Open Access

Weighted boundedness of multilinear operators associated to singular integral operators with non-smooth kernels

Journal of Inequalities and Applications20142014:276

https://doi.org/10.1186/1029-242X-2014-276

Received: 18 January 2014

Accepted: 24 May 2014

Published: 24 July 2014

Abstract

In this paper, we establish the weighted sharp maximal function inequalities for a multilinear operator associated to a singular integral operator with non-smooth kernel. As an application, we obtain the boundedness of the operator on weighted Lebesgue and Morrey spaces.

MSC:42B20, 42B25.

Keywords

multilinear operatorsingular integral operatorsharp maximal functionweighted BMOweighted Lipschitz function

1 Introduction and preliminaries

As the development of singular integral operators (see [1, 2]), their commutators and multilinear operators have been well studied. In [35], the authors prove that the commutators generated by the singular integral operators and BMO functions are bounded on L p ( R n ) for 1 < p < . Chanillo (see [6]) proves a similar result when the singular integral operators are replaced by the fractional integral operators. In [7, 8], the boundedness for the commutators generated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin and L p ( R n ) ( 1 < p < ) spaces is obtained. In [9, 10], the boundedness for the commutators generated by the singular integral operators and the weighted BMO and Lipschitz functions on L p ( R n ) ( 1 < p < ) spaces is obtained (also see [11]). In [12, 13], some singular integral operators with non-smooth kernels are introduced, and the boundedness for the operators and their commutators is obtained (see [1417]). Motivated by these, in this paper, we study multilinear operators generated by singular integral operators with non-smooth kernels and the weighted Lipschitz and BMO functions.

In this paper, we study some singular integral operators as follows (see [13]).

Definition 1 A family of operators D t , t > 0 , is said to be an ‘approximation to the identity’ if, for every t > 0 , D t can be represented by a kernel a t ( x , y ) in the following sense:
D t ( f ) ( x ) = R n a t ( x , y ) f ( y ) d y
for every f L p ( R n ) with p 1 , and a t ( x , y ) satisfies
| a t ( x , y ) | h t ( x , y ) = C t n / 2 ρ ( | x y | 2 / t ) ,
where ρ is a positive, bounded and decreasing function satisfying
lim r r n + ϵ ρ ( r 2 ) = 0

for some ϵ > 0 .

Definition 2 A linear operator T is called a singular integral operator with non-smooth kernel if T is bounded on L 2 ( R n ) and associated with the kernel K ( x , y ) so that
T ( f ) ( x ) = R n K ( x , y ) f ( y ) d y
for every continuous function f with compact support, and for almost all x not in the support of f.
  1. (1)
    There exists an ‘approximation to the identity’ { B t , t > 0 } such that T B t has the associated kernel k t ( x , y ) and there exist c 1 , c 2 > 0 so that
    | x y | > c 1 t 1 / 2 | K ( x , y ) k t ( x , y ) | d x c 2 for all  y R n .
     
  2. (2)
    There exists an ‘approximation to the identity’ { A t , t > 0 } such that A t T has the associated kernel K t ( x , y ) which satisfies
    | K t ( x , y ) | c 4 t n / 2 if  | x y | c 3 t 1 / 2
     
and
| K ( x , y ) K t ( x , y ) | c 4 t δ / 2 | x y | n δ if  | x y | c 3 t 1 / 2
for some δ > 0 , c 3 , c 4 > 0 . Moreover, let m be a positive integer and b be a function on R n . Set
R m + 1 ( b ; x , y ) = b ( x ) | α | m 1 α ! D α b ( y ) ( x y ) α .
The multilinear operator related to the operator T is defined by
T b ( f ) ( x ) = R n R m + 1 ( b ; x , y ) | x y | m K ( x , y ) f ( y ) d y .

Note that the commutator [ b , T ] ( f ) = b T ( f ) T ( b f ) is a particular operator of the multilinear operator T b if m = 0 . The multilinear operator T b is a non-trivial generalization of the commutator. It is well known that commutators and multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [1820]). The main purpose of this paper is to prove sharp maximal inequalities for the multilinear operator T b . As an application, we obtain the weighted L p -norm inequality and Morrey space boundedness for the multilinear operator T b .

