mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. If Q 1 , Q 2 R n are bounded sets, then

h ( ξ , η ) = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 m ( ξ + u , η + v ) d u d v BM [ W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ] .

Proof Let f,g,h C c ( R n ) be given. The equality

B h (f,g)(x)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m (f,g)(x)dudv

is known by Theorem 2.9 in [10]. Using Theorem 3.2, there exists C>0 such that

B h ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) χ z + Q d u d v W ( L p 3 ( x ) , L ω 3 q 3 ) C μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) χ z + Q p 3 ( x ) q 3 , ω 3 d u d v C μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) χ z + Q p 3 ( x ) q 3 , ω 3 d u d v = C μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) d u d v 1 μ ( Q 1 × Q 2 ) C Q 1 × Q 2 T ( u , v ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) × f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) d u d v = C m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) .

Hence h(ξ,η)mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. □

Theorem 3.6 Let r(x)s(x), m(x)q(x), n(x)p(x), sr, qm, pn, υ 3 ω 3 , ω 2 υ 2 , ω 1 υ 1 . Then

BM [ W ( n ( x ) , n , ω 1 ; m ( x ) , m , ω 2 ; s ( x ) , s , ω 3 ) ] BM [ W ( p ( x ) , p , υ 1 ; q ( x ) , q , υ 2 ; r ( x ) , r , υ 3 ) ] .

Proof Take any mBM[W(n(x),n, ω 1 ;m(x),m, ω 2 ;s(x),s, ω 3 )]. Then there exists C 1 >0 such that

B m ( f , g ) W ( L s ( x ) , L ω 3 s ) C 1 f W ( L n ( x ) , L ω 1 n ) g W ( L m ( x ) , L ω 2 m ) .
(3.3)

On the other hand, by Proposition 2.5 in [7] we have W( L s ( x ) , L ω 3 s )W( L r ( x ) , L υ 3 r ), W( L p ( x ) , L υ 1 p )W( L n ( x ) , L ω 1 n ) and W( L q ( x ) , L υ 2 q )W( L m ( x ) , L ω 2 m ). So, there exist C 2 >0, C 3 >0 and C 4 >0 such that

B m ( f , g ) W ( L r ( x ) , L υ 3 r ) C 2 B m ( f , g ) W ( L s ( x ) , L ω 3 s ) ,
(3.4)
f W ( L n ( x ) , L ω 1 n ) C 3 f W ( L p ( x ) , L υ 1 p )
(3.5)

and

g W ( L m ( x ) , L ω 2 m ) C 4 g W ( L q ( x ) , L υ 2 q ) .
(3.6)

Combining (3.3), (3.4), (3.5) and (3.6), we get

B m ( f , g ) W ( L r ( x ) , L υ 3 r ) C 1 C 2 C 3 C 4 f W ( L p ( x ) , L υ 1 p ) g W ( L q ( x ) , L υ 2 q ) .

That means mBM[W(p(x),p, υ 1 ;q(x),q, υ 2 ;r(x),r, υ 3 )]. Hence, we obtain BM[W(n(x),n, ω 1 ;m(x),m, ω 2 ;s(x),s, ω 3 )]BM[W(p(x),p, υ 1 ;q(x),q, υ 2 ;r(x),r, υ 3 )]. □

References

  1. Gasquet C, Witomski P: Fourier Analysis and Applications. Springer, New York; 1999.

    Book  MATH  Google Scholar 

  2. Rudin W: Fourier Analysis on Groups. Interscience, New York; 1962.

    MATH  Google Scholar 

  3. Feichtinger HG: Banach convolution algebras of Wiener type. Colloq. Math. Soc. Janos Bolyai 35. Proc. Conf. Functions, Series, Operators 1980, 509–524. Budapest

    Google Scholar 

  4. Fischer RH, Gürkanlı AT, Liu TS: On a family of Wiener type spaces. Int. J. Math. Sci. 1996,19(1):57–66. 10.1155/S0161171296000105

    Article  MathSciNet  MATH  Google Scholar 

  5. Heil C: An introduction to weighted Wiener amalgams. In Wavelets and Their Applications. Allied Publishers, New Delhi; 2003:183–216.

    Google Scholar 

  6. Kovacik O, Rakosnik J:On spaces L p ( x ) and W k , p ( x ) . Czechoslov. Math. J. 1991,41(116)(4):592–618.

    MathSciNet  MATH  Google Scholar 

  7. Aydın İ, Gürkanlı AT: Weighted variable exponent amalgam spaces. Glas. Mat. 2012,47(67):165–174.

    Article  MathSciNet  MATH  Google Scholar 

  8. Murthy GNK, Unni KR: Multipliers on weighted spaces. Lecture Notes in Mathematics 399. In Functional Analysis and Its Applications. Springer, Berlin; 1973:272–291. (International Conference)

    Google Scholar 

  9. Dobler, T: Wiener Amalgam Spaces on Locally Compact Groups. Master’s thesis, University of Vienna (1989)

  10. Kulak Ö, Gürkanlı AT: Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces. J. Inequal. Appl. 2013., 2013: Article ID 259

    Google Scholar 

  11. Feichtinger HG: A characterization of Wiener’s algebra on locally compact groups. Arch. Math. (Basel) 1977, 29: 136–140. 10.1007/BF01220386

    Article  MathSciNet  MATH  Google Scholar 

  12. Blasco O: Notes on the spaces of bilinear multipliers. Rev. Unión Mat. Argent. 2009,50(2):23–37.

    MathSciNet  MATH  Google Scholar 

  13. Bennett C, Sharpley R: Interpolation of Operators. Academic Press, San Diego; 1988.

    MATH  Google Scholar 

  14. Feichtinger HG: Banach spaces of distributions of Wiener’s type and interpolation. 60. In Proc. Conf. Funct. Anal. Approx.. Birkhäuser, Basel; 1981:153–165. Oberwolfach

    Chapter  Google Scholar 

  15. Samko SG:Convolution type operators in L p ( x ) . Integral Transforms Spec. Funct. 1998,7(1–2):123–144. 10.1080/10652469808819191

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ondokuz Mayıs University, Project number PYO.FEN.1904.13.002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Öznur Kulak.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulak, Ö., Gürkanlı, A.T. Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces. J Inequal Appl 2014, 476 (2014). https://doi.org/10.1186/1029-242X-2014-476

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-476

Keywords