Open Access

Common fixed point results under a new contractive condition without using continuity

Journal of Inequalities and Applications20142014:464

https://doi.org/10.1186/1029-242X-2014-464

Received: 2 April 2014

Accepted: 10 November 2014

Published: 26 November 2014

Abstract

In this paper, using the concept of the common ( E . A ) property, we prove a common fixed point theorem for a class of twice power type weakly compatible mappings in generalized metric space. Our results do not rely on any commuting or continuity condition of the mappings. We also state some examples to illustrate our new results in symmetric and nonsymmetric generalized metric spaces. It should be pointed out that this is the first time to use common ( E . A ) properties to discuss common fixed point problems of contractive mappings for twice power type in generalized metric spaces.

Keywords

generalized metric spaceweakly compatible mappingscontraction mapping for twice power typecommon ( E . A ) property

1 Introduction and preliminaries

In 2006, Mustafa and Sims [1] introduced a new structure of generalized metric space which is called a G-metric. Based on the notion of generalized metric spaces, Mustafa et al. [25], Obiedat and Mustafa [6], Aydi et al. [7, 8], Gajić and Stojaković [9], Zhou and Gu [10], Shatanawi [11] obtained some fixed point results for mappings satisfying different contractive conditions. Chugh et al. [12] obtained some fixed point results for maps satisfying property P in G-metric spaces. The study of common fixed point problems in G-metric spaces was initiated by Abbas and Rhoades [13]. Subsequently, many authors obtained many common fixed point theorems for the mappings satisfying different contractive conditions; see [1431] for more details. Recently, some authors using ( E . A ) property in generalized metric space to prove common fixed point, such as Abbas et al. [32], Mustafa et al. [33], Long et al. [34], Gu and Yin [35], Gu and Shatanawi [36].

Recently, Jleli and Samet [37] and Samet et al. [38] observed that some fixed point theorems in the context of a G-metric space can be proved (by simple transformation) using related existing results in the setting of a (quasi-) metric space. Namely, if the contraction condition of the fixed point theorem on G-metric space can be reduced to two variables, then one can construct an equivalent fixed point theorem in setting of usual metric space. This idea is not completely new, but it was not successfully used before (see [39]).

Very recently, Karapınar and Agarwal suggest new contraction conditions in G-metric space in a way that the techniques in [37, 38] are not applicable. In this approach [40], contraction conditions cannot be expressed in two variables. So, in some cases, as is noticed even in Jleli-Samet’s paper [37], when the contraction condition is of nonlinear type, this strategy cannot be always successfully used. This is exactly the case in our paper.

The purpose of this paper is to use the concept of the common ( E . A ) property and weakly compatible mappings to discuss common fixed point problem for a class of twice power type contractive mappings in the framework of a generalized metric space. Our results do not rely on any commuting or continuity condition of the mappings. We also state some examples to illustrate our new results in the framework of symmetric and nonsymmetric generalized metric spaces.

As far as we know, this is the first time to use common ( E . A ) properties to discuss common fixed point problems of contractive mappings for twice power type in generalized metric spaces.

Now we give preliminaries and basic definitions which are used throughout the paper.

Definition 1.1 [1]

Let X be a nonempty set, and let G : X × X × X R + be a function satisfying the following axioms:
  • (G1) G ( x , y , z ) = 0 if x = y = z ;

  • (G2) 0 < G ( x , y , z ) for all x , y X with x y ;

  • (G3) G ( x , x , y ) G ( x , y , z ) for all x , y , z X with z y ;

  • (G4) G ( x , y , z ) = G ( x , z , y ) = G ( y , z , x ) (symmetry in all three variables);

  • (G5) G ( x , y , z ) G ( x , a , a ) + G ( a , y , z ) for all x , y , z , a X (rectangle inequality).

Then the function G is called a generalized metric or a G-metric on X, and the pair ( X , G ) is called a G-metric space.

Definition 1.2 [1]

Let ( X , G ) be a G-metric space, and let { x n } a sequence of points in X, a point x in X is said to be the limit of the sequence { x n } , lim n G ( x , x n , x m ) = 0 , and one says that sequence { x n } is G-convergent to x.

Thus, if x n x or lim n x n = x in a G-metric space ( X , G ) , then if for each ϵ > 0 , there exists a positive integer N such that G ( x , x n , x m ) < ϵ for all n , m N .

Proposition 1.1 [1]

Let ( X , G ) be a G-metric space. Then the following are equivalent:
  1. (1)

    { x n } is G-convergent to x.

     
  2. (2)

    G ( x n , x n , x ) 0 as n .

     
  3. (3)

    G ( x n , x , x ) 0 as n .

     
  4. (4)

    G ( x m , x n , x ) 0 as m , n .

     

Definition 1.3 [1]

Let ( X , G ) be a G-metric space. A sequence { x n } is called G-Cauchy if, for each ϵ > 0 , there exists a positive integer N such that G ( x m , x n , x ) < ϵ for all n , m , l N ; i.e. if G ( x m , x n , x l ) 0 as m , n , l .

Proposition 1.2 [1]

If ( X , G ) is a G-metric space then the following are equivalent:
  1. (1)

    The sequence { x n } is G-Cauchy.

