- Research
- Open Access

# Daneš theorem in complete random normed modules

- Yujie Yang
^{1}Email author

**2014**:317

https://doi.org/10.1186/1029-242X-2014-317

© Yang; licensee Springer. 2014

**Received: **11 May 2014

**Accepted: **23 July 2014

**Published: **21 August 2014

## Abstract

Based on the recent work of random metric theory, namely the Ekeland variationalprinciple on a complete random metric space, this paper studies the Daneštheorem in a complete random normed module. In this paper, we first present thenotion of finer ordering on a random normed module. Then we establish the Daneštheorem in a complete random normed module under the locally ${L}^{0}$-convex topology. When the base space of the randomnormed module is trivial, our result automatically degenerates to the classicalcase.

**MSC:** 58E30, 47H10, 46H25, 46A20.

## Keywords

- random metric space
- random normed module
- locally ${L}^{0}$-convex topology
- Ekeland variational principle

## 1 Introduction

In 1972, Daneš [1] presented the Daneš theorem. With the classical Ekeland variationalprinciple, Brøndsted [2] gave it a new proof in 1974.

Recently, Prof. Guo Tiexin and I [3] established the Ekeland variational principle for an ${\overline{L}}^{0}$-valued function on a complete random metric space, where${\overline{L}}^{0}$ is the set of equivalence classes of extended real-valuedrandom variables on a probability space $(\mathrm{\Omega},\mathcal{F},P)$. Based on this result, this paper establishes theDaneš theorem in a complete random normed module under the locally${L}^{0}$-convex topology.

A random normed module is a random generalization of an ordinary normed space. Differentfrom ordinary normed spaces, random normed modules possess the rich stratificationstructure, which is introduced in this paper. It is this kind of rich stratificationstructure that makes the theory of random normed modules deeply developed and alsorenders it the most useful part of random metric theory [4–14]. When the probability $(\mathrm{\Omega},\mathcal{F},P)$ is trivial, namely $\mathcal{F}=\{\mathrm{\varnothing},\mathrm{\Omega}\}$, our result reduces to the classical Daneš theorem.So our result is a nontrivial random extension.

The remainder of this article is organized as follows: in Section 2 we give somenecessary definitions and in Section 3 we give the main results and proofs.

## 2 Preliminary

Throughout this paper, $(\mathrm{\Omega},\mathcal{F},P)$ denotes a probability space, *K* the real numberfield *R* or the complex number field *C*, *N* the set of positiveintegers, ${\overline{L}}^{0}(\mathcal{F})$ the set of equivalence classes of extended real-valuedrandom variables on Ω and ${L}^{0}(\mathcal{F},K)$ the algebra of equivalence classes of *K*-valuedℱ-measurable random variables on Ω under the ordinary scalar multiplication,addition and multiplication operations on equivalence classes, denoted by${L}^{0}(\mathcal{F})$ when $K=R$.

Specially, ${L}_{+}^{0}(\mathcal{F})=\{\xi \in {L}^{0}(\mathcal{F})\mid \xi \u2a7e0\}$, ${L}_{++}^{0}(\mathcal{F})=\{\xi \in {L}^{0}(\mathcal{F})\mid \xi >0\text{on}\mathrm{\Omega}\}$.

As usual, $\xi >\eta $ means $\xi \u2a7e\eta $ and $\xi \ne \eta $, whereas $\xi >\eta $ on *A* means ${\xi}^{0}(\omega )>{\eta}^{0}(\omega )$ a.s. on *A* for any $A\in \mathcal{F}$ and *ξ* and *η* in${\overline{L}}^{0}(\mathcal{F})$, where ${\xi}^{0}$ and ${\eta}^{0}$ are arbitrarily chosen representatives of *ξ*and *η*, respectively.