Now, let us introduce some notations. Throughout this paper, Q will denote a cube of R n with sides parallel to the axes. For any locally integrable function f, the sharp maximal function of f is defined by
M # ( f ) ( x ) = sup Q x 1 | Q | Q | f ( y ) f Q | d y ,
where, and in what follows, f Q = | Q | 1 Q f ( x ) d x . It is well known that (see [1, 2])
M # ( f ) ( x ) sup Q x inf c C 1 | Q | Q | f ( y ) c | d y .
Let
M ( f ) ( x ) = sup Q x 1 | Q | Q | f ( y ) | d y .

For η > 0 , let M η # ( f ) ( x ) = M # ( | f | η ) 1 / η ( x ) and M η ( f ) ( x ) = M ( | f | η ) 1 / η ( x ) .

For 0 < η < n , 1 p < and the non-negative weight function w, set
M η , p , w ( f ) ( x ) = sup Q x ( 1 w ( Q ) 1 p η / n Q | f ( y ) | p w ( y ) d y ) 1 / p .

We write M η , p , w ( f ) = M p , w ( f ) if η = 0 .

The sharp maximal function M A ( f ) associated with the ‘approximation to the identity’ { A t , t > 0 } is defined by
M A # ( f ) ( x ) = sup x Q 1 | Q | Q | f ( y ) A t Q ( f ) ( y ) | d y ,

where t Q = l ( Q ) 2 and l ( Q ) denotes the side length of Q. For η > 0 , let M A , η # ( f ) = M A # ( | f | η ) 1 / η .

The A p weight is defined by (see [1]), for 1 < p < ,
A p = { w L loc 1 ( R n ) : sup Q ( 1 | Q | Q w ( x ) d x ) ( 1 | Q | Q w ( x ) 1 / ( p 1 ) d x ) p 1 < }
and
A 1 = { w L loc p ( R n ) : M ( w ) ( x ) C w ( x ) , a.e. } .
Given a non-negative weight function w. For 1 p < , the weighted Lebesgue space L p ( R n , w ) is the space of functions f such that
f L p ( w ) = ( R n | f ( x ) | p w ( x ) d x ) 1 / p < .
For 0 < β < 1 and the non-negative weight function w, the weighted Lipschitz space Lip β ( w ) is the space of functions b such that
b Lip β ( w ) = sup Q 1 w ( Q ) β / n ( 1 w ( Q ) Q | b ( y ) b Q | p w ( x ) 1 p d y ) 1 / p < ,
and the weighted BMO space BMO ( w ) is the space of functions b such that
b BMO ( w ) = sup Q ( 1 w ( Q ) Q | b ( y ) b Q | p w ( x ) 1 p d y ) 1 / p < .
Remark (1) It has been known that (see [9, 21]), for b Lip β ( w ) , w A 1 and x Q ,
| b Q b 2 k Q | C k b Lip β ( w ) w ( x ) w ( 2 k Q ) β / n .
  1. (2)
    It has been known that (see [1, 21]), for b BMO ( w ) , w A 1 and x Q ,
    | b Q b 2 k Q | C k b BMO ( w ) w ( x ) .
     
  2. (3)

    Let b Lip β ( w ) or b BMO ( w ) and w A 1 . By [22], we know that spaces Lip β ( w ) or BMO ( w ) coincide and the norms b Lip β ( w ) or b BMO ( w ) are equivalent with respect to different values 1 p < .

     
Definition 3 Let φ be a positive, increasing function on R + , and let there exist a constant D > 0 such that
φ ( 2 t ) D φ ( t ) for  t 0 .
Let w be a non-negative weight function on R n and f be a locally integrable function on  R n . Set, for 0 η < n and 1 p < n / η ,
f L p , η , φ ( w ) = sup x R n , d > 0 ( 1 φ ( d ) 1 p η / n Q ( x , d ) | f ( y ) | p w ( y ) d y ) 1 / p ,
where Q ( x , d ) = { y R n : | x y | < d } . The generalized fractional weighted Morrey space is defined by
L p , η , φ ( R n , w ) = { f L loc 1 ( R n ) : f L p , η , φ ( w ) < } .