     
  2. (2)

    For each ϵ > 0 , there exists a positive integer N such that G ( x m , x n , x ) < ϵ for all n , m , l N .

     

Proposition 1.3 [1]

Let ( X , G ) be a G-metric space. Then the function G ( x , y , z ) is jointly continuous in all three of its variables.

Definition 1.4 [1]

A G-metric space ( X , G ) is said to be G-complete if every G-Cauchy sequence in ( X , G ) is G-convergent in X.

Definition 1.5 [41]

Let f and g be self-maps of a set X. If w = f x = g x for some x in X, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g.

Definition 1.6 [41]

Two self-mappings f and g on X are said to be weakly compatible if they commute at coincidence points.

Definition 1.7 [32]

Let X be a G-metric space. Self-maps f and g on X are said to satisfy the G- ( E . A ) property if there exists a sequence { x n } in X such that { f x n } and { g x n } are G-convergent to some t X .

Definition 1.8 [32]

Let ( X , d ) be a G-metric space and A, B, S, and T be four self-maps on X. The pairs ( A , S ) and ( B , T ) are said to satisfy the common ( E . A ) property if there exist two sequences { x n } and { y n } in X such that
lim n A x n = lim n S x n = lim n B y n = lim n T y n = t

for some t X .

Definition 1.9 [17]

Self-mappings f and g of a G-metric space ( X , G ) are said to be compatible if lim n G ( f g x n , g f x n , g f x n ) = 0 and lim n G ( g f x n , f g x n , f g x n ) = 0 , whenever { x n } is a sequence in X such that
lim n f x n = lim n g x n = t

for some t X .

2 Main results

Theorem 2.1 Let ( X , G ) be a G-metric space. Suppose mappings f , g , h , R , S , T : X X satisfying the following conditions:
G 2 ( f x , g y , h z ) k max { G ( R x , S y , T z ) G ( f x , R x , R x ) , G ( g y , S y , S y ) G ( h z , T z , T z ) , G ( f x , S y , T z ) G ( R x , g y , T z ) , G ( R x , S y , h z ) G ( f x , g y , T z ) , G ( f x , S y , h z ) G ( R x , g y , h z ) }
(2.1)
for all x , y , z X , 0 k < 1 . If one of the following conditions is satisfied, then the pairs ( f , R ) , ( g , S ) , and ( h , T ) have a common point of coincidence in X.
  1. (i)

    The subspace RX is closed in X, f X S X , g X T X , and the two pairs of ( f , R ) and ( g , S ) satisfy the common ( E . A ) property.

     
  2. (ii)

    The subspace SX is closed in X, g X T X , h X R X , and the two pairs of ( g , S ) and ( h , T ) satisfy the common ( E . A ) property.

     
  3. (iii)

    The subspace TX is closed in X, f X S X , h X R X , and the two pairs of ( f , R ) and ( h , T ) satisfy the common ( E . A ) property.

     

Further, if the pairs ( f , R ) , ( g , S ) , and ( h , T ) are weakly compatible, then f, g, h, R, S, and T have a unique common fixed point in X.

Proof First we suppose that RX is closed in X, f X S X , g X T X , and the two pairs of ( f , R ) and ( g , S ) satisfy the common ( E . A ) property, then by Definition 1.8 we know that there exist two sequences { x n } and { y n } in X such that
lim n f x n = lim n R x n = lim n g y n = lim n S y n = t

for some t X .

Since g X T X , there exists a sequence { z n } in X such that g y n = T z n . So we get lim n T z n = lim n g y n = t . By the condition (2.1) we have
G 2 ( f x n , g y n , h z n ) k max { G ( R x n , S y n , T z n ) G ( f x n , R x n , R x n ) , G ( g y n , S y n , S y n ) G ( h z n , T z n , T z n ) , G ( f x n , S y n , T z n ) G ( R x n , g y n , T z n ) , G ( R x n , S y n , h z n ) G ( f x n , g y n , T z n ) , G ( f x n , S y n , h z n ) G ( R x n , g y n , h z n ) } .
Letting n , we have
G 2 ( t , t , lim n h z n ) k G 2 ( t , t , lim n h z n ) ;

this gives G 2 ( t , t , lim n h z n ) = 0 , since 0 k < 1 . Hence lim n h z n = t .

Since RX is a closed subspace of X, and lim n R x n = t , there exists a point u X such that R u = t . By the condition (2.1) we have
G 2 ( f u , g y n , h z n ) k max { G ( R u , S y n , T z n ) G ( f u , R u , R u ) , G ( g y n , S y n , S y n ) G ( h z n , T z n , T z n ) , G ( f u , S y n , T z n ) G ( R u , g y n , T z n ) , G ( R u , S y n , h z n ) G ( f u , g y n , T z n ) , G ( f u , S y n , h z n ) G ( R u , g y n , h z n ) } .

Letting n , we have G 2 ( f u , t , t ) 0 , hence f u = t . Thus R u = f u = t , so u is the coincidence point of the pair ( f , R ) .