For any $A\in \mathcal{F}$, ${A}^{c}$ denotes the complement of *A*,$\tilde{A}=\{B\in \mathcal{F}\mid P(A\mathrm{\Delta}B)=0\}$ denotes the equivalence class of *A*, where Δis the symmetric difference operation, ${I}_{A}$ the characteristic function of *A*, and${\tilde{I}}_{A}$ is used to denote the equivalence class of${I}_{A}$; given two *ξ* and *η* in${\overline{L}}^{0}(\mathcal{F})$, and $A=\{\omega \in \mathrm{\Omega}:{\xi}^{0}\ne {\eta}^{0}\}$, where ${\xi}^{0}$ and ${\eta}^{0}$ are arbitrarily chosen representatives of *ξ*and *η*, respectively, then we always write $[\xi \ne \eta ]$ for the equivalence class of *A* and${I}_{[\xi \ne \eta ]}$ for ${\tilde{I}}_{A}$, one can also understand the implication of such notationsas ${I}_{[\xi \le \eta ]}$, ${I}_{[\xi <\eta ]}$, and ${I}_{[\xi =\eta ]}$.

For an arbitrary chosen representative ${\xi}^{0}$ of $\xi \in {L}^{0}(\mathcal{F},K)$, define the two ℱ-measurable random variables${({\xi}^{0})}^{-1}$ and $|{\xi}^{0}|$ by ${({\xi}^{0})}^{-1}(\omega )=\frac{1}{{\xi}^{0}(\omega )}$ if ${\xi}^{0}(\omega )\ne 0$, and ${({\xi}^{0})}^{-1}(\omega )=0$ otherwise, and by $|{\xi}^{0}|(\omega )=|{\xi}^{0}(\omega )|$, $\mathrm{\forall}\omega \in \mathrm{\Omega}$. Then the equivalence class ${\xi}^{-1}$ of ${({\xi}^{0})}^{-1}$ is called the generalized inverse of *ξ* andthe equivalence class $|\xi |$ of $|{\xi}^{0}|$ is called the absolute value of *ξ*. It isclear that $\xi \cdot {\xi}^{-1}={I}_{[\xi \ne 0]}$.

**Definition 2.1** ([15])

*RN*space) over

*K*with base $(\mathrm{\Omega},\mathcal{F},P)$ if

*E*is a linear space and$\parallel \cdot \parallel $ is a mapping from

*E*to ${L}_{+}^{0}(\mathcal{F})$ such that the following three axioms are satisfied:

- (1)
$\parallel x\parallel =0$ if and only if $x=\theta $ (the null vector of

*E*); - (2)
$\parallel \alpha x\parallel =|\alpha |\parallel x\parallel $, $\mathrm{\forall}\alpha \in K$ and $x\in E$;

- (3)
$\parallel x+y\parallel \le \parallel x\parallel +\parallel y\parallel $, $\mathrm{\forall}x,y\in E$,

where the mapping $\parallel \cdot \parallel $ is called the random norm on *E* and$\parallel x\parallel $ is called the random norm of a vector$x\in E$.

*E*is left module over the algebra ${L}^{0}(\mathcal{F},K)$ such that the following is also satisfied:

- (4)
$\parallel \xi x\parallel =|\xi |\parallel x\parallel $, $\mathrm{\forall}\xi \in {L}^{0}(\mathcal{F},K)$ and $x\in E$,

then such an *RN* space is called an *RN* module over *K* withbase $(\mathrm{\Omega},\mathcal{F},P)$ and such a random norm $\parallel \cdot \parallel $ is called an ${L}^{0}$-norm on *E*.

**Definition 2.2** ([16])

Let $(E,\parallel \cdot \parallel )$ be an *RN* module over *K* with base$(\mathrm{\Omega},\mathcal{F},P)$. For any $\epsilon \in {L}_{++}^{0}$, let $B(\epsilon )=\{x\in E\mid \parallel x\parallel \u2a7d\epsilon \}$ and ${\mathcal{U}}_{\theta}=\{B(\epsilon )\mid \epsilon \in {L}_{++}^{0}\}$. A set $G\subset E$ is called ${\mathcal{T}}_{c}$-open if for every $x\in G$ there exists some $B(\epsilon )\in {\mathcal{U}}_{\theta}$ such that $x+B(\epsilon )\subset G$. Let ${\mathcal{T}}_{c}$ be the family of ${\mathcal{T}}_{c}$-open subsets, then ${\mathcal{T}}_{c}$ is a Hausdorff topology on *E*, called the locally${L}^{0}$-convex topology, denoted by ${\mathcal{T}}_{c}$.

