Open Access

( H , F ) -Closed set and coupled coincidence point theorems for a generalized compatible in partially G-metric spaces

Journal of Inequalities and Applications20142014:342

https://doi.org/10.1186/1029-242X-2014-342

Received: 3 June 2014

Accepted: 11 August 2014

Published: 3 September 2014

Abstract

In this work, we present a notion of an ( H , F ) -closed set and prove the existence of a coupled coincidence point theorem for a pair { F , H } of mappings F , H : X × X X with φ-contraction mappings in partially ordered metric spaces without H-increasing property of F and mixed monotone property of H. We give some examples of a nonlinear contraction mapping, which is not applied to the existence of coupled coincidence point by H using the mixed monotone property and H-increasing property of F. We also show the uniqueness of a coupled coincidence point of the given mappings. Further, we apply our results to the existence and uniqueness of a coupled coincidence point of the given mappings in partially ordered G-metric spaces with H-increasing property of F and mixed monotone property of H. These results generalize some recent results in the literature.

Keywords

coupled fixed pointcoupled coincidence pointgeneralized compatibleinvariant setmixed g-monotonepartially ordered setclosed set

1 Introduction

The existence of a fixed point for the contraction type of mappings in partially ordered metric spaces has been first studied by Ran and Reurings [1]. Moreover, they established some new results and presented some applications to matrix equations. In 1987, Guo and Lakshmikantham [2] introduced the concept of a coupled fixed point. Later, Bhaskar and Lakshmikantham [3] introduced the concept of the mixed monotone property for contractive operators. They also showed some applications on the existence and uniqueness of the coupled fixed point theorems for mappings which satisfy the mixed monotone property in partially ordered metric spaces. Lakshimikantham and Ćirić [4] extended the results in [3] by defining the mixed g-monotonicity and studied the existence and uniqueness of coupled coincidence point for such a mappings which satisfy the mixed monotone property in partially ordered metric spaces. As a continuation of this work, many authors conducted research on the coupled fixed point theory and coupled coincidence point theory in partially ordered metric spaces and different spaces. We refer the reader for example to [431].

In 2006, Mustafa and Sims [32] introduced the notion of a G-metric spaces as a generalization of the concept of a metric spaces and proved the analog of the Banach contraction mapping principle in the context of G-metric spaces. For examples of extensions and applications of these works see [3346]. In 2011, Choudhury and Maity [47] proved the existence of a coupled fixed point theorem of nonlinear contraction mappings with mixed monotone property in partially ordered G-metric spaces. Aydi et al. [48] established coupled coincidence and coupled common fixed point results for a mixed g-monotone mapping satisfying nonlinear contractions in partially ordered G-metric spaces. They generalized the results obtained by Choudhury and Maily [47]. Later, Karapınar et al. [49] extended the results of coupled coincidence and coupled common fixed point theorem for a mixed g-monotone mapping obtained by Aydi et al. [48]. Many authors have studied coupled coincidence point and coupled common fixed point results for a mixed g-monotone mapping satisfying nonlinear contractions in partially ordered G-metric spaces (see, for example, [4764]).

One of the interesting ways to developed coupled fixed point theory is to consider the mapping F : X × X X without the mixed monotone property. Recently, Sintunavarat et al. [29, 30] proved some coupled fixed point theorems for nonlinear contractions without mixed monotone property which extended the results of Bhaskar and Lakshmikantham [3] by using the concept of an F-invariant set due to Samet and Vetro [28]. Later, Batra and Vashistha [6] introduced an ( F , g ) -invariant set which is a generalization of an F-invariant set. Recently, Kutbi et al. [22] introduced the concept of an F-closed set which is weaker than the concept of an F-invariant set and proved some coupled fixed point theorems without the condition of F-invariant set and mixed monotone property. Very recently, Charoensawan and Thangthong [55] generalized and extended the coupled coincidence point theorem of nonlinear contraction mappings in partially ordered G-metric spaces without the mixed g-monotone property by using the concept of ( F , g ) -invariant set in partially ordered G-metric spaces which are generalizations of the results of Aydi et al. [48]. In 2014, Hussain et al. [16] presented the new concept of generalized compatibility of a pair { F , G } of mappings F , G : X × X X and proved some coupled coincidence point results of such a mapping without the mixed G-monotone property of F in partially ordered metric spaces which generalized some recent comparable results in the literature.

In this work, we introduce the concept of ( H , F ) -closed set and the notion of generalized compatibility of a pair { F , H } of mapping F , H : X × X X in the setting of G-metric spaces. We also obtain a coupled coincidence point theorem for a pair { F , H } with φ-contraction mappings in partially ordered metric spaces without H-increasing property of F and mixed monotone property of H. Our theorem generalizes and extends the very recent results obtained by Hussain et al. [16] and Karapınar et al. [49].

2 Preliminaries

In this section, we give some definitions, propositions, examples and remarks which are useful for main results in our paper. Throughout this paper, ( X , ) denotes a partially ordered set with the partial order . By x y , we mean y x . Let ( x , ) be a partially ordered set, the partial order 2 for the product set X × X defined in the following way, for all ( x , y ) , ( u , v ) X × X :
( x , y ) 2 ( u , v ) H ( x , y ) H ( u , v ) and H ( v , u ) H ( y , x ) ,

where H : X × X X is one-one.

We say that ( x , y ) is comparable to ( u , v ) if either ( x , y ) 2 ( u , v ) or ( u , v ) 2 ( x , y ) .

Definition 2.1 [32]

Let X be a nonempty set and G : X × X × X R + be a function satisfying the following properties:
  • (G1) G ( x , y , z ) = 0 if x = y = z .

  • (G2) 0 < G ( x , x , y ) for all x , y X with x y .

  • (G3) G ( x , x , y ) G ( x , y , z ) for all x , y , z X with y z .

  • (G4) G ( x , y , z ) = G ( x , z , y ) = G ( y , z , x ) = (symmetry in all three variables).

  • (G5) G ( x , y , z ) G ( x , a , a ) + G ( a , y , z ) for all x , y , z , a X (rectangle inequality).

Then the function G is called a generalized metric, or more specially, a G-metric on X, and the pair ( X , G ) is called a G-metric space.

Example 2.2 Let ( X , d ) be a metric space. The function G : X × X × X [ 0 , + ) , defined by G ( x , y , z ) = d ( x , y ) + d ( y , z ) + d ( z , x ) , for all x , y , z X , is a G-metric on X.

Definition 2.3 [32]

Let ( X , G ) be a G-metric space, and let ( x n ) be a sequence of points of X. We say that ( x n ) is G-convergent to x X if lim n , m G ( x , x n , x m ) = 0 , that is, for any ε > 0 , there exists N N such that G ( x , x n , x m ) < ε , for all n , m N . We call x the limit of the sequence ( x n ) and write x n x or lim n x n = x .

Proposition 2.4 [32]

Let ( X , G ) be a G-metric space, the following are equivalent:
  1. (1)

    ( x n ) is G-convergent to x.

     
  2. (2)

    G ( x n , x n , x ) 0 as n + .

     
  3. (3)

    G ( x n , x , x ) 0 as n + .

     
  4. (4)

    G ( x n , x m , x ) 0 as n , m + .

     

Definition 2.5 [32]

Let ( X , G ) be a G-metric space. A sequence ( x n ) is called a G-Cauchy sequence if, for any ε > 0 , there exists N N such that G ( x n , x m , x l ) < ε , for all n , m , l N . That is, G ( x n , x m , x l ) 0 as n , m , l + .

Proposition 2.6 [32]

Let ( X , G ) be a G-metric space, the following are equivalent:
  1. (1)

    the sequence ( x n ) is G-Cauchy;

     
  2. (2)

    for any ε > 0 , there exists N N such that G ( x n , x m , x m ) < ε , for all n , m N .

     

Proposition 2.7 [32]

Let ( X , G ) be a G-metric space. A mapping f : X X is G-continuous at x X if and only if it is G-sequentially continuous at x, that is, whenever ( x n ) is G-convergent to x, ( f ( x n ) ) is G-convergent to f ( x ) .

Definition 2.8 [32]

A G-metric space ( X , G ) is called G-complete if every G-Cauchy sequence is G-convergent in ( X , G ) .