Since f X S X and f u = t , there exists a point v X such that S v = f u = t . By the condition (2.1) we have
G 2 ( f u , g v , h z n ) k max { G ( R u , S v , T z n ) G ( f u , R u , R u ) , G ( g v , S v , S v ) G ( h z n , T z n , T z n ) , G ( f u , S v , T z n ) G ( R u , g v , T z n ) , G ( R u , S v , h z n ) G ( f u , g v , T z n ) , G ( f u , S v , h z n ) G ( R u , g v , h z n ) } .

Letting n , we have G 2 ( t , g v , t ) 0 , hence g v = t . Thus S v = g v = t , so v is the coincidence point of the pair ( g , S ) .

Since g X T X and g v = t , there exists a point w X such that T w = g v = t . By the condition (2.1) we have
G 2 ( t , t , h w ) = G 2 ( f u , g v , h w ) k max { G ( R u , S v , T w ) G ( f u , R u , R u ) , G ( g v , S v , S v ) G ( h w , T w , T w ) , G ( f u , S v , T w ) G ( R u , g v , T w ) , G ( R u , S v , h w ) G ( f u , g v , T w ) , G ( f u , S v , h w ) G ( R u , g v , h w ) } = k G 2 ( t , t , h w ) ,

hence h w = t , since 0 k < 1 . Thus T w = h w = t , so w is the coincidence point of the pair ( h , T ) .

In the above proof we get f u = R u = g v = S v = h w = T w = t . Then we get f t = R t , g t = S t , and h t = T t , since the pairs ( f , R ) , ( g , S ) , and ( h , T ) are weakly compatible. By the condition (2.1), we have
G 2 ( f t , t , t ) = G 2 ( f t , g v , h w ) k max { G ( R t , S v , T w ) G ( f t , R t , R t ) , G ( g v , S v , S v ) G ( h w , T w , T w ) , G ( f t , S v , T w ) G ( R t , g v , T w ) , G ( R t , S v , h w ) G ( f t , g v , T w ) , G ( f t , S v , h w ) G ( R t , g v , h w ) } = k G 2 ( f t , t , t ) ,

hence G 2 ( f t , t , t ) = 0 , since 0 k < 1 . Thus f t = t = R t . Similarly, it can be shown that g t = S t = t and h t = T t = t , which means that t is a common fixed point of f, g, h, R, S, and T.

Now we prove the uniqueness of the common fixed point t.

Let t and p be two common fixed point of f, g, h, R, S, and T, then using the condition (2.1), we have
G 2 ( p , t , t ) = G 2 ( f p , g t , h t ) k max { G ( R p , S t , T t ) G ( f p , R p , R p ) , G ( g t , S t , S t ) G ( h t , T t , T t ) , G ( f p , S t , T t ) G ( R p , g t , T t ) , G ( R p , S t , h t ) G ( f p , g t , T t ) , G ( f p , S t , h t ) G ( R p , g t , h t ) } = k G 2 ( p , t , t ) ,

hence G 2 ( p , t , t ) = 0 , since 0 k < 1 . Thus p = t . So common fixed point is unique. □

Example 2.1 Let X = [ 0 , 1 ] be a G-metric space with
G ( x , y , z ) = | x y | + | y z | + | z x | .
We define mappings f, g, h, R, S, and T on X by
f x = { 1 , x [ 0 , 1 2 ] , 4 5 , x ( 1 2 , 1 ] , g x = { 5 6 , x [ 0 , 1 2 ] , 4 5 , x ( 1 2 , 1 ] , h x = { 6 7 , x [ 0 , 1 2 ] , 4 5 , x ( 1 2 , 1 ] , R x = { 0 , x [ 0 , 1 2 ] , 4 5 , x ( 1 2 , 1 ) , 6 7 , x = 1 , S x = { 1 , x [ 0 , 1 2 ] 4 5 , x ( 1 2 , 1 ) , 0 , x = 1 , T x = { 0 , x [ 0 , 1 2 ] , 4 5 , x ( 1 2 , 1 ) , 5 6 , x = 1 .

Clearly, from the above functions we know that the subspace RX is closed in X, f X S X , g X T X , h X R X and the pairs ( f , R ) , ( g , S ) , ( h , T ) be weakly compatible. The pairs ( f , R ) and ( g , S ) satisfy the common ( E . A ) property, let x n = 6 7 and y n = 5 6 for each n N be the required sequences.