We write L p , η , φ ( R n ) = L p , φ ( R n ) if η = 0 , which is the generalized weighted Morrey space. If φ ( d ) = d δ , δ > 0 , then L p , φ ( R n , w ) = L p , δ ( R n , w ) , which is the classical Morrey space (see [23, 24]). If φ ( d ) = 1 , then L p , φ ( R n , w ) = L p ( R n , w ) , which is the weighted Lebesgue space (see [1]).

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [22, 2527]).

2 Theorems and lemmas

We shall prove the following theorems.

Theorem 1 Let T be a singular integral operator with non-smooth kernel as given in Definition  2, w A 1 , 0 < η < 1 , 1 < r < and D α b BMO ( w ) for all α with | α | = m . Then there exists a constant C > 0 such that, for any f C 0 ( R n ) and x ˜ R n ,
M A , η # ( T b ( f ) ) ( x ˜ ) C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .
Theorem 2 Let T be a singular integral operator with non-smooth kernel as given in Definition  2, w A 1 , 0 < η < 1 , 1 < r < , 0 < β < 1 and D α b Lip β ( w ) for all α with | α | = m . Then there exists a constant C > 0 such that, for any f C 0 ( R n ) and x ˜ R n ,
M A , η # ( T b ( f ) ) ( x ˜ ) C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) .

Theorem 3 Let T be a singular integral operator with non-smooth kernel as given in Definition  3, w A 1 , 1 < p < and D α b BMO ( w ) for all α with | α | = m . Then T b is bounded from L p ( R n , w ) to L p ( R n , w 1 p ) .

Theorem 4 Let T be a singular integral operator with non-smooth kernel as given in Definition  3, w A 1 , 1 < p < , 0 < D < 2 n and D α b BMO ( w ) for all α with | α | = m . Then T b is bounded from L p , φ ( R n , w ) to L p , φ ( R n , w 1 p ) .

Theorem 5 Let T be a singular integral operator with non-smooth kernel as given in Definition  3, w A 1 , 0 < β < 1 , 1 < p < n / β , 1 / q = 1 / p β / n and D α b Lip β ( w ) for all α with | α | = m . Then T b is bounded from L p ( R n , w ) to L q ( R n , w 1 q ) .

Theorem 6 Let T be a singular integral operator with non-smooth kernel as given in Definition  3, w A 1 , 0 < β < 1 , 0 < D < 2 n , 1 < p < n / β , 1 / q = 1 / p β / n and D α b Lip β ( w ) for all α with | α | = m . Then T b is bounded from L p , β , φ ( R n , w ) to L q , φ ( R n , w 1 q ) .

To prove the theorems, we need the following lemmas.

Lemma 1 (see [[1], p.485])

Let 0 < p < q < , and for any function f 0 , we define that, for 1 / r = 1 / p 1 / q ,
f W L q = sup λ > 0 λ | { x R n : f ( x ) > λ } | 1 / q , N p , q ( f ) = sup Q f χ Q L p / χ Q L r ,
where the sup is taken for all measurable sets Q with 0 < | Q | < . Then
f W L q N p , q ( f ) ( q / ( q p ) ) 1 / p f W L q .

Lemma 2 (see [12, 13])

Let T be a singular integral operator with non-smooth kernel as given in Definition  2. Then T is bounded on L p ( R n , w ) for w A p with 1 < p < , and weak ( L 1 , L 1 ) bounded.

Lemma 3 ([12, 13])

Let { A t , t > 0 } be anapproximation to the identity’. For any γ > 0 , there exists a constant C > 0 independent of γ such that
| { x R n : M ( f ) ( x ) > D λ , M A # ( f ) ( x ) γ λ } | C γ | { x R n : M ( f ) ( x ) > λ } |
for λ > 0 , where D is a fixed constant which only depends on n. Thus, for f L p ( R n ) , 1 < p < , 0 < η < and w A 1 ,
M η ( f ) L p ( w ) C M A , η # ( f ) L p ( w ) .

Lemma 4 (see [1, 6])

Let 0 η < n , 1 s < p < n / η , 1 / q = 1 / p η / n and w A 1 . Then
M η , s , w ( f ) L q ( w ) C f L p ( w ) .

Lemma 5 (see [12, 13])

Let { A t , t > 0 } be anapproximation to the identity’, 0 < D < 2 n , 1 < p < , 0 < η < , w A 1 and w A 1 . Then
M η ( f ) L p , φ ( w ) C M A , η # ( f ) L p , φ ( w ) .