Definition 2.9 [47]

Let ( X , G ) be a G-metric space. A mapping F : X × X X is said to be continuous if for any two G-convergent sequences ( x n ) and ( y n ) converging to x and y, respectively, ( F ( x n , y n ) ) is G-convergent to F ( x , y ) .

In 2009, Lakshmikantham and Ćirić [4] introduced the concept of a mixed g-monotone mapping and a coupled coincidence point as follows.

Definition 2.10 [4]

Let ( X , ) be a partially ordered set and F : X × X X and g : X X . We say F has the mixed g-monotone property if for any x , y X
x 1 , x 2 X , g ( x 1 ) g ( x 2 ) implies F ( x 1 , y ) F ( x 2 , y ) ,
and
y 1 , y 2 X , g ( y 1 ) g ( y 2 ) implies F ( x , y 1 ) F ( x , y 2 ) .

Definition 2.11 [4]

An element ( x , y ) X × X is called a coupled coincidence point of mappings F : X × X X , and g : X X if F ( x , y ) = g ( x ) and F ( y , x ) = g ( y ) .

Definition 2.12 [4]

Let X be a nonempty set and F : X × X X and g : X X . We say F and g are commutative if g ( F ( x , y ) ) = F ( g ( x ) , g ( y ) ) for all x , y X .

Let Φ denote the set of functions φ : [ 0 , ) [ 0 , ) satisfying
  1. 1.

    φ ( t ) < t for all t > 0 ,

     
  2. 2.

    lim r t + φ ( r ) < t for all t > 0 .

     

In 2012, Karapınar et al. [49] proved the following theorems.

Theorem 2.13 [49]

Let ( X , ) be a partially ordered set and G be a G-metric on X such that ( X , G ) is a complete G-metric space. Suppose that there exist φ Φ , F : X × X X , and g : X X such that
[ G ( F ( x , u ) , F ( y , v ) , F ( z , w ) ) + G ( F ( u , x ) , F ( v , y ) , F ( w , z ) ) ] φ ( G ( g ( x ) , g ( y ) , g ( z ) ) + G ( g ( u ) , g ( v ) , g ( w ) ) )
for all x , y , u , v , z , w X for which g ( x ) g ( y ) g ( z ) and g ( u ) g ( v ) g ( w ) . Suppose also that F is continuous and has the mixed g-monotone property, F ( X × X ) g ( X ) , and g is continuous and commutes with F. If there exists ( x 0 , y 0 ) X × X such that
g ( x 0 ) F ( x 0 , y 0 ) and g ( y 0 ) F ( y 0 , x 0 ) ,

then there exists ( x , y ) X × X such that g ( x ) = F ( x , y ) and g ( y ) = F ( y , x ) , that is, F and g have a coupled coincidence point.

Hussain et al. [16] introduced the concept of H-increasing and { F , H } generalized compatible as follows.

Definition 2.14 [16]

Suppose that F , H : X × X X are two mappings. F is said to be H-increasing with respect to if for all x , y , u , v X , with H ( x , y ) H ( u , v ) , we have F ( x , y ) F ( u , v ) .

Definition 2.15 [16]

An element ( x , y ) X × X is called a coupled coincidence point of mappings F , H : X × X X if F ( x , y ) = H ( x , y ) and F ( y , x ) = H ( y , x ) .

Definition 2.16 [16]

Let ( X , d ) be a metric space and F , H : X × X X . We say that the pair { F , H } is generalized compatible if
{ d ( F ( H ( x n , y n ) , H ( y n , x n ) ) , H ( F ( x n , y n ) , F ( y n , x n ) ) ) 0 as  n + , d ( F ( H ( y n , x n ) , H ( x n , y n ) ) , H ( F ( y n , x n ) , F ( x n , y n ) ) ) 0 as  n + ,
whenever ( x n ) and ( y n ) are sequences in X such that
{ lim n F ( x n , y n ) = lim n H ( x n , y n ) = t 1 , lim n F ( y n , x n ) = lim n H ( y n , x n ) = t 2 .

Definition 2.17 [16]

Let F , H : X × X X be two maps. We say that the pair { F , H } is commuting if
F ( H ( x , y ) , H ( y , x ) ) = H ( F ( x , y ) , F ( y , x ) ) for all  x , y X .

It is easy to see that a commuting pair is generalized compatible but the converse is not true in general.

Let ϒ denote the set of all functions ϕ : [ 0 , ) [ 0 , ) such that:
  1. (i)

    ϕ is continuous and increasing,

     
  2. (ii)

    ϕ ( t ) = 0 if and only if t = 0 ,

     
  3. (iii)

    ϕ ( t + s ) ϕ ( t ) + ϕ ( s ) , for all t , s [ 0 , ) .

     

Let Ψ be the set of all functions ϕ : [ 0 , ) [ 0 , ) such that lim t r ψ ( t ) > 0 for all r > 0 and lim t 0 + ψ ( t ) = 0 .

Recently, Hussain et al. [16] proved the coupled coincidence point for such mappings involving ( ψ , ϕ ) -contractive condition as follows.

Theorem 2.18 [16]

Let ( X , ) be a partially ordered set and M be a nonempty subset of X 4 and let there exists d, a metric on X such that ( X , d ) is a complete metric space. Assume that F , H : X × X X are two generalized compatible mappings such that F is H-increasing with respect to , H is continuous and has the mixed monotone property. Suppose that for any x , y X , there exist u , v X such that F ( x , y ) = H ( u , v ) and F ( y , x ) = H ( v , u ) . Suppose that there exist ϕ ϒ and ψ Ψ such that the following holds:
ϕ ( d ( F ( x , y ) , F ( u , v ) ) ) 1 2 ϕ ( d ( H ( x , y ) , H ( u , v ) ) + d ( H ( y , x ) , H ( v , u ) ) ) ψ ( d ( H ( x , y ) , H ( u , v ) ) + d ( H ( y , x ) , H ( v , u ) ) 2 )

for all x , y , u , v X with H ( x , y ) H ( u , v ) and H ( y , x ) H ( v , u ) .

Also suppose that either
  1. (a)

    F is continuous or

     
  2. (b)
    X has the following properties: for any two sequences { x n } and { y n } with
    1. (i)

      if a non-decreasing sequence { x n } x , then x n x for all n,

       
    2. (ii)

      if a non-increasing sequence { y n } y , then y y n for all n.

       
     
If there exists ( x 0 , y 0 ) X × X with
H ( x 0 , y 0 ) F ( x 0 , y 0 ) and H ( y 0 , x 0 ) F ( y 0 , x 0 ) ,

then there exists ( x , y ) X × X such that H ( x , y ) = F ( x , y ) and H ( y , x ) = F ( y , x ) , that is, F and H have a coupled coincidence point.

In order to remove the mixed monotone property, Batra and Vashistha [6] introduced the following property.

Definition 2.19 [6]

Let ( X , d ) be a metric space and F : X × X X , g : X X be given mappings. Let M be a nonempty subset of X 4 . We say that M is an ( F , g ) -invariant subset of X 4 if and only if, for all x , y , z , w X ,
  1. (i)

    ( x , y , z , w ) M ( w , z , y , x ) M .

     
  2. (ii)

    ( g ( x ) , g ( y ) , g ( z ) , g ( w ) ) M ( F ( x , y ) , F ( y , x ) , F ( z , w ) , F ( w , z ) ) M .

     

Kutbi et al. [22] introduced the notion of F-closed set which extended the notion of F-invariant set as follows.

Definition 2.20 [22]

Let F : X × X X be a mapping, and let M be a subset of X 4 . We say that M is an F-closed subset of X 4 if, for all x , y , u , v X ,
( x , y , u , v ) M ( F ( x , y ) , F ( y , x ) , F ( u , v ) , F ( v , u ) ) M .

Inspired by above definitions, we give the notion of a ( H , F ) -closed set which is useful for our main results.