Now we prove that the mappings f, g, h, R, S, and T are satisfying the condition (2.1) of Theorem 2.1 with k = 1 4 [ 0 , 1 ) . Let
M ( x , y , z ) = max { G ( R x , S y , T z ) G ( f x , R x , R x ) , G ( g y , S y , S y ) G ( h z , T z , T z ) , G ( f x , S y , T z ) G ( R x , g y , T z ) , G ( R x , S y , h z ) G ( f x , g y , T z ) , G ( f x , S y , h z ) G ( R x , g y , h z ) } .
Case (1) If x , y , z [ 0 , 1 2 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 1 , 5 6 , 6 7 ) = 1 9 , G ( R x , S y , T z ) G ( f x , R x , R x ) = G ( 0 , 1 , 0 ) G ( 1 , 0 , 0 ) = 4 .
Thus we have
G 2 ( f x , g y , h z ) = 1 9 < 1 4 4 = k G ( R x , S y , T z ) G ( f x , R x , R x ) k M ( x , y , z ) .
Case (2) If x , y [ 0 , 1 2 ] , z ( 1 2 , 1 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 1 , 5 6 , 4 5 ) = 4 25 .
If z = 1 , then
G ( R x , S y , T z ) G ( f x , R x , R x ) = G ( 0 , 1 , 5 6 ) G ( 1 , 0 , 0 ) = 4 .
If z ( 1 2 , 1 ) , then
G ( R x , S y , T z ) G ( f x , R x , R x ) = G ( 0 , 1 , 4 5 ) G ( 1 , 0 , 0 ) = 4 .
So we know G ( R x , S y , T z ) G ( f x , R x , R x ) = 4 . Thus we have
G 2 ( f x , g y , h z ) = 4 25 < 1 4 4 = k G ( R x , S y , T z ) G ( f x , R x , R x ) k M ( x , y , z ) .
Case (3) If x , z [ 0 , 1 2 ] , y ( 1 2 , 1 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 1 , 4 5 , 6 7 ) = 4 25 .
If y = 1 , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 1 , 0 , 0 ) G ( 0 , 4 5 , 0 ) = 16 5 .
If y ( 1 2 , 1 ) , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 1 , 4 5 , 0 ) G ( 0 , 4 5 , 0 ) = 16 5 .
So we know G ( R x , S y , T z ) G ( f x , R x , R x ) = 16 5 . Thus we have
G 2 ( f x , g y , h z ) = 4 25 < 1 4 16 5 = k G ( f x , S y , T z ) G ( R x , g y , T z ) k M ( x , y , z ) .
Case (4) If y , z [ 0 , 1 2 ] , x ( 1 2 , 1 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 4 5 , 5 6 , 6 7 ) = 16 1 , 225 .
If x = 1 , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 4 5 , 1 , 0 ) G ( 6 7 , 5 6 , 0 ) = 24 7 .
If x ( 1 2 , 1 ) , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 4 5 , 1 , 0 ) G ( 4 5 , 5 6 , 0 ) = 10 3 .
So we know G ( f x , S y , T z ) G ( R x , g y , T z ) 10 3 . Thus we have
G 2 ( f x , g y , h z ) = 16 1 , 225 < 1 4 10 3 k G ( f x , S y , T z ) G ( R x , g y , T z ) k M ( x , y , z ) .
Case (5) x [ 0 , 1 2 ] , y , z ( 1 2 , 1 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 1 , 4 5 , 4 5 ) = 4 25 .
If y = 1 , then
G ( f x , S y , h z ) G ( R x , g y , h z ) = G ( 1 , 0 , 4 5 ) G ( 0 , 4 5 , 4 5 ) = 16 5 .
If y ( 1 2 , 1 ) , then
G ( f x , S y , h z ) G ( R x , g y , h z ) = G ( 1 , 4 5 , 4 5 ) G ( 0 , 4 5 , 4 5 ) = 16 25 .
So we know G ( f x , S y , h z ) G ( R x , g y , h z ) 16 25 . Thus we have
G 2 ( f x , g y , h z ) = 4 25 = 1 4 16 25 k G ( f x , S y , h z ) G ( R x , g y , h z ) k M ( x , y , z ) .
Case (6) y [ 0 , 1 2 ] , x , z ( 1 2 , 1 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 4 5 , 5 6 , 4 5 ) = 1 225 .
If x = 1 , then
G ( f x , S y , h z ) G ( R x , g y , h z ) = G ( 4 5 , 1 , 4 5 ) G ( 6 7 , 5 6 , 4 5 ) = 8 175 .
If x ( 1 2 , 1 ) , then
G ( f x , S y , h z ) G ( R x , g y , h z ) = G ( 4 5 , 1 , 4 5 ) G ( 4 5 , 5 6 , 4 5 ) = 2 75 .
So we know G ( f x , S y , h z ) G ( R x , g y , h z ) 2 75 . Thus we have
G 2 ( f x , g y , h z ) = 1 225 < 1 4 2 75 k G ( f x , S y , h z ) G ( R x , g y , h z ) k M ( x , y , z ) .
Case (7) z [ 0 , 1 2 ] , x , y ( 1 2 , 1 ] , then we have
G 2 ( f x , g y , h z ) = G 2 ( 4 5 , 4 5 , 6 7 ) = 16 1 , 225 .
If x = 1 , y = 1 , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 4 5 , 0 , 0 ) G ( 6 7 , 4 5 , 0 ) = 96 35 .
If x = 1 , y ( 1 2 , 1 ) , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 4 5 , 4 5 , 0 ) G ( 6 7 , 4 5 , 0 ) = 96 35 .
If y = 1 , x ( 1 2 , 1 ) , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 4 5 , 0 , 0 ) G ( 4 5 , 4 5 , 0 ) = 64 25 .
If x , y ( 1 2 , 1 ) , then
G ( f x , S y , T z ) G ( R x , g y , T z ) = G ( 4 5 , 4 5 , 0 ) G ( 4 5 , 4 5 , 0 ) = 64 25 .
So we know G ( f x , S y , T z ) G ( R x , g y , T z ) 64 25 . Thus we have
G 2 ( f x , g y , h z ) = 16 1 , 225 < 1 4 64 25 k G ( f x , S y , T z ) G ( R x , g y , T z ) k M ( x , y , z ) .
Case (8) If x , y , z ( 1 2 , 1 ] , then
G 2 ( f x , g y , h z ) = G 2 ( 4 5 , 4 5 , 4 5 ) = 0 1 4 M ( x , y , z ) = k M ( x , y , z ) .