Lemma 6 (see [22, 25])

Let 0 η < n , 0 < D < 2 n , 1 s < p < n / η , 1 / q = 1 / p η / n and w A 1 . Then
M η , s , w ( f ) L q , φ ( w ) C f L p , η , φ ( w ) .

Lemma 7 (see [19])

Let b be a function on R n and D α A L q ( R n ) for all α with | α | = m and any q > n . Then
| R m ( b ; x , y ) | C | x y | m | α | = m ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) | D α b ( z ) | q d z ) 1 / q ,

where Q ˜ is the cube centered at x and having side length 5 n | x y | .

Lemma 8 Let { A t , t > 0 } be anapproximation to the identity’, w A 1 and b BMO ( w ) . Then, for every f L p ( w ) , p > 1 , 1 < r < and x ˜ R n ,
sup Q x ˜ 1 | Q | Q | A t Q ( ( b b Q ) f ) ( y ) | d y C b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) ,

where t Q = l ( Q ) 2 and l ( Q ) denotes the side length of Q.

Proof We write, for any cube Q with x ˜ Q ,
1 | Q | Q | A t Q ( ( b b Q ) f ) ( x ) | d x 1 | Q | Q R n h t Q ( x , y ) | ( b ( y ) b Q ) f ( y ) | d y d x 1 | Q | Q Q h t Q ( x , y ) | ( b ( y ) b Q ) f ( y ) | d y d x + k = 0 1 | Q | Q 2 k + 1 Q 2 k Q h t Q ( x , y ) | ( b ( y ) b Q ) f ( y ) | d y d x = I + II .
We have, by Hölder’s inequality,
I C | Q | | Q | Q Q | ( b ( y ) b Q ) f ( y ) | d y d x C | Q | Q | b ( y ) b Q | w ( y ) 1 / r | f ( y ) | w ( y ) 1 / r d y C | Q | ( Q | b ( y ) b Q | r w ( y ) 1 r d y ) 1 / r ( Q | f ( y ) | r w ( y ) d y ) 1 / r C | Q | b BMO ( w ) w ( Q ) 1 / r w ( Q ) 1 / r ( 1 w ( Q ) Q | f ( y ) | r w ( y ) d y ) 1 / r C b BMO ( w ) w ( Q ) | Q | M r , w ( f ) ( x ˜ ) C b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .
For II, notice for x Q and y 2 k + 1 Q 2 k Q , then | x y | 2 k 1 t Q and h t Q ( x , y ) C s ( 2 2 ( k 1 ) ) | Q | , then
II C k = 0 s ( 2 2 ( k 1 ) ) 1 | Q | | Q | Q 2 k + 1 Q | ( b ( y ) b Q ) f ( y ) | d y d x C k = 0 2 k n s ( 2 2 ( k 1 ) ) 1 | 2 k + 1 Q | × 2 k + 1 Q | ( b ( y ) b 2 k + 1 Q ) + ( b 2 k + 1 Q b Q ) | | f ( y ) | d y C k = 0 2 k n s ( 2 2 ( k 1 ) ) | 2 k + 1 Q | 1 ( 2 k + 1 Q | b ( y ) b 2 k + 1 Q | r w ( y ) 1 r d y ) 1 / r × ( 2 k + 1 Q | f ( y ) | r w ( y ) d y ) 1 / r + C k = 0 2 k n s ( 2 2 ( k 1 ) ) | 2 k + 1 Q | 1 k b BMO ( w ) w ( x ˜ ) ( 2 k + 1 Q | f ( y ) | r w ( y ) d y ) 1 / r × ( 1 | 2 k + 1 Q | 2 k + 1 Q w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r × ( 1 | 2 k + 1 Q | 2 k + 1 Q w ( y ) d y ) 1 / r | 2 k + 1 Q | w ( 2 k + 1 Q ) 1 / r C b BMO ( w ) k = 0 k 2 k n s ( 2 2 ( k 1 ) ) ( w ( 2 k + 1 Q ) | 2 k + 1 Q | + w ( x ˜ ) ) × ( 1 w ( 2 k + 1 Q ) 2 k + 1 Q | f ( y ) | r w ( y ) d y ) 1 / r C b BMO ( w ) k = 0 k 2 k n s ( 2 2 ( k 1 ) ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) C b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) ,
where the last inequality follows from
k = 1 k 2 ( k 1 ) n s ( 2 2 ( k 1 ) ) C k = 1 k 2 ( k 1 ) ϵ <