Definition 2.21 Let F , H : X × X X be two mappings and let M be a subset of X 6 . We say that M is an ( H , F ) -closed subset of X 6 if, for all x , y , z , u , v , w X ,
( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( z , w ) , H ( w , z ) ) M ( F ( x , u ) , F ( u , x ) , F ( y , v ) , F ( v , y ) , F ( z , w ) , F ( w , z ) ) M .
Definition 2.22 Let H : X × X X be a mapping and M be a subset of X 6 . We say that M satisfies the transitive property if and only if for all x , y , z , u , v , w , a , b , c , d X ,
( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( a , b ) , H ( b , a ) ) M and ( H ( a , b ) , H ( b , a ) , H ( c , d ) , H ( d , c ) , H ( z , w ) , H ( w , z ) ) M ( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( z , w ) , H ( w , z ) ) M .
Definition 2.23 Let F , H : X × X X be two mappings. We say that the pair { F , H } is generalized compatible if ( x n ) and ( y n ) are sequences in X such that for some x , y X
lim n H ( x n , y n ) = lim n F ( x n , y n ) = x and lim n H ( y n , x n ) = lim n F ( y n , x n ) = y
imply
lim n F ( H ( x n , y n ) , H ( y n , x n ) ) = lim n H ( F ( x n , y n ) , F ( y n , x n ) ) and lim n F ( H ( y n , x n ) , H ( x n , y n ) ) = lim n H ( F ( y n , x n ) , F ( x n , y n ) ) .

Remark The set M = X 6 is trivially ( H , F ) -closed set, which satisfies the transitive property.

Example 2.24 Let ( X , G ) be a G-metric space endowed with a partial order . Let F , H : X × X X are two generalized compatible mappings such that F is H-increasing with respect to , H is continuous and has the mixed monotone property. Define a subset M X 6 by
M = { ( x , u , y , v , z , w ) X 6 : x y z , and  u v w } .
Let ( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( z , w ) , H ( w , z ) ) M . It is easy to see that, since F is H-increasing with respect to , we have F ( x , u ) F ( y , v ) F ( z , w ) and F ( u , x ) F ( v , y ) F ( w , z ) , this implies that
( F ( x , u ) , F ( u , x ) , F ( y , v ) , F ( v , y ) , F ( z , w ) , F ( w , z ) ) M .

Then M is ( H , F ) -closed subset of X 6 , which satisfies the transitive property.

3 Main results

Now, we state our first result which successively guarantees a coupled coincidence point.

Theorem 3.1 Let ( X , ) be a partially ordered set and G be a G-metric on X such that ( X , G ) is a complete G-metric space and M be a nonempty subset of X 6 . Assume that F , H : X × X X are two generalized compatible mappings such that H is continuous and for any x , y X , there exists u , v X such that F ( x , y ) = H ( u , v ) and F ( y , x ) = H ( v , u ) . Suppose that there exists φ Φ such that the following holds:
[ G ( F ( x , u ) , F ( y , v ) , F ( z , w ) ) + G ( F ( u , x ) , F ( v , y ) , F ( w , z ) ) ] φ ( G ( H ( x , u ) , H ( y , v ) , H ( z , w ) ) + G ( H ( u , x ) , H ( v , y ) , H ( w , z ) ) )
(1)

for all x , y , z , u , v , w X with ( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( z , w ) , H ( w , z ) ) M .

Suppose also that either
  1. (a)

    F is continuous;

     
  2. (b)
    for any two sequences { x n } and { y n } with for all n 1
    ( x n + 1 , y n + 1 , x n + 1 , y n + 1 , x n , y n ) M and H ( x n , y n ) H ( x , y ) , H ( y n , x n ) H ( y , x ) implies ( H ( x n , y n ) , H ( y n , x n ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M ,
     
If there exists ( x 0 , y 0 ) X × X such that
( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , H ( x 0 , y 0 ) , H ( y 0 , x 0 ) ) M

and M is an ( H , F ) -closed, then there exists ( x , y ) X × X such that H ( x , y ) = F ( x , y ) and H ( y , x ) = F ( y , x ) , that is, F and H have a coupled coincidence point.

Proof Let x 0 , y 0 X be such that
( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , H ( x 0 , y 0 ) , H ( y 0 , x 0 ) ) M .
From the assumption, there exists ( x 1 , y 1 ) X × X such that
F ( x 0 , y 0 ) = H ( x 1 , y 1 ) and F ( y 0 , x 0 ) = H ( y 1 , x 1 ) .
Again from the assumption, we can choose x 2 , y 2 X such that
F ( x 1 , y 1 ) = H ( x 2 , y 2 ) and F ( y 1 , x 1 ) = H ( y 2 , x 2 ) .
By repeating this argument, we can construct two sequences { x n } n = 1 and { y n } n = 1 in X such that
F ( x n , y n ) = H ( x n + 1 , y n + 1 ) and F ( y n , x n ) = H ( y n + 1 , x n + 1 ) for all  n 1 .
(2)
Since
( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , H ( x 0 , y 0 ) , H ( y 0 , x 0 ) ) M ,
and M is an ( H , F ) -closed, we get
( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , H ( x 0 , y 0 ) , H ( y 0 , x 0 ) ) = ( H ( x 1 , y 1 ) , H ( y 1 , x 1 ) , H ( x 1 , y 1 ) , H ( y 1 , x 1 ) , H ( x 0 , y 0 ) , H ( y 0 , x 0 ) ) M ( F ( x 1 , y 1 ) , F ( y 1 , x 1 ) , F ( x 1 , y 1 ) , F ( y 1 , x 1 ) , F ( x 0 , y 0 ) , F ( y 0 , x 0 ) ) = ( H ( x 2 , y 2 ) , H ( y 2 , x 2 ) , H ( x 2 , y 2 ) , H ( y 2 , x 2 ) , H ( x 1 , y 1 ) , H ( y 1 , x 1 ) ) M .
Again, using the fact that M is a ( H , F ) -closed, we have
( H ( x 2 , y 2 ) , H ( y 2 , x 2 ) , H ( x 2 , y 2 ) , H ( y 2 , x 2 ) , H ( x 1 , y 1 ) , H ( y 1 , x 1 ) ) M ( F ( x 2 , y 2 ) , F ( y 2 , x 2 ) , F ( x 2 , y 2 ) , F ( y 2 , x 2 ) , F ( x 1 , y 1 ) , F ( y 1 , x 1 ) ) = ( H ( x 3 , y 3 ) , H ( y 3 , x 3 ) , H ( x 3 , y 3 ) , H ( y 3 , x 3 ) , H ( x 2 , y 2 ) , H ( y 2 , x 2 ) ) M .
Continuing this process, for all n 0 we obtain
( H ( x n + 1 , y n + 1 ) , H ( y n + 1 , x n + 1 ) , H ( x n + 1 , y n + 1 ) , H ( y n + 1 , x n + 1 ) , H ( x n , y n ) , H ( y n , x n ) ) M .
(3)
Let
δ n = G ( H ( x n + 1 , y n + 1 ) , H ( x n + 1 , y n + 1 ) , H ( x n , y n ) ) + G ( H ( y n + 1 , x n + 1 ) , H ( y n + 1 , x n + 1 ) , H ( y n , x n ) ) .
(4)
We can suppose that δ n > 0 for all n 0 . If not, ( x n , y n ) will be a coupled coincidence point and the proof is finished. From (1), (2), and (3), we have
δ n = G ( F ( x n , y n ) , F ( x n , y n ) , F ( x n 1 , y n 1 ) ) + G ( F ( y n , x n ) , F ( y n , x n ) , F ( y n 1 , x n 1 ) ) φ ( G ( H ( x n , y n ) , H ( x n , y n ) , H ( x n 1 , y n 1 ) ) + G ( H ( y n , x n ) , H ( y n , x n ) , H ( y n 1 , x n 1 ) ) ) = φ ( δ n 1 ) .
(5)
This implies that
δ n φ ( δ n 1 ) .
(6)

Since ϕ ( t ) < t for all t > 0 , it follows that { δ n } is decreasing sequence. Therefore, there is some δ 0 such that lim n δ n = δ .