Then in all the above cases, the mappings f, g, h, R, T, and S are satisfying the condition (2.1) of Theorem 2.1 with k = 1 4 , so that all the conditions of Theorem 2.1 are satisfied. Moreover, 4 5 is the unique common fixed point of f, g, h, R, T, and S.

The following example supports the usability of our results for nonsymmetric generalized metric spaces.

Example 2.2 Let X = { 0 , 1 , 2 } be a set with G-metric defined by Table 1. It is easy to see that ( X , G ) is a nonsymmetric generalized metric space. Let the maps f , g , h , R , S , T : X X be defined by Table 2.
Table 1

The definition of G -metric on X

(x,y,z)

G(x,y,z)

(0,0,0), (1,1,1), (2,2,2)

0

(0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0)

1

(1,2,2), (2,1,2), (2,2,1)

2

(0,0,2), (0,2,0), (2,0,0), (0,2,2), (2,0,2), (2,2,0)

3

(1,1,2), (1,2,1), (2,1,1), (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), (2,1,0)

4

Table 2

The definition of maps f , g , h , R , S and T on X

x

f(x)

g(x)

h(x)

R(x)

S(x)

T(x)

0

0

0

0

0

0

0

1

0

0

1

1

0

2

2

0

1

0

1

2

1

Clearly, the subspace RX, SX, and TX are closed in X, f X S X , g X T X , and h X R X with the pairs ( f , R ) , ( g , S ) , and ( h , T ) being weakly compatible. Also two pairs ( f , R ) and ( g , S ) satisfy the common ( E . A ) property, indeed, x n = 0 and y n = 1 for each n N are the required sequences.

To check the contractive condition (2.1) for all x , y X , we consider the following cases.

Note that for Case (1) x = y = z = 0 , (2) x = y = 0 , z = 2 , (3) x = z = 0 , y = 1 , (4) x = 0 , y = 1 , z = 2 , (5) x = 1 , y = z = 0 , (6) x = 1 , y = 0 , z = 2 , (7) x = y = 1 , z = 0 , (8) x = y = 1 , z = 2 , (9)  x = 2 , y = z = 0 , (10) x = z = 2 , y = 0 , (11) x = 2 , y = 1 , z = 0 , and (12) x = z = 2 , y = 1 .

We have G ( f x , g y , h z ) = G ( 0 , 0 , 0 ) = 0 , and hence (2.1) is obviously satisfied.