for some ϵ > 0 . This completes the proof. □

Lemma 9 Let { A t , t > 0 } be anapproximation to the identity’, w A 1 , 0 < β < 1 , 1 < r < and b Lip β ( w ) . Then, for every f L p ( w ) , p > 1 and x ˜ R n ,
sup Q x ˜ 1 | Q | Q | A t Q ( ( b b Q ) f ) ( y ) | d y C b Lip β ( w ) w ( x ˜ ) M β , w , r ( f ) ( x ˜ ) .

The same argument as in the proof of Lemma 8 will give the proof of Lemma 9, we omit the details.

3 Proofs of theorems

Proof of Theorem 1 It suffices to prove for f C 0 ( R n ) and some constant C 0 that the following inequality holds:
( 1 | Q | Q | T b ( f ) ( x ) A t Q ( T b ( f ) ) ( x ) | η d x ) 1 / η C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) ,
where t Q = d 2 and d denotes the side length of Q. Fix a cube Q = Q ( x 0 , d ) and x ˜ Q . Let Q ˜ = 5 n Q and b ˜ ( x ) = b ( x ) | α | = m 1 α ! ( D α b ) Q ˜ x α , then R m ( b ; x , y ) = R m ( b ˜ ; x , y ) and D α b ˜ = D α b ( D α b ) Q ˜ for | α | = m . We write, for f 1 = f χ Q ˜ and f 2 = f χ R n Q ˜ ,
T b ( f ) ( x ) = R n R m ( b ˜ ; x , y ) | x y | m K ( x , y ) f 1 ( y ) d y | α | = m 1 α ! R n ( x y ) α D α b ˜ ( y ) | x y | m K ( x , y ) f 1 ( y ) d y + R n R m + 1 ( b ˜ ; x , y ) | x y | m K ( x , y ) f 2 ( y ) d y = T ( R m ( b ˜ ; x , ) | x | m f 1 ) T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) + T b ˜ ( f 2 ) ( x )
and
A t Q T b ( f ) ( x ) = R n R m ( b ˜ j ; x , y ) | x y | m K t ( x , y ) f 1 ( y ) d y | α | = m 1 α ! R n ( x y ) α D α b ˜ ( y ) | x y | m K t ( x , y ) f 1 ( y ) d y + R n R m + 1 ( b ˜ ; x , y ) | x y | m K t ( x , y ) f 2 ( y ) d y = A t Q T ( R m ( b ˜ ; x , ) | x | m f 1 ) A t Q T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) + A t Q T b ˜ ( f 2 ) ( x ) ,
then
( 1 | Q | Q | T b ( f ) ( x ) A t Q T b ( f ) ( x ) | η d x ) 1 / η C ( 1 | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | η d x ) 1 / η + C ( 1 | Q | Q | T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) ( x ) | η d x ) 1 / η + C ( 1 | Q | Q | A t Q T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | η d x ) 1 / η + C ( 1 | Q | Q | A t Q T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) ( x ) | η d x ) 1 / η + C ( 1 | Q | Q | T b ˜ ( f 2 ) ( x ) A t Q T b ˜ ( f 2 ) ( x ) | η d x ) 1 / η = I 1 + I 2 + I 3 + I 4 + I 5 .
For I 1 , noting that w A 1 , w satisfies the reverse of Hölder’s inequality
( 1 | Q | Q w ( x ) p 0 d x ) 1 / p 0 C | Q | Q w ( x ) d x
for all cube Q and some 1 < p 0 < (see [1]). We take q = r p 0 / ( r + p 0 1 ) in Lemma 7 and have 1 < q < r and p 0 = q ( r 1 ) / ( r q ) , then by Lemma 7 and Hölder’s inequality, we get