We shall prove that δ = 0 . Assume, to the contrary, that δ > 0 . Then by letting n in (6) and using the properties of the map φ, we get
δ = lim n δ n lim n φ ( δ n 1 ) = lim δ n 1 δ + φ ( δ n 1 ) < δ .
A contradiction, thus δ = 0 , and hence
lim n δ n = lim n [ G ( H ( x n + 1 , y n + 1 ) , H ( x n + 1 , y n + 1 ) , H ( x n , y n ) ) + G ( H ( y n + 1 , x n + 1 ) , H ( y n + 1 , x n + 1 ) , H ( y n , x n ) ) ] = 0 .
(7)
Next, we prove that { H ( x n , y n ) } n = 1 and { H ( y n , x n ) } n = 1 are Cauchy sequences in the G-metric space ( X , G ) . Suppose, to the contrary, that at least of { H ( x n , y n ) } n = 1 and { H ( y n , x n ) } n = 1 is not Cauchy sequence in ( X , G ) . Then there exists an ε > 0 for which we can find subsequences { H ( x m ( k ) , y m ( k ) ) } , { H ( x n ( k ) , y n ( k ) ) } of { H ( x n , y n ) } n = 1 and { H ( y m ( k ) , x m ( k ) ) } , { H ( y n ( k ) , x n ( k ) ) } of { H ( y n , x n ) } n = 1 , respectively, with n ( k ) > m ( k ) k such that
r k : = G ( H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( x n ( k ) , y n ( k ) ) ) + G ( H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( y n ( k ) , x n ( k ) ) ) ε .
(8)
Further, corresponding to n ( k ) , we can choose m ( k ) in such a way that it is the smallest integer with m ( k ) > n ( k ) K and satisfying (8). Then
G ( H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( x n ( k ) , y n ( k ) ) ) + G ( H ( y m ( k ) 1 , x m ( k ) 1 ) , H ( y m ( k ) 1 , x m ( k ) 1 ) , H ( y n ( k ) , x n ( k ) ) ) < ε .
(9)
Using the rectangle inequality and (9), we have
ε r k G ( H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) 1 , y m ( k ) 1 ) ) + G ( H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( x n ( k ) , y n ( k ) ) ) + G ( H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) 1 , x m ( k ) 1 ) ) + G ( H ( y m ( k ) 1 , x m ( k ) 1 ) , H ( y m ( k ) 1 , x m ( k ) 1 ) , H ( y n ( k ) , x n ( k ) ) ) < δ m ( k ) 1 + ε .
(10)
Letting k + and using (7), we obtain
lim k r k = lim k + [ G ( H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( x n ( k ) , y n ( k ) ) ) + G ( H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( y n ( k ) , x n ( k ) ) ) ] = ε .
(11)
Again, by the rectangle inequality, we have
r k G ( H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) + 1 , y m ( k ) + 1 ) ) + G ( H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x n ( k ) + 1 , y n ( k ) + 1 ) ) + G ( H ( x n ( k ) + 1 , y n ( k ) + 1 ) , H ( x n ( k ) + 1 , y n ( k ) + 1 ) , H ( x n ( k ) , y n ( k ) ) ) + G ( H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) + 1 , x m ( k ) + 1 ) ) + G ( H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y n ( k ) + 1 , x n ( k ) + 1 ) ) + G ( H ( y n ( k ) + 1 , x n ( k ) + 1 ) , H ( y n ( k ) + 1 , x n ( k ) + 1 ) , H ( y n ( k ) , x n ( k ) ) ) = δ n ( k ) + G ( H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) + 1 , y m ( k ) + 1 ) ) + G ( H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x n ( k ) + 1 , y n ( k ) + 1 ) ) + G ( H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) + 1 , x m ( k ) + 1 ) ) + G ( H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y n ( k ) + 1 , x n ( k ) + 1 ) ) .
Using the fact that G ( x , x , y ) 2 G ( x , y , y ) for any x , y X , we obtain
r k δ n ( k ) + 2 δ m ( k ) + G ( H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x n ( k ) + 1 , y n ( k ) + 1 ) ) + G ( H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y n ( k ) + 1 , x n ( k ) + 1 ) ) .
(12)
Since m ( k ) > n ( k ) and using (3), we have
( H ( x m ( k ) , y m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( y m ( k ) 1 , x m ( k ) 1 ) ) M
and
( H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( y m ( k ) 1 , x m ( k ) 1 ) , H ( x m ( k ) 1 , y m ( k ) 1 ) , H ( y m ( k ) 1 , x m ( k ) 1 ) , H ( x m ( k ) 2 , y m ( k ) 2 ) , H ( y m ( k ) 2 , x m ( k ) 2 ) ) M .
From the fact that M is an ( H , F ) -closed set which satisfies the transitive property, we have
( H ( x m ( k ) , y m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( x m ( k ) 2 , y m ( k ) 2 ) , H ( y m ( k ) 2 , x m ( k ) 2 ) ) M .
By this process, we can get
( H ( x m ( k ) , y m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( x n ( k ) , y n ( k ) ) , H ( y n ( k ) , x n ( k ) ) ) M .
Now, using (1), we have
G ( H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x m ( k ) + 1 , y m ( k ) + 1 ) , H ( x n ( k ) + 1 , y n ( k ) + 1 ) ) + G ( H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y m ( k ) + 1 , x m ( k ) + 1 ) , H ( y n ( k ) + 1 , x n ( k ) + 1 ) ) = G ( F ( x m ( k ) , y m ( k ) ) , F ( x m ( k ) , y m ( k ) ) , F ( x n ( k ) , y n ( k ) ) ) + G ( F ( y m ( k ) , x m ( k ) ) , F ( y m ( k ) , x m ( k ) ) , F ( y n ( k ) , x n ( k ) ) ) ϕ ( G ( H ( x m ( k ) , y m ( k ) ) , H ( x m ( k ) , y m ( k ) ) , H ( x n ( k ) , y n ( k ) ) ) + G ( H ( y m ( k ) , x m ( k ) ) , H ( y m ( k ) , x m ( k ) ) , H ( y n ( k ) , x n ( k ) ) ) ) ϕ ( r k ) .
(13)
From (12) and (13), it follows that
r k δ n ( k ) + 2 δ m ( k ) + ϕ ( r k ) .
(14)
Letting k + in (14) and using (7) and (11) and lim r t + ϕ ( r ) < t for all t > 0 , we have
ε = lim k r k lim n ϕ ( r k ) = lim r k ε + ϕ ( r k ) < ε ,
which is a contradiction. This shows that { H ( x n , y n ) } n = 1 and { H ( y n , x n ) } n = 1 are Cauchy sequences in the G-metric space ( X , G ) . Since ( X , G ) is complete and from (2), { H ( x n , y n ) } n = 1 and { H ( y n , x n ) } n = 1 are G-convergent, there exist x , y X such that
lim n H ( x n , y n ) = lim n F ( x n , y n ) = x and lim n H ( y n , x n ) = lim n F ( y n , x n ) = y .
(15)
Since the pair { F , G } satisfies the generalized compatibility, from (15), we have
lim n F ( H ( x n , y n ) , H ( y n , x n ) ) = lim n H ( F ( x n , y n ) , F ( y n , x n ) ) and lim n F ( H ( y n , x n ) , H ( x n , y n ) ) = lim n H ( F ( y n , x n ) , F ( x n , y n ) ) .
(16)
Suppose that assumption (a) holds. For all n 0 , from (16), we have
H ( x , y ) = H ( lim n F ( x n , y n ) , lim n F ( y n , x n ) ) = lim n H ( F ( x n , y n ) , F ( y n , x n ) ) = lim n F ( H ( x n , y n ) , H ( y n , x n ) ) = F ( lim n H ( x n , y n ) , lim n H ( y n , x n ) ) = F ( x , y )
and
H ( y , x ) = H ( lim n F ( y n , x n ) , lim n F ( x n , y n ) ) = lim n H ( F ( y n , x n ) , F ( x n , y n ) ) = lim n F ( H ( y n , x n ) , H ( x n , y n ) ) = F ( lim n H ( y n , x n ) , lim n H ( x n , y n ) ) = F ( y , x ) .
We have
H ( x , y ) = F ( x , y ) and H ( y , x ) = F ( y , x ) .

Therefore, ( x , y ) is a coupled coincidence point of F and H.