Case (13) If x = y = 0 , z = 1 , then f x = g y = 0 , h z = 1 , R x = S y = 0 , T z = 2 , hence we have
G 2 ( f 0 , g 0 , h 1 ) = G 2 ( 0 , 0 , 1 ) = 1 < 1 3 × 9 = 1 3 G ( 0 , 0 , 2 ) G ( 0 , 0 , 2 ) = 1 3 G ( f 0 , S 0 , T 1 ) G ( R 0 , g 0 , T 1 ) 1 3 M ( 0 , 0 , 1 ) .
Case (14) If x = 0 , y = z = 1 , then f x = g y = 0 , h z = 1 , T z = 2 , hence we have
G 2 ( f 0 , g 1 , h 1 ) = G 2 ( 0 , 0 , 1 ) = 1 < 1 3 × 9 = 1 3 G ( 0 , 0 , 2 ) G ( 0 , 0 , 2 ) = 1 3 G ( f 0 , S 1 , T 1 ) G ( R 0 , g 1 , T 1 ) 1 3 M ( 0 , 1 , 1 ) .
Case (15) If x = z = 0 , y = 2 , then f x = h z = 0 , g y = 1 , S y = 2 , hence we have
G 2 ( f 0 , g 2 , h 0 ) = G 2 ( 0 , 1 , 0 ) = 1 = 1 3 × 3 = 1 3 G ( 0 , 2 , 0 ) G ( 0 , 1 , 0 ) = 1 3 G ( R 0 , S 2 , h 0 ) G ( f 0 , g 2 , T 0 ) 1 3 M ( 0 , 2 , 0 ) .
Case (16) If x = 0 , y = 2 , z = 1 , then f x = 0 , g y = h z = 1 , R x = 0 , S y = T z = 2 , hence we have
G 2 ( f 0 , g 2 , h 1 ) = G 2 ( 0 , 1 , 1 ) = 1 < 1 3 × 16 = 1 3 G ( 0 , 2 , 1 ) G ( 0 , 1 , 2 ) = 1 3 G ( R 0 , S 2 , h 1 ) G ( f 0 , g 2 , T 1 ) 1 3 M ( 0 , 2 , 1 ) .
Case (17) If x = 0 , y = z = 2 , then f x = h z = 0 , g y = 1 , S y = 2 , hence we have
G 2 ( f 0 , g 2 , h 2 ) = G 2 ( 0 , 1 , 0 ) = 1 = 1 3 × 3 = 1 3 G ( 0 , 2 , 0 ) G ( 0 , 1 , 1 ) = 1 3 G ( R 0 , S 2 , h 2 ) G ( f 0 , g 2 , T 2 ) 1 3 M ( 0 , 2 , 2 ) .
Case (18) If x = z = 1 , y = 0 , then f x = g y = 0 , h z = 1 , T z = 2 , hence we have
G 2 ( f 1 , g 0 , h 1 ) = G 2 ( 0 , 0 , 1 ) = 1 < 1 3 × 12 = 1 3 G ( 0 , 0 , 2 ) G ( 1 , 0 , 2 ) = 1 3 G ( f 1 , S 0 , T 1 ) G ( R 1 , g 0 , T 1 ) 1 3 M ( 1 , 0 , 1 ) .
Case (19) x = y = z = 1 , then f x = g y = 0 , h z = 1 , T z = 2 , hence we have
G 2 ( f 1 , g 1 , h 1 ) = G 2 ( 0 , 0 , 1 ) = 1 < 1 3 × 12 = 1 3 G ( 0 , 0 , 2 ) G ( 1 , 0 , 2 ) = 1 3 G ( f 1 , S 1 , T 1 ) G ( R 1 , g 1 , T 1 ) 1 3 M ( 1 , 1 , 1 ) .
Case (20) If x = 1 , y = 2 , z = 0 , then f x = h z = 0 , g y = 1 , S y = 2 , hence we have
G 2 ( f 1 , g 2 , h 0 ) = G 2 ( 0 , 1 , 0 ) = 1 < 1 3 × 4 = 1 3 G ( 1 , 2 , 0 ) G ( 0 , 1 , 0 ) = 1 3 G ( R 1 , S 2 , h 0 ) G ( f 1 , g 2 , T 0 ) 1 3 M ( 1 , 2 , 0 ) .
Case (21) If x = z = 1 , y = 2 , then f x = 0 , g y = h z = 1 , T z = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 1 , 1 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( h z , T z , T z ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .
Case (22) If x = 1 , y = z = 2 , then f x = h z = 0 , g y = 1 , S y = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 1 , 0 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( g y , S y , S y ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .
Case (23) If x = 2 , y = 0 , z = 1 , then f x = g y = 0 , h z = 1 , T z = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 0 , 1 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( h z , T z , T z ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .
Case (24) If x = 2 , y = z = 1 , then f x = g y = 0 , h z = 1 , T z = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 0 , 1 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( h z , T z , T z ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .
Case (25) x = y = 2 , z = 0 , then f x = h z = 0 , g y = 1 , S y = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 1 , 0 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( g y , S y , S y ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .
Case (26) x = y = 2 , z = 1 , then f x = 0 , g y = h z = 1 , T z = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 1 , 1 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( h z , T z , T z ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .
Case (27) If x = y = z = 2 , then f x = h z = 0 , g y = 1 , S y = 2 , hence we have
ψ ( G ( f x , g y , h z ) ) = 3 G ( 0 , 1 , 0 ) = 3 < 11 4 × 2 = 11 4 G ( 1 , 2 , 2 ) = 11 4 G ( g y , S y , S y ) 11 4 M ( x , y , z ) = ψ ( M ( x , y , z ) ) ϕ ( M ( x , y , z ) ) .

Hence, all of the conditions of Theorem 2.1 are satisfied. Moreover, 0 is the unique common fixed point of f, g, h, R, S, and T.

Corollary 2.1 Let ( X , G ) be a G-metric space. Suppose mappings f , g , h , R , S , T : X X satisfying the following conditions:
G 2 ( f x , g y , h z ) a 1 G ( R x , S y , T z ) G ( f x , R x , R x ) + a 2 G ( g y , S y , S y ) G ( h z , T z , T z ) + a 3 G ( f x , S y , T z ) G ( R x , g y , T z ) + a 4 G ( R x , S y , h z ) G ( f x , g y , T z ) + a 5 G ( f x , S y , h z ) G ( R x , g y , h z )
(2.2)
for all x , y , z X . Here a i 0 ( i = 1 , 2 , 3 , 4 , 5 ) and 0 a 1 + a 2 + a 3 + a 4 + a 5 < 1 . If one of the following conditions is satisfied, then the pairs ( f , R ) , ( g , S ) , and ( h , T ) have a common point of coincidence in X.
  1. (i)

    The subspace RX is closed in X, f X S X , g X T X , and the two pairs of ( f , R ) and ( g , S ) satisfy the common ( E . A ) property.

     
  2. (ii)

    The subspace SX is closed in X, g X T X , h X R X , and the two pairs of ( g , S ) and ( h , T ) satisfy the common ( E . A ) property.

     
  3. (iii)

    The subspace TX is closed in X, f X S X , h X R X , and the two pairs of ( f , R ) and ( h , T ) satisfy the common ( E . A ) property.