Let $(E,\parallel \cdot \parallel )$ be an *RN* module over *K* with base$(\mathrm{\Omega},\mathcal{F},P)$, ${p}_{A}={\tilde{I}}_{A}\cdot p$ is called the *A*-stratification of *p* foreach given $A\in \mathcal{F}$ and *p* in *E*. The so-called stratificationstructure of *E* means that *E* includes every stratification of anelement in *E*. Clearly, ${p}_{A}=\theta $ when $P(A)=0$ and ${p}_{A}=p$ when $P(\mathrm{\Omega}\setminus A)=0$, which are both called trivial stratifications of*p*. Further, when $(\mathrm{\Omega},\mathcal{F},P)$ is a trivial probability space every element in *E*has merely the two trivial stratifications since $\mathcal{F}=\{\mathrm{\Omega},\mathrm{\varnothing}\}$; when $(\mathrm{\Omega},\mathcal{F},P)$ is arbitrary, every element in *E* can possessarbitrarily many nontrivial intermediate stratifications. It is this kind of richstratification structure of *RN* modules that makes the theory of *RN*modules deeply developed and also renders it the most useful part of random metrictheory.

To introduce the main results of this paper, let us first recall the following.

**Definition 2.3** ([3])

*X*be a Hausdorff space and $f:X\to {\overline{L}}^{0}(\mathcal{F})$, then:

- (1)
$dom(f):=\{x\in X\mid f(x)<+\mathrm{\infty}\text{on}\mathrm{\Omega}\}$ is called the effective domain of

*f*. - (2)
*f*is proper if $f(x)>-\mathrm{\infty}$ on Ω for every $x\in X$ and $dom(f)\ne \mathrm{\varnothing}$. - (3)
*f*is bounded from below (resp., bounded from above) if there exists $\xi \in {L}^{0}(\mathcal{F})$ such that $f(x)\ge \xi $ (accordingly, $f(x)\le \xi $) for any $x\in X$.

In all the vector-valued extensions of the Ekeland variational principle, it is of keyimportance to properly define the lower semicontinuity for a vector-valued function [17–19]. Recently, we have found that a kind of lower semicontinuity for${\overline{L}}^{0}$-valued functions is very suitable for the study ofconditional risk measures.

**Definition 2.4** ([16])

Let $(E,\parallel \cdot \parallel )$ be an *RN* module over *R* with base$(\mathrm{\Omega},\mathcal{F},P)$. A function $f:E\to {\overline{L}}^{0}(\mathcal{F})$ is called ${\mathcal{T}}_{c}$-*lower semicontinuous* if $epi(f)$ is closed in $(E,{\mathcal{T}}_{c})\times ({L}^{0}(\mathcal{F}),{\mathcal{T}}_{c})$.

There is a kind of countable concatenation property, which is concerned with the${L}^{0}$-module *E* itself and is very important for thetheory of *RN* module. Let us recall it.

**Definition 2.5** ([10])

Let *E* be a left module over the algebra ${L}^{0}(\mathcal{F},K)$. A formal sum ${\sum}_{n\in N}{\tilde{I}}_{{A}_{n}}{x}_{n}$ is called a *countable concatenation* of a sequence$\{{x}_{n}\mid n\in N\}$ in *E* with respect to a countable partition$\{{A}_{n}\mid n\in N\}$ of Ω to ℱ. Moreover, a countable concatenation${\sum}_{n\in N}{\tilde{I}}_{{A}_{n}}{x}_{n}$ is well defined or ${\sum}_{n\in N}{\tilde{I}}_{{A}_{n}}{x}_{n}\in E$ if there is $x\in E$ such that ${\tilde{I}}_{{A}_{n}}x={\tilde{I}}_{{A}_{n}}{x}_{n}$, $\mathrm{\forall}n\in N$. A subset *G* of *E* is said to *have thecountable concatenation property* if every countable concatenation${\sum}_{n\in N}{\tilde{I}}_{{A}_{n}}{x}_{n}$ with ${x}_{n}\in G$ for each $n\in N$ still belongs to *G*, namely${\sum}_{n\in N}{\tilde{I}}_{{A}_{n}}{x}_{n}$ is well defined and there exists $x\in G$ such that $x={\sum}_{n\in N}{\tilde{I}}_{{A}_{n}}{x}_{n}$.