Suppose now assumption (b) holds. Since { H ( x n , y n ) } n = 1 converges to x, { H ( y n , x n ) } n = 1 converges to y, the pair { F , G } satisfies the generalized compatibility, H is continuous and by (15), we have
lim n H ( H ( x n , y n ) , H ( y n , x n ) ) = H ( x , y ) = lim n H ( F ( x n , y n ) , F ( y n , x n ) ) = lim n F ( H ( x n , y n ) , H ( y n , x n ) )
(17)
and
lim n H ( H ( y n , x n ) , H ( x n , y n ) ) = H ( y , x ) = lim n H ( F ( y n , x n ) , F ( x n , y n ) ) = lim n F ( H ( y n , x n ) , H ( x n , y n ) ) .
(18)
From (3), (17), (18), and assumption (b), for all n 1 , we have
( H ( x n , y n ) , H ( y n , x n ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M .
(19)
Then, by (1), (2), (19), and the triangle inequality, we have
G ( H ( x , y ) , F ( x , y ) , F ( x , y ) ) + G ( H ( y , x ) , F ( y , x ) , F ( y , x ) ) G ( H ( x , y ) , F ( H ( x n , y n ) , H ( y n , x n ) ) , F ( H ( x n , y n ) , H ( y n , x n ) ) ) + G ( F ( H ( x n , y n ) , H ( y n , x n ) ) , F ( x , y ) , F ( x , y ) ) + G ( H ( y , x ) , F ( H ( y n , x n ) , H ( x n , y n ) ) , F ( H ( y n , x n ) , H ( x n , y n ) ) ) + G ( F ( H ( y n , x n ) , H ( x n , y n ) ) y n ) ) , F ( y , x ) , F ( y , x ) ) φ ( G ( H ( H ( x n , y n ) , H ( y n , x n ) ) , H ( x , y ) , H ( x , y ) ) + G ( H ( H ( y n , x n ) , H ( x n , y n ) ) , H ( y , x ) , H ( y , x ) ) ) + G ( H ( x , y ) , F ( H ( x n , y n ) , H ( y n , x n ) ) , F ( H ( x n , y n ) , H ( y n , x n ) ) ) + G ( H ( y , x ) , F ( H ( y n , x n ) , H ( x n , y n ) ) , F ( H ( y n , x n ) , H ( x n , y n ) ) ) .
Letting now n in the above inequality and using property of φ such that lim r 0 + φ ( r ) = 0 , we have
G ( H ( x , y ) , F ( x , y ) , F ( x , y ) ) + G ( H ( y , x ) , F ( y , x ) , F ( y , x ) ) = 0 ,

which implies that H ( x , y ) = F ( x , y ) and H ( y , x ) = F ( y , x ) . □

Next, we give an example to validate Theorem 3.1.

Example 3.2 Let X = [ 0 , 1 ] , G ( x , y , z ) = | x y | + | x z | + | y z | , and F , H : X × X X be defined by
F ( x , y ) = { x 2 y 2 8 if  x y , 0 if  x < y
and
H ( x , y ) = { x + y if  x y , 0 if  x < y .
Clearly, H does not satisfy the mixed monotone property and if x > y , u = v 0 , consider
H ( x , y ) H ( u , v ) x + y u + v but  F ( x , y ) = x 2 y 2 = ( x y ) ( x + y ) > 0 = F ( u , v ) .

Then F is not H-increasing.

Now, we prove that for any x , y X , there exist u , v X such that F ( x , y ) = H ( u , v ) and F ( y , x ) = H ( v , u ) . It is easy to see that we have the following cases.

Case 1: If x = y , then we have F ( y , x ) = F ( x , y ) = 0 = H ( 0 , 0 ) .

Case 2: If x > y , then ( x y ) x > ( x y ) y and we have
F ( x , y ) = x 2 y 2 8 = ( x y ) x + ( x y ) y 8 = H ( ( x y ) x 8 , ( x y ) y 8 )
and
F ( y , x ) = 0 = H ( ( x y ) y 8 , ( x y ) x 8 ) .
Case 3: If y > x , then ( y x ) y > ( y x ) x and we have
F ( y , x ) = y 2 x 2 8 = ( y x ) y + ( y x ) x 8 = H ( ( y x ) y 8 , ( y x ) x 8 )
and
F ( x , y ) = 0 = H ( ( y x ) x 8 , ( y x ) y 8 ) .
Now, we prove that the pair { F , G } satisfies the generalized compatibility hypothesis. Let { x n } n = 1 and { y n } n = 1 be two sequences in X such that
t 1 = lim n F ( x n , y n ) = lim n H ( x n , y n ) and t 2 = lim n F ( y n , x n ) = lim n H ( y n , x n ) .
Then we must have t 1 = 0 = t 2 and it is easy to prove that
lim n F ( H ( x n , y n ) , H ( y n , x n ) ) = lim n H ( F ( x n , y n ) , F ( y n , x n ) ) and lim n F ( H ( y n , x n ) , H ( x n , y n ) ) = lim n H ( F ( y n , x n ) , F ( x n , y n ) ) .
Now, for all x , y , z , u , v , w X with ( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( z , w ) , H ( w , z ) ) M = X 6 and let φ : [ 0 , + ) [ 0 , + ) be a function defined by φ ( t ) = t 8 , we have
[ G ( F ( x , u ) , F ( y , v ) , F ( z , w ) ) + G ( F ( u , x ) , F ( v , y ) , F ( w , z ) ) ] = | x 2 u 2 8 y 2 v 2 8 | + | x 2 u 2 8 z 2 w 2 8 | + | y 2 v 2 8 z 2 w 2 8 | + | u 2 x 2 8 v 2 y 2 8 | + | u 2 x 2 8 w 2 z 2 8 | + | v 2 y 2 8 w 2 z 2 8 | = 2 ( | x 2 u 2 8 y 2 v 2 8 | + | x 2 u 2 8 z 2 w 2 8 | + | y 2 v 2 8 z 2 w 2 8 | ) = 2 ( | ( x u ) ( x + u ) 8 ( y v ) ( y + v ) ) 8 | + | ( x u ) ( x + u ) 8 ( z w ) ( z + w ) 8 | + | ( y v ) ( y + v ) 8 ( z w ) ( z + w ) 8 | ) 1 4 ( | ( x + u ) ( y + v ) | + | ( x + u ) ( z + w ) | + | ( y + v ) ( z + w ) | ) = φ ( 2 ( | ( x + u ) ( y + v ) | + | ( x + u ) ( z + w ) | + | ( y + v ) ( z + w ) | ) ) = φ ( | ( x + u ) ( y + v ) | + | ( x + u ) ( z + w ) | + | ( y + v ) ( z + w ) | + | ( x + u ) ( y + v ) | + | ( x + u ) ( z + w ) | + | ( y + v ) ( z + w ) | ) = φ ( G ( H ( x , u ) , H ( y , v ) , H ( z , w ) ) + G ( H ( u , x ) , H ( v , y ) , H ( w , z ) ) ) .

Therefore, condition (1) is satisfied. Thus, all the requirements of Theorem 3.1 are satisfied and ( 0 , 0 ) is a coupled coincidence point of F and G.

Next, we show the uniqueness of the coupled coincidence point and coupled fixed point of F and G.