     

Further, if the pairs ( f , R ) , ( g , S ) , and ( h , T ) are weakly compatible, then f, g, h, R, S, and T have a unique common fixed point in X.

Proof Suppose that
M ( x , y , z ) = max { G ( R x , S y , T z ) G ( f x , R x , R x ) , G ( g y , S y , S y ) G ( h z , T z , T z ) , G ( f x , S y , T z ) G ( R x , g y , T z ) , G ( R x , S y , h z ) G ( f x , g y , T z ) , G ( f x , S y , h z ) G ( R x , g y , h z ) } .
Then
a 1 G ( R x , S y , T z ) G ( f x , R x , R x ) + a 2 G ( g y , S y , S y ) G ( h z , T z , T z ) + a 3 G ( f x , S y , T z ) G ( R x , g y , T z ) + a 4 G ( R x , S y , h z ) G ( f x , g y , T z ) + a 5 G ( f x , S y , h z ) G ( R x , g y , h z ) ( a 1 + a 2 + a 3 + a 4 + a 5 ) M ( x , y , z ) .

So, if the condition (2.2) holds, then G 2 ( f x , g y , h z ) ( a 1 + a 2 + a 3 + a 4 + a 5 ) M ( x , y , z ) . Taking k = a 1 + a 2 + a 3 + a 4 + a 5 in Theorem 2.1, the conclusion of Corollary 2.1 can be obtained from Theorem 2.1, since 0 a 1 + a 2 + a 3 + a 4 + a 5 < 1 . □

Declarations

Acknowledgements

The present studies are supported by the National Natural Science Foundation of China (11071169, 11361070), the Natural Science Foundation of Zhejiang Province (Y6110287, LY12A01030), the Natural Science Foundation of Shandong Province (ZR2013AL015) and the Innovation Foundation of Graduate Student of Hangzhou Normal University.

Authors’ Affiliations

(1)
Department of Mathematics, Institute of Applied Mathematics, Hangzhou Normal University, Hangzhou, China
(2)
College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, P.R. China