**Definition 2.6** ([16])

*E*be a left module over the algebra ${L}^{0}(\mathcal{F})$ and

*f*a function from

*E*to${\overline{L}}^{0}(\mathcal{F})$, then:

- (1)
*f*is ${L}^{0}(\mathcal{F})$-convex if $f(\xi x+(1-\xi )y)\le \xi f(x)+(1-\xi )f(y)$ for all*x*and*y*in*E*and $\xi \in {L}_{+}^{0}(\mathcal{F})$ such that $0\le \xi \le 1$ (here we make the convention that $0\cdot (\pm \mathrm{\infty})=0$ and $\mathrm{\infty}-\mathrm{\infty}=\mathrm{\infty}!$). - (2)
*f*is said to have the local property if ${\tilde{I}}_{A}f(x)={\tilde{I}}_{A}f({\tilde{I}}_{A}x)$ for all $x\in E$ and $A\in \mathcal{F}$.

It is well known from [16] that $f:E\to {\overline{L}}^{0}(\mathcal{F})$ is ${L}^{0}(\mathcal{F})$-convex iff *f* has the local property and$epi(f)$ is ${L}^{0}(\mathcal{F})$-convex.

## 3 Main results and proofs

**Definition 3.1**Let $(E,\parallel \cdot \parallel )$ be an

*RN*module over

*R*with base$(\mathrm{\Omega},\mathcal{F},P)$, $z\in E$ and $r\in {L}_{++}^{0}(\mathcal{F})$. Denote the ${\mathcal{T}}_{c}$-closed ball by

**Definition 3.2** ([14])

*RN*module over

*R*with base$(\mathrm{\Omega},\mathcal{F},P)$, ${B}_{z}(r)$ a ${\mathcal{T}}_{c}$-closed ball in

*E*, $y\in E\setminus {B}_{z}(r)$. Define the ${L}^{0}(\mathcal{F})$-convex hull of $\{y\}\cup {B}_{z}(r)$ by

**Definition 3.3**Let $(E,\parallel \cdot \parallel )$ be an

*RN*module over

*R*with base$(\mathrm{\Omega},\mathcal{F},P)$, ≤

_{1}and ≤

_{2}be bothorderings on

*E*. Then ≤

_{2}is finer than ≤

_{1}, if

In [3], we established the precise form of the Ekeland variational principle on a${\mathcal{T}}_{c}$-complete *RN*-module. Here we only need its generalform as follows.

**Lemma 3.4** ([3])

*Let*$(F,\parallel \cdot \parallel )$

*be a*${\mathcal{T}}_{c}$-

*complete*

*RN*

*moduleover*

*R*

*with base*$(\mathrm{\Omega},\mathcal{F},P)$

*such that*

*F*

*has the countableconcatenation property*, $\phi :F\to {\overline{L}}^{0}(\mathcal{F})$

*have the local property*.

*If*$G\subset F$

*is a*${\mathcal{T}}_{c}$-

*closed subset with the countable concatenationproperty and*$\phi {|}_{G}$

*is proper*, ${\mathcal{T}}_{c}$-

*lower semicontinuous*,

*and bounded from belowon*

*G*,

*then for each point*${x}_{0}\in dom(\phi {|}_{G})$,

*there exists*$z\in G$

*such that the following are satisfied*:

- (1)
$\phi (z)\le \phi ({x}_{0})-\parallel z-{x}_{0}\parallel $;

- (2)
*for each*$x\in G$*such that*$x\ne z$, $\phi (x)\nleqq \phi (z)-\parallel x-z\parallel $,*which means that**z**is a maximal element in*$(G,{\le}_{\phi})$.

**Remark 3.5** ([3])

The ordering ${\le}_{\phi}$ on *F* is defined as follows:$x{\le}_{\phi}y$ if and only if either $x=y$, or *x* and $y\in dom(\phi )$ are such that $\parallel x-y\parallel \le \phi (x)-\phi (y)$.

**Theorem 3.6**

*Let*$(X,\parallel \cdot \parallel )$

*be a*${\mathcal{T}}_{c}$-

*complete*

*RN*

*moduleover*

*R*

*with base*$(\mathrm{\Omega},\mathcal{F},P)$

*such that*

*X*

*has the countableconcatenation property*, $F\subset X$

*a*${\mathcal{T}}_{c}$-

*closed subset with the countable concatenationproperty*,

*and*$z\in X\setminus F$.