Theorem 3.3 In addition to the hypotheses of Theorem 3.1, suppose that for every ( x , y ) , ( z , t ) X × X , there exists ( u , v ) X × X such that
( H ( u , v ) , H ( v , u ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M and ( H ( u , v ) , H ( v , u ) , H ( z , t ) , H ( t , z ) , H ( z , t ) , H ( t , z ) ) M .
Then F and H have a unique coupled coincidence point. Moreover, if the pair { F , H } is commuting, then F and H have a unique coupled fixed point, that is, there exists a unique ( a , b ) X 2 such that
a = H ( a , b ) = F ( a , b ) and b = H ( b , a ) = F ( b , a ) .
Proof From Theorem 3.1, we know that F and H have a coupled coincidence point. Suppose that ( x , y ) , ( z , t ) are coupled coincidence points of F and H, that is,
F ( x , y ) = H ( x , y ) , F ( y , x ) = H ( y , x ) and F ( z , t ) = H ( z , t ) , F ( t , z ) = H ( t , z ) .
(20)
Now, we show that H ( x , y ) = H ( z , t ) and H ( y , x ) = H ( t , z ) . By the hypothesis there exists ( u , v ) X × X such that
( H ( u , v ) , H ( v , u ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M and ( H ( u , v ) , H ( v , u ) , H ( z , t ) , H ( t , z ) , H ( z , t ) , H ( t , z ) ) M .
We put u 0 = u and v 0 = v and define two sequences { H ( u n , v n ) } n = 1 and { H ( v n , u n ) } n = 1 as follows:
F ( u n , v n ) = H ( u n + 1 , v n + 1 ) and F ( v n , u n ) = H ( v n + 1 , u n + 1 ) for all  n 0 .
Since M is ( H , F ) -closed and
( H ( u , v ) , H ( v , u ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M ,
we have
( H ( u , v ) , H ( v , u ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M = ( H ( u 0 , v 0 ) , H ( v 0 , u 0 ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M ( F ( u 0 , v 0 ) , F ( v 0 , u 0 ) , F ( x , y ) , F ( y , x ) , F ( x , y ) , F ( y , x ) ) = ( H ( u 1 , v 1 ) , H ( v 1 , u 1 ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M .
From ( H ( u 1 , v 1 ) , H ( v 1 , u 1 ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M , if we use again the property of ( H , F ) -closedness, then
( H ( u 1 , v 1 ) , H ( v 1 , u 1 ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M ( F ( u 1 , v 1 ) , F ( v 1 , u 1 ) , F ( x , y ) , F ( y , x ) , F ( x , y ) , F ( y , x ) ) = ( H ( u 2 , v 2 ) , H ( v 2 , u 2 ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M .
By repeating this process, we get
( H ( u n , v n ) , H ( v n , u n ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M for all  n 0 .
(21)
Using (1), (20), and (21), for all n 0 , we have
G ( H ( u n + 1 , v n + 1 ) , H ( x , y ) , H ( x , y ) ) + G ( H ( v n + 1 , u n + 1 ) , H ( y , x ) , H ( y , x ) ) = G ( F ( u n , v n ) , F ( x , y ) , F ( x , y ) ) + G ( F ( v n , u n ) , F ( y , x ) , F ( y , x ) ) φ ( G ( H ( u n , v n ) , H ( x , y ) , H ( x , y ) ) + G ( H ( v n , u n ) , H ( y , x ) , H ( y , x ) ) ) .
(22)
Using property that φ ( t ) < t and repeating this process, for all n 0 , we get
G ( H ( u n + 1 , v n + 1 ) , H ( x , y ) , H ( x , y ) ) + G ( H ( v n + 1 , u n + 1 ) , H ( y , x ) , H ( y , x ) ) φ n ( G ( H ( u 1 , v 1 ) , H ( x , y ) , H ( x , y ) ) + G ( H ( v 1 , u 1 ) , H ( y , x ) , H ( y , x ) ) ) .
(23)
From φ ( t ) < t and lim r t + φ ( r ) < t , it follows that lim n φ n ( t ) = 0 for each t > 0 . Therefore, from (23), we have
lim n ( G ( H ( u n + 1 , v n + 1 ) , H ( x , y ) , H ( x , y ) ) + G ( H ( v n + 1 , u n + 1 ) , H ( y , x ) , H ( y , x ) ) ) = 0 .
(24)
This implies that
lim n G ( H ( u n + 1 , v n + 1 ) , H ( x , y ) , H ( x , y ) ) = 0 and lim n G ( H ( v n + 1 , u n + 1 ) , H ( y , x ) , H ( y , x ) ) = 0 .
(25)
Similarly, we show that
lim n G ( H ( u n + 1 , v n + 1 ) , H ( z , t ) , H ( z , t ) ) = 0 and lim n G ( H ( v n + 1 , u n + 1 ) , H ( t , z ) , H ( t , z ) ) = 0 .
(26)
From (25) and (26), we have
H ( x , y ) = H ( z , t ) and H ( y , x ) = H ( t , z ) .
(27)
Now let the pair { F , H } be commuting, we shall prove that F and H have a unique coupled fixed point. Since
F ( x , y ) = H ( x , y ) and F ( y , x ) = H ( y , x ) ,
(28)
and F and H commutes, we have
H ( H ( x , y ) , H ( y , x ) ) = H ( F ( x , y ) , F ( y , x ) ) = F ( H ( x , y ) , H ( y , x ) ) and H ( H ( y , x ) , H ( x , y ) ) = H ( F ( y , x ) , F ( x , y ) ) = F ( H ( y , x ) , H ( x , y ) ) .
(29)
Denote H ( x , y ) = a and H ( y , x ) = b . Then, by (28) and (29), one gets
H ( a , b ) = F ( a , b ) and H ( b , a ) = F ( b , a ) .
(30)
Therefore, ( a , b ) is a coupled coincidence point of F and H. Then, by (27) with z = a and t = b , it follows that
a = H ( x , y ) = H ( a , b ) and b = H ( y , x ) = H ( b , a ) .
(31)
Thus, ( a , b ) is a coupled fixed point of H, by (28), ( a , b ) is also a coupled fixed point of F. To prove the uniqueness, assume ( p , q ) is another coupled fixed point of F and H. Then, by (27) and (31), we have
p = H ( p , q ) = H ( a , b ) = a and q = H ( q , p ) = H ( b , a ) = b .

 □

Next, we give some applications of our results to coupled coincidence point theorems.

Corollary 3.4 Let ( X , ) be a partially ordered set and M be a nonempty subset of X 6 and let there exists G be a G-metric on X such that ( X , G ) is a complete G-metric space. Assume that F , H : X × X X are two generalized compatible mappings such that F is H-increasing with respect to , H is continuous and has the mixed monotone property. Suppose that for any x , y X , there exist u , v X such that F ( x , y ) = H ( u , v ) and F ( y , x ) = H ( v , u ) . Suppose that there exists φ Φ such that the following holds:
[ G ( F ( x , u ) , F ( y , v ) , F ( z , w ) ) + G ( F ( u , x ) , F ( v , y ) , F ( w , z ) ) ] φ ( G ( H ( x , u ) , H ( y , v ) , H ( z , w ) ) + G ( H ( u , x ) , H ( v , y ) , H ( w , z ) ) )

for all x , y , z , u , v , w X with F ( x , u ) F ( y , v ) F ( z , w ) and F ( u , x ) F ( v , y ) F ( w , z ) .

Also suppose that either
  1. (a)

    F is continuous or

     
  2. (b)
    X has the following properties: for any two sequences { x n } and { y n } with
    1. (i)

      if a non-decreasing sequence { x n } x , then x n x for all n,

       
    2. (ii)

      if a non-increasing sequence { y n } y , then y y n for all n.

       
     
If there exists ( x 0 , y 0 ) X × X with
H ( x 0 , y 0 ) F ( x 0 , y 0 ) and H ( y 0 , x 0 ) F ( y 0 , x 0 ) .

Then there exists ( x , y ) X × X such that H ( x , y ) = F ( x , y ) and H ( y , x ) = F ( y , x ) , that is, F and H have a coupled coincidence point.

Proof We define the subset M X 6 by
M = { ( x , u , y , v , z , w ) X 6 : x y z , and  u v w } .
From Example 2.24, M is a ( H , F ) -closed set which satisfies the transitive property. For all x , y , z , u , v , w X with H ( x , u ) H ( y , v ) H ( z , w ) and H ( u , x ) H ( v , y ) H ( w , z ) , we have ( H ( x , u ) , H ( u , x ) , H ( y , v ) , H ( v , y ) , H ( z , w ) , H ( w , z ) ) M . By (1), we get
[ G ( F ( x , u ) , F ( y , v ) , F ( z , w ) ) + G ( F ( u , x ) , F ( v , y ) , F ( w , z ) ) ] φ ( G ( H ( x , u ) , H ( y , v ) , H ( z , w ) ) + G ( H ( u , x ) , H ( v , y ) , H ( w , z ) ) ) .
Since ( x 0 , y 0 ) X × X with
H ( x 0 , y 0 ) F ( x 0 , y 0 ) and H ( y 0 , x 0 ) F ( y 0 , x 0 ) .
(32)
We have
( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , F ( x 0 , y 0 ) , F ( y 0 , x 0 ) , H ( x 0 , y 0 ) , H ( y 0 , x 0 ) ) M .