References

  1. Mustafa Z, Sims B: A new approach to a generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7: 289-297.MathSciNetGoogle Scholar
  2. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorems for mappings on complete G -metric space. Fixed Point Theory Appl. 2008. Article ID 189870, 2008: 10.1155/2008/189870Google Scholar
  3. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009. Article ID 917175, 2009:Google Scholar
  4. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed points results in G -metric spaces. Int. J. Math. Math. Sci. 2009. Article ID 283028, 2009:Google Scholar
  5. Mustafa Z, Khandagji M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011,48(3):304-319.MathSciNetGoogle Scholar
  6. Obiedat H, Mustafa Z: Fixed point results on a nonsymmetric G -metric spaces. Jordan J. Math. Stat. 2010,3(2):65-79.Google Scholar
  7. Aydi H, Shatanawi W, Vetro C: On generalized weakly G -contraction mapping in G -metric spaces. Comput. Math. Appl. 2011,62(11):4222-4229. 10.1016/j.camwa.2011.10.007MathSciNetView ArticleGoogle Scholar
  8. Aydi H: A fixed point result involving a generalized weakly contractive condition in G -metric spaces. Bull. Math. Anal. Appl. 2011,3(4):180-188.MathSciNetGoogle Scholar
  9. Gajić L, Stojaković M: On Ćirić generalization of mappings with a contractive iterate at a point in G -metric spaces. Appl. Math. Comput. 2012,219(1):435-441. 10.1016/j.amc.2012.06.041MathSciNetView ArticleGoogle Scholar
  10. Zhou SH, Gu F: Some new fixed points in G -metric spaces. J. Hangzhou Norm. Univ., Nat. Sci. Ed. 2012,11(1):47-50.Google Scholar
  11. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010. Article ID 181650, 2010:Google Scholar
  12. Chugh R, Kadian T, Rani A, Rhoades BE: Property P in G -metric spaces. Fixed Point Theory Appl. 2010. Article ID 401684, 2010:Google Scholar
  13. Abbas M, Rhoades BE: Common fixed point results for noncommuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009,215(1):262-269. 10.1016/j.amc.2009.04.085MathSciNetView ArticleGoogle Scholar
  14. Abbas M, Nazir T, Saadati R: Common fixed point results for three maps in generalized metric space. Adv. Differ. Equ. 2011. Article ID 49, 2011:Google Scholar
  15. Abbas M, Nazir T, Radenović S: Some periodic point results in generalized metric spaces. Appl. Math. Comput. 2010,217(8):4094-4099. 10.1016/j.amc.2010.10.026MathSciNetView ArticleGoogle Scholar
  16. Abbas M, Khan SH, Nazir T: Common fixed points of R -weakly commuting maps in generalized metric spaces. Fixed Point Theory Appl. 2011. Article ID 784595, 2011:Google Scholar
  17. Vats RK, Kumar S, Sihag V: Some common fixed point theorems for compatible mappings of type ( A ) in complete G -metric space. Adv. Fuzzy Math. 2011,6(1):27-38.Google Scholar
  18. Abbas M, Nazir T, Vetro P: Common fixed point results for three maps in G -metric spaces. Filomat 2011,25(4):1-17. 10.2298/FIL1104001AMathSciNetView ArticleGoogle Scholar
  19. Gu F: Common fixed point theorems for six mappings in generalized metric spaces. Abstr. Appl. Anal. 2012. Article ID 379212, 2012: 10.1155/2012/379212Google Scholar
  20. Gu F: Some new common coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2013. Article ID 181, 2013: 10.1186/1687-1812-2013-181Google Scholar
  21. Gu F, Yang Z: Some new common fixed point results for three pairs of mappings in generalized metric spaces. Fixed Point Theory Appl. 2013. Article ID 174, 2013: 10.1186/1687-1812-2013-174Google Scholar
  22. Gu F, Ye H: Common fixed point theorems of Altman integral type mappings in G -metric spaces. Abstr. Appl. Anal. 2012. Article ID 630457, 2012: 630457 10.1155/2012/630457Google Scholar
  23. Ye H, Gu F: Common fixed point theorems for a class of twice power type contraction maps in G -metric spaces. Abstr. Appl. Anal. 2012. Article ID 736214, 2012: 736214Google Scholar
  24. Yin Y, Gu F: Common fixed point theorem about four mappings in G -metric spaces. J. Hangzhou Norm. Univ., Nat. Sci. Ed. 2012,11(6):511-515.Google Scholar
  25. Ye HQ, Lu J, Gu F: A new common fixed point theorem for noncompatible mappings of type ( A f ) in G -metric space. J. Hangzhou Norm. Univ., Nat. Sci. Ed. 2013,12(1):50-56.Google Scholar
  26. Shen YJ, Lu J, Zheng HH: Common fixed point theorem for converse commuting mappings in generalized metric spaces. J. Hangzhou Norm. Univ., Nat. Sci. Ed. 2014,13(5):542-547.Google Scholar
  27. Hussain N, Parvaneh V, Hoseini Ghoncheh SJ: Generalized contractive mappings and weakly α -admissible pairs in G -metric spaces. Sci. World J. 2014. Article ID 941086, 2014:Google Scholar
  28. Hussain N, Parvaneh V, Roshan JR: Fixed point results for G - α -contractive maps with application to boundary value problems. Sci. World J. 2014. Article ID 585964, 2014:Google Scholar
  29. Hussain N, Roshan JR, Parvaneh V, Latif A: A unification of G -metric, partial metric and b -metric spaces. Abstr. Appl. Anal. 2014. Article ID 180698, 2014:Google Scholar
  30. Tahat N, Aydi H, Karapınar E, Shatanawi W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G -metric spaces. Fixed Point Theory Appl. 2012. Article ID 48, 2012: 10.1186/1687-1812-2012-48Google Scholar
  31. Mustafa Z: Common fixed points of weakly compatible mappings in G -metric spaces. Appl. Math. Sci. 2012,6(92):4589-4600.MathSciNetGoogle Scholar
  32. Abbas M, Nazir T, Dorić D:Common fixed point of mappings satisfying ( E . A ) property in generalized metric spaces. Appl. Math. Comput. 2012,218(14):7665-7670. 10.1016/j.amc.2011.11.113MathSciNetView ArticleGoogle Scholar
  33. Mustafa Z, Aydi H, Karapınar E: On common fixed points in G -metric spaces using ( E . A ) property. Comput. Math. Appl. 2012,64(6):1944-1956. 10.1016/j.camwa.2012.03.051MathSciNetView ArticleGoogle Scholar
  34. Long W, Abbas M, Nazir T, Radenović S:Common fixed point for two pairs of mappings satisfying ( E . A ) property in generalized metric spaces. Abstr. Appl. Anal. 2012. Article ID 394830, 2012: 10.1155/2012/394830Google Scholar
  35. Gu F, Yin Y:Common fixed point for three pairs of self-maps satisfying common ( E . A ) property in generalized metric spaces. Abstr. Appl. Anal. 2013. Article ID 808092, 2013: 10.1155/2013/808092Google Scholar
  36. Gu F, Shatanawi W: Common fixed point for generalized weakly G -contraction mappings satisfying common ( E . A ) property in G -metric spaces. Fixed Point Theory Appl. 2013. Article ID 48, 2013: 10.1186/1687-1812-2013-309Google Scholar
  37. Jleli M, Samet B: Remarks on G -metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012. Article ID 210, 2012: 10.1186/1687-1812-2012-210Google Scholar
  38. Samet B, Vetro C, Vetro F: Remarks on G -metric spaces. Int. J. Anal. 2013. Article ID 917158, 2013:Google Scholar
  39. Mustafa Z, Obiedat H, Awawdeh H: Some fixed point theorem for mappings on complete G -metric spaces. Fixed Point Theory Appl. 2008. Article ID 189870, 2008:Google Scholar
  40. Karapınar E, Agarval R: Further remarks on G -metric spaces. Fixed Point Theory Appl. 2013. Article ID 154, 2013: 10.1186/1687-1812-2013-154Google Scholar
  41. Jungck G, Rhoades BE: Fixed point for set valued functions without continuity. Indian J. Pure Appl. Math. 1998, 29: 227-238.MathSciNetGoogle Scholar

Copyright

© Gu et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.