*Let*$r,R,\rho \in {L}_{++}^{0}(\mathcal{F})$

*with*$0<r<R<\rho $

*on*Ω,

*then thereexists*${x}_{0}\in {\partial}_{c}(F)$

*such that*

*and*

*where*$R:=\bigwedge \{\parallel z-a\parallel :a\in F\}$, *and*${\partial}_{c}(F)$*denotes the*${\mathcal{T}}_{c}$-*boundary of* *F*.

*Proof* We can, without loss of generality, suppose $z=0$.

Let $E:=F\cap {B}_{0}(\rho )$.

Define an ordering $\tilde{\le}$ on *E* as follows: ${x}_{1}\phantom{\rule{0.2em}{0ex}}\tilde{\le}\phantom{\rule{0.2em}{0ex}}{x}_{2}$ if and only if ${x}_{2}\in D(0,r,{x}_{1})$. It is easy to check that $\tilde{\le}$ is a partial ordering.

Define a function $\phi :E\to {L}_{+}^{0}(\mathcal{F})$ by $\phi (x)=(\rho +r){(R-r)}^{-1}\parallel x\parallel $, $\mathrm{\forall}x\in E$.

Since *F* and ${B}_{0}(\rho )$ are ${\mathcal{T}}_{c}$-closed and have the countable concatenation property, itfollows that *E* is ${\mathcal{T}}_{c}$-closed and has the countable concatenation property.

which implies that *φ* has the local property.

Since *φ* is ${\mathcal{T}}_{c}$-continuous, it is easy to see that *φ* is${\mathcal{T}}_{c}$-lower semicontinuous.

Then from Lemma 3.4, there exists a maximal element ${x}_{0}$ in $(E,{\le}_{\phi})$.

We now prove that $\tilde{\le}$ is finer than the ordering ${\le}_{\phi}$.

*E*such that ${x}_{1}\phantom{\rule{0.2em}{0ex}}\tilde{\le}\phantom{\rule{0.2em}{0ex}}{x}_{2}$. Then one can have ${x}_{2}\in D(0,r,{x}_{1})$; thus we can suppose

where $t\in {L}_{+}^{0}(\mathcal{F})$, $0\le t\le 1$, and $v\in {B}_{0}(r)$.

which implies ${x}_{1}\phantom{\rule{0.2em}{0ex}}{\le}_{\phi}\phantom{\rule{0.2em}{0ex}}{x}_{2}$, and hence $\tilde{\le}$ is finer than the ordering ${\le}_{\phi}$.

Since ${x}_{0}$ is a maximal element in $(E,{\le}_{\phi})$ and $\tilde{\le}$ is finer than ${\le}_{\phi}$, it is easy to check that ${x}_{0}$ is a maximal element in $(E,\tilde{\le})$. Thus we have $\parallel {x}_{0}\parallel \le \rho $ and $\{{x}_{0}\}=D(0,r,{x}_{0})\cap E$, which implies $D(0,r,{x}_{0})\cap F=\{{x}_{0}\}$.

on Ω.

It is easy to see that for any $y\in F\setminus E$, $\parallel y\parallel \le \rho $ does not hold. Hence we have ${x}_{0}\in {\partial}_{c}(F)$. □

**Remark 3.7** When the base space $(\mathrm{\Omega},\mathcal{F},P)$ of the *RN* module is trivial, namely$\mathcal{F}=\{\mathrm{\varnothing},\mathrm{\Omega}\}$, our result automatically degenerates to the classicalDaneš theorem. So our result is a nontrivial random extension.

## Declarations

### Acknowledgements

This work was supported by the ‘New Start’ Academic Research Projects ofBeijing Union University (No. Zk10201304).