Assumption (a) holds, and F is continuous. By assumption (a) of Theorem 3.1, we have H ( x , y ) = F ( x , y ) and H ( y , x ) = F ( y , x ) .

Next, assumption (b) holds; since F is H-increasing with respect to , using (32) and (2), we have
H ( x n , y n ) H ( x n + 1 , y n + 1 ) and H ( y n , x n ) H ( y n + 1 , x n + 1 ) for all  n .
Therefore
( H ( x n + 1 , y n + 1 ) , H ( y n + 1 , x n + 1 ) , H ( x n + 1 , y n + 1 ) , H ( y n + 1 , x n + 1 ) , H ( x n , y n ) , H ( y n , x n ) ) M .
From H is continuous and by (15), we have
lim n H ( H ( x n , y n ) , H ( y n , x n ) ) = H ( x , y ) and lim n H ( H ( y n , x n ) , H ( x n , y n ) ) = H ( y , x ) .
For any two sequences { H ( x n , y n ) } n = 1 and { H ( y n , x n ) } n = 1 such that { H ( x n , y n ) } n = 1 is a non-decreasing sequence in X with H ( x n , y n ) x and { H ( y n , x n ) } n = 1 is a non-increasing sequence in X with H ( y n , x n ) y . Using assumption (b), we have
H ( x n , y n ) x and H ( y n , x n ) y for all  n .
Since H has the mixed monotone property, we have
H ( H ( x n , y n ) , H ( y n , x n ) ) H ( x , y ) , H ( H ( y n , x n ) , H ( x n , y n ) ) H ( y , x ) .
Therefore, we have
( H ( x n , y n ) , H ( y n , x n ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M ,

and so assumption (b) of Theorem 3.1 holds. Now, since all the hypotheses of Theorem 3.1 hold, then F and H have a coupled coincidence point. The proof is completed. □

Corollary 3.5 In addition to the hypotheses of Corollary 3.4, suppose that for every ( x , y ) , ( z , t ) X × X , there exists ( u , v ) X × X which is comparable to ( x , y ) and ( z , t ) . Then F and H have a unique coupled coincidence point.

Proof We define the subset M X 6 by
M = { ( x , u , y , v , z , w ) X 6 : x y z , and  u v w } .

From Example 2.24, M is an ( H , F ) -closed set which satisfies the transitive property. Thus, the proof of the existence of a coupled coincidence point is straightforward by following the same lines as in the proof of Corollary 3.4.

Next, we show the uniqueness of a coupled coincidence point of F and H.

Since for all ( x , y ) , ( z , t ) X × X , there exists ( u , v ) X × X such that
H ( x , y ) H ( u , v ) , H ( y , x ) H ( v , u )
and
H ( z , t ) H ( u , v ) , H ( t , z ) H ( v , u ) ,
we can conclude that
( H ( u , v ) , H ( v , u ) , H ( x , y ) , H ( y , x ) , H ( x , y ) , H ( y , x ) ) M and  ( H ( u , v ) , H ( v , u ) , H ( z , t ) , H ( t , z ) , H ( z , t ) , H ( t , z ) ) M .

Therefore, since all the hypotheses of Theorem 3.3 hold, F and H have a unique coupled coincidence point. The proof is completed. □

Declarations

Acknowledgements

This research was supported by Chiang Mai University and the authors would like to express sincere appreciation to Prof. Suthep Suantai for very helpful suggestions and many kind comments.