| R m ( b ˜ ; x , y ) | C | x y | m | α | = m ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) | D α b ˜ ( z ) | q d z ) 1 / q C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | q w ( z ) q ( 1 r ) / r w ( z ) q ( r 1 ) / r d z ) 1 / q C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | r w ( z ) 1 r d z ) 1 / r × ( Q ˜ ( x , y ) w ( z ) q ( r 1 ) / ( r q ) d z ) ( r q ) / r q C | x y | m | α | = m | Q ˜ | 1 / q D α b BMO ( w ) w ( Q ˜ ) 1 / r | Q ˜ | ( r q ) / r q × ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) p 0 d z ) ( r q ) / r q C | x y | m | α | = m D α b BMO ( w ) | Q ˜ | 1 / q w ( Q ˜ ) 1 / r | Q ˜ | 1 / q 1 / r × ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) d z ) ( r 1 ) / r C | x y | m | α | = m D α b BMO ( w ) | Q ˜ | 1 / q w ( Q ˜ ) 1 / r | Q ˜ | 1 / q 1 / r w ( Q ˜ ) 1 1 / r | Q ˜ | 1 / r 1 C | x y | m | α | = m D α b BMO ( w ) w ( Q ˜ ) | Q ˜ | C | x y | m | α | = m D α b BMO ( w ) w ( x ˜ ) .
Thus, by the L s -boundedness of T (see Lemma 2) for 1 < s < r and w A 1 A r / s , we obtain
I 1 C | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | d x C | α | = m D α b BMO ( w ) w ( x ˜ ) ( 1 | Q | R n | T ( f 1 ) ( x ) | s d x ) 1 / s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s ( R n | f 1 ( x ) | s d x ) 1 / s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s ( Q ˜ | f ( x ) | s w ( x ) s / r w ( x ) s / r d x ) 1 / s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r ( Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s w ( Q ˜ ) 1 / r ( 1 w ( Q ˜ ) Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r × ( 1 | Q ˜ | Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s ( 1 | Q ˜ | Q ˜ w ( x ) d x ) 1 / r | Q ˜ | 1 / s w ( Q ˜ ) 1 / r C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .
For I 2 , by the weak ( L 1 , L 1 ) boundedness of T (see Lemma 2) and Kolmogorov’s inequality (see Lemma 1), we obtain
I 2 C | α | = m ( 1 | Q | Q | T ( D α b ˜ f 1 ) ( x ) | η d x ) 1 / η C | α | = m | Q | 1 / η 1 | Q | 1 / η T ( D α b ˜ f 1 ) χ Q L η χ Q L η / ( 1 η ) C | α | = m 1 | Q | T ( D α b ˜ f 1 ) W L 1 C | α | = m 1 | Q | R n | D α b ˜ ( x ) f 1 ( x ) | d x C | α | = m 1 | Q | Q ˜ | D α b ( x ) ( D α b ) Q ˜ | w ( x ) 1 / r | f ( x ) | w ( x ) 1 / r d x C | α | = m 1 | Q | ( Q ˜ | ( D α b ( x ) ( D α b ) Q ˜ ) | r w ( x ) 1 r d x ) 1 / r ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r C | α | = m 1 | Q | D α b BMO ( w ) w ( Q ˜ ) 1 / r w ( Q ˜ ) 1 / r ( 1 w ( Q ˜ ) Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r C | α | = m D α b BMO ( w ) w ( Q ˜ ) | Q ˜ | M r , w ( f ) ( x ˜ ) C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .
For I 3 and I 4 , by Lemma 8 and similar to the proof of I 1 and I 2 , we get
I 3 C | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | d x I 3 C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) , I 4 C | α | = m ( 1 | Q | Q | T ( D α b ˜ f 1 ) ( x ) | η d x ) 1 / η I 4 C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .
For I 5 , note that | x y | | x 0 y | for x Q and y R n Q . We have, by Lemma 7 and similar to the proof of I 1 ,
| R m ( b ˜ ; x , y ) | C | x y | m | α | = m D α b BMO ( w ) w ( x ˜ ) .
Thus, by the conditions on K and K t , and w A 1 A r ,
| T b ˜ ( f 2 ) ( x ) A t Q T b ˜ ( f 2 ) ( x 0 ) | R n | R m ( b ˜ ; x , y ) | | x y | m | K ( x , y ) K t ( x , y ) | | f 2 ( y ) | d y + | α | = m 1 α ! R n | D α b ˜ 1 ( y ) | | ( x y ) α 