## Authors’ Affiliations

## References

- Daneš J:
**A geometric theorem useful in nonlinear functional analysis.***Boll. Unione Mat. Ital.*1972,**6:**369–375.MathSciNetMATHGoogle Scholar - Brøndsted A:
**On a lemma of Bishop and Phelps.***Pac. J. Math.*1974,**55:**335–341. 10.2140/pjm.1974.55.335View ArticleMathSciNetMATHGoogle Scholar - Guo TX, Yang YJ:
**Ekeland’s variational principle for an**${\overline{L}}^{0}$**-valued function on a complete random metricspace.***J. Math. Anal. Appl.*2012,**389:**1–14. 10.1016/j.jmaa.2011.11.025MathSciNetView ArticleMATHGoogle Scholar - Guo TX, Xiao HX, Chen XX:
**A basic strict separation theorem in random locally convex modules.***Nonlinear Anal.*2009,**71:**3794–3804. 10.1016/j.na.2009.02.038MathSciNetView ArticleMATHGoogle Scholar - Guo TX, Li SB:
**The James theorem in complete random normed modules.***J. Math. Anal. Appl.*2005,**308:**257–265. 10.1016/j.jmaa.2005.01.024MathSciNetView ArticleMATHGoogle Scholar - Guo TX, Shi G:
**The algebraic structure of finitely generated**${L}^{0}(\mathcal{F},K)$**-modules and the Helly theorem in random normedmodules.***J. Math. Anal. Appl.*2011,**381:**833–842. 10.1016/j.jmaa.2011.03.069MathSciNetView ArticleMATHGoogle Scholar - Zhao SN, Guo TX:
**The random reflexivities of complete random normed modules.***Int. J. Math.*2011. 10.1142/S0129167X12500474Google Scholar - Tang YH:
**A new version of the Gleason-Kahane-Zklazko theorem in complete random normedalgebras.***J. Inequal. Appl.*2012. 10.1186/1029-242X-2012-85Google Scholar - Guo TX:
**Recent progress in random metric theory and its applications to conditional riskmeasures.***Sci. China Ser. A*2011,**54:**633–660. 10.1007/s11425-011-4189-6View ArticleMATHGoogle Scholar - Guo TX:
**Relations between some basic results derived from two kinds of topologies for arandom locally convex module.***J. Funct. Anal.*2010,**258:**3024–3047. 10.1016/j.jfa.2010.02.002MathSciNetView ArticleMATHGoogle Scholar - Tang YH:
**The Wintner theorem in unital complete random normed algebras.***Bull. Korean Math. Soc.*2013,**50**(6):1973–1979. 10.4134/BKMS.2013.50.6.1973MathSciNetView ArticleMATHGoogle Scholar - Tang YH:
**Random spectral theorems of self-adjoint random linear operators on completecomplex random inner product modules.***Linear Multilinear Algebra*2013,**61**(3):409–416. 10.1080/03081087.2012.689981MathSciNetView ArticleMATHGoogle Scholar - Tang YH, Guo TX:
**Complete random normed algebras.***Southeast Asian Bull. Math.*2013,**37:**931–940.MathSciNetMATHGoogle Scholar - Yang YJ:
**Drop theorem and petal theorem in complete random normed modules.***Acta Anal. Funct. Appl.*2012,**14**(4):411–418.MathSciNetMATHGoogle Scholar - Guo TX:
**Some basic theories of random normed linear spaces and random inner productspaces.***Acta Anal. Funct. Appl.*1999,**1**(2):160–184.MathSciNetMATHGoogle Scholar - Filipović D, Kupper M, Vogelpoth N:
**Separation and duality in locally**${L}^{0}$**-convex modules.***J. Funct. Anal.*2009,**256:**3996–4029. 10.1016/j.jfa.2008.11.015MathSciNetView ArticleMATHGoogle Scholar - Göpfert A, Tammer C, Zălinescu C:
**On the vectorial Ekeland’s variational principle and minimal points inproduct spaces.***Nonlinear Anal.*2000,**39:**909–922. 10.1016/S0362-546X(98)00255-7MathSciNetView ArticleMATHGoogle Scholar - Finet C, Quarta L, Troestler C:
**Vector-valued variational principles.***Nonlinear Anal.*2003,**52:**197–218. 10.1016/S0362-546X(02)00103-7MathSciNetView ArticleMATHGoogle Scholar - Araya Y:
**Ekeland’s variational principle and its equivalent theorems in vectoroptimization.***J. Math. Anal. Appl.*2008,**346:**9–16. 10.1016/j.jmaa.2008.04.055MathSciNetView ArticleMATHGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0), which permitsunrestricted use, distribution, and reproduction in any medium, provided the originalwork is properly credited.