Authors’ Affiliations

(1)
Department of Mathematics, Faculty of Science, Chiang Mai University

References

  1. Ran A, Reurings M: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132: 1435-1443. 10.1090/S0002-9939-03-07220-4MathSciNetView ArticleMATHGoogle Scholar
  2. Guo D, Lakshmikantham V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 1987, 11: 623-632. 10.1016/0362-546X(87)90077-0MathSciNetView ArticleMATHGoogle Scholar
  3. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 2006, 65: 1379-1393. 10.1016/j.na.2005.10.017MathSciNetView ArticleMATHGoogle Scholar
  4. Lakshmikantham V, Ćirić L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. TMA 2009, 70: 4341-4349. 10.1016/j.na.2008.09.020View ArticleMathSciNetMATHGoogle Scholar
  5. Amini-Harandi A: Coupled and tripled fixed point theory in partially ordered metric spaces with application to initial value problem. Math. Comput. Model. 2013,57(910):2343-2348.View ArticleMATHGoogle Scholar
  6. Batra R, Vashistha S:Coupled coincidence point theorems for nonlinear contractions under ( F , g ) -invariant set in cone metric spaces. J. Nonlinear Sci. Appl. 2013, 6: 86-96.MathSciNetMATHGoogle Scholar
  7. Berinde V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 7347-7355. 10.1016/j.na.2011.07.053MathSciNetView ArticleMATHGoogle Scholar
  8. Berinde V: Coupled coincidence point theorems for mixed monotone nonlinear operators. Comput. Math. Appl. 2012, 64: 1770-1777. 10.1016/j.camwa.2012.02.012MathSciNetView ArticleMATHGoogle Scholar
  9. Berinde V: Coupled fixed point theorems for φ -contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal., Theory Methods Appl. 2012,75(6):3218-3228. 10.1016/j.na.2011.12.021MathSciNetView ArticleMATHGoogle Scholar
  10. Berinde V: Coupled coincidence point theorems for mixed monotone nonlinear operators. Comput. Math. Appl. 2012,64(6):1770-1777. 10.1016/j.camwa.2012.02.012MathSciNetView ArticleMATHGoogle Scholar
  11. Berzig M, Samet B: An extension of coupled fixed point’s concept in higher dimension and applications. Comput. Math. Appl. 2012, 63: 1319-1334. 10.1016/j.camwa.2012.01.018MathSciNetView ArticleMATHGoogle Scholar
  12. Charoensawan P, Klanarong C: Coupled coincidence point theorems for φ -contractive under ( f , g ) -invariant set in complete metric space. Int. J. Math. Anal. 2013,7(33-36):1685-1701.MathSciNetMATHGoogle Scholar
  13. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 2010, 73: 2524-2531. 10.1016/j.na.2010.06.025MathSciNetView ArticleMATHGoogle Scholar
  14. Ding H-S, Li L: Coupled fixed point theorems in partially ordered cone metric spaces. Filomat 2011,25(2):137-149. 10.2298/FIL1102137DMathSciNetView ArticleMATHGoogle Scholar
  15. Hussain N, Latif A, Shah MH: Coupled and tripled coincidence point results without compatibility. Fixed Point Theory Appl. 2012. Article ID 77, 2012: Article ID 77Google Scholar
  16. Hussain N, Abbas M, Azam A, Ahmad J: Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014. Article ID 62, 2014: Article ID 62 10.1186/1687-1812-2014-62Google Scholar
  17. Karapınar E, Luong NV, Thuan NX, Hai TT: Coupled coincidence points for mixed monotone operators in partially ordered metric spaces. Arab. J. Math. 2012, 1: 329-339. 10.1007/s40065-012-0027-0View ArticleMathSciNetMATHGoogle Scholar
  18. Karapınar E: Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 2010, 59: 3656-3668. 10.1016/j.camwa.2010.03.062MathSciNetView ArticleMATHGoogle Scholar
  19. Karapınar E: Couple fixed point on cone metric spaces. Gazi Univ. J. Sci. 2011, 24: 51-58.Google Scholar
  20. Karapınar E, Roldán A, Martínez-Moreno J, Roldán C: Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces. Abstr. Appl. Anal. 2013. Article ID 406026, 2013: Article ID 406026Google Scholar
  21. Kaushik P, Kumar S, Kumam P: Coupled coincidence point theorems for α - ψ -contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2013. Article ID 325, 2013: Article ID 325 10.1186/1687-1812-2013-325Google Scholar
  22. Kutbi MA, Roldán A, Sintunavarat W, Martínez-Moreno J, Roldán C: F -Closed sets and coupled fixed point theorems without the mixed monotone property. Fixed Point Theory Appl. 2013. Article ID 330, 2013: Article ID 330 10.1186/1687-1812-2013-330Google Scholar
  23. Luong NV, Thuan NX: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 2011, 74: 983-992. 10.1016/j.na.2010.09.055MathSciNetView ArticleMATHGoogle Scholar
  24. Mursaleen M, Mohiuddine SA, Agarwal RP: Coupled fixed point theorems for α - ψ -contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012. Article ID 228 (Corrigendum to Coupled fixed point theorems for α-ψ-contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2013:127, 2013), 2012: Article ID 228 (Corrigendum to Coupled fixed point theorems for α-ψ-contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2013:127, 2013)Google Scholar
  25. Roldán A, Martínez-Moreno J, Roldán C: Multidimensional fixed point theorems in partially ordered complete metric spaces. J. Math. Anal. Appl. 2012,396(2):536-545. 10.1016/j.jmaa.2012.06.049MathSciNetView ArticleMATHGoogle Scholar
  26. Roldán A, Martínez-Moreno J, Roldán C, Karapınar E:Multidimensional fixed point theorems in partially ordered complete partial metric spaces under ( ψ , φ ) -contractivity conditions. Abstr. Appl. Anal. 2013. Article ID 634371, 2013: Article ID 634371Google Scholar
  27. Roldán A, Karapınar E:Some multidimensional fixed point theorems on partially preordered G -metric spaces under ( ψ , φ ) -contractivity conditions. Fixed Point Theory Appl. 2013. Article ID 158, 2013: Article ID 158Google Scholar
  28. Samet B, Vetro C: Coupled fixed point F -invariant set and fixed point of N -order. Ann. Funct. Anal. 2010, 1: 46-56. 10.15352/afa/1399900586MathSciNetView ArticleMATHGoogle Scholar
  29. Sintunavarat W, Kumam P, Cho YJ: Coupled fixed point theorems for nonlinear contractions without mixed monotone property. Fixed Point Theory Appl. 2012. Article ID 170, 2012: Article ID 170Google Scholar
  30. Sintunavarat W, Radenović S, Golubović Z, Kuman P: Coupled fixed point theorems for F -invariant set. Appl. Math. Inf. Sci. 2013,7(1):247-255. 10.12785/amis/070131MathSciNetView ArticleGoogle Scholar
  31. Sintunavarat W, Kumam P: Coupled coincidence and coupled common fixed point theorems in partially ordered metric spaces. Thai J. Math. 2012,10(3):551-563.MathSciNetMATHGoogle Scholar
  32. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006,7(2):289-297.MathSciNetMATHGoogle Scholar
  33. Agarwal R, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 1-8. 10.1080/00036810701714164MathSciNetView ArticleMATHGoogle Scholar
  34. Alghamdi MA, Karapınar E: G - β - ψ Contractive type mappings in G -metric spaces. Fixed Point Theory Appl. 2013. Article ID 123, 2013: Article ID 123Google Scholar
  35. Bilgili N, Karapınar E: Cyclic contractions via auxiliary functions on G -metric spaces. Fixed Point Theory Appl. 2013. Article ID 49, 2013: Article ID 49Google Scholar
  36. Jleli M, Samet B: Remarks on G -metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012. Article ID 210, 2012: Article ID 210Google Scholar
  37. Mustafa Z, Aydi H, Karapınar E: On common fixed points in image-metric spaces using (E.A) property. Comput. Math. Appl. 2012. 10.1016/j.camwa.2012.03.051Google Scholar
  38. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorem for mapping on complete G -metric spaces. Fixed Point Theory Appl. 2008. Article ID 189870, 2008: Article ID 189870Google Scholar
  39. Mustafa Z, Khandaqji M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48: 304-319.MathSciNetMATHGoogle Scholar
  40. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009. Article ID 917175, 2009: Article ID 917175Google Scholar
  41. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in G -metric spaces. Int. J. Math. Math. Sci. 2009. Article ID 283028, 2009: Article ID 283028Google Scholar
  42. Mustafa Z, Aydi H, Karapınar E: Generalized Meir Keeler type contractions on G -metric spaces. Appl. Math. Comput. 2013,219(21):10441-10447. 10.1016/j.amc.2013.04.032MathSciNetView ArticleMATHGoogle Scholar
  43. Roldán A, Karapınar E, Kumam P: G -Metric spaces in any number of arguments and related fixed point theorems. Fixed Point Theory Appl. 2014. Article ID 13, 2014: Article ID 13 10.1186/1687-1812-2014-13Google Scholar
  44. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010. Article ID 181650, 2010: Article ID 181650Google Scholar
  45. Shatanawi W: Some fixed point theorems in ordered G -metric spaces and applications. Abstr. Appl. Anal. 2011. Article ID 126205, 2011: Article ID 126205Google Scholar
  46. Tahat N, Aydi H, Karapınar E, Shatanawi W: Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G -metric spaces. Fixed Point Theory Appl. 2012. Article ID 48, 2012: Article ID 48Google Scholar
  47. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011,54(1-2):73-79. 10.1016/j.mcm.2011.01.036MathSciNetView ArticleMATHGoogle Scholar
  48. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011, 54: 2443-2450. 10.1016/j.mcm.2011.05.059View ArticleMathSciNetMATHGoogle Scholar
  49. Karapınar E, Kaymakcalan B, Tas K: On coupled fixed point theorems on partially ordered G -metric spaces. J. Inequal. Appl. 2012. Article ID 200, 2012: Article ID 200Google Scholar
  50. Agarwal R, Karapınar E: Remarks on some coupled fixed point theorems in G -metric spaces. Fixed Point Theory Appl. 2013. Article ID 2, 2013: Article ID 2Google Scholar
  51. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for ( ψ , φ ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012,63(1):298-309. 10.1016/j.camwa.2011.11.022MathSciNetView ArticleMATHGoogle Scholar
  52. Aydi H, Karapınar E, Shatanawi W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012. Article ID 314279, 2012: Article ID 314279Google Scholar
  53. Aydi H, Karapınar E, Shatanawi W: Tripled common fixed point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012. Article ID 101, 2012: Article ID 101Google Scholar
  54. Chandok S, Sintunavarat W, Kumam P: Some coupled common fixed points for a pair of mappings in partially ordered G -metric spaces. Math. Sci. 2013. Article ID 24, 7: Article ID 24 10.1186/2251-7456-7-24Google Scholar
  55. Charoensawan P, Thangthong C: On coupled coincidence point theorems on partially ordered G -metric spaces without mixed g -monotone. J. Inequal. Appl. 2014. Article ID 150, 2014: Article ID 150 10.1186/1029-242X-2014-150Google Scholar
  56. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012. Article ID 8, 2012: Article ID 8Google Scholar
  57. Ding H-S, Karapınar E: Meir Keeler type contractions in partially ordered G -metric space. Fixed Point Theory Appl. 2013. Article ID 35, 2013: Article ID 35Google Scholar
  58. Karapınar E, Kumam P, Erhan I: Coupled fixed points on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012. Article ID 174, 2012: Article ID 174 10.1186/1687-1812-2012-174Google Scholar
  59. Karapınar E, Agarwal R: Further fixed point results on G -metric spaces. Fixed Point Theory Appl. 2013. Article ID 154, 2013: Article ID 154Google Scholar
  60. Nashine HK: Coupled common fixed point results in ordered G -metric spaces. J. Nonlinear Sci. Appl. 2012, 1: 1-13.MathSciNetView ArticleMATHGoogle Scholar
  61. Samet B, Vetro C, Vetro F: Remarks on G -metric spaces. Int. J. Anal. 2013. Article ID 917158, 2013: Article ID 917158Google Scholar
  62. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 2011,40(3):441-447.MathSciNetMATHGoogle Scholar
  63. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011. Article ID 80, 2011: Article ID 80Google Scholar
  64. Shatanawi W, Abbas M, Aydi H, Tahat N: Common coupled coincidence and coupled fixed point in G -metric spaces. Nonlinear Anal. Appl. 2012. Article ID jnaa-00162, 2012: Article ID jnaa-00162Google Scholar

Copyright

© Na Nan and Charoensawan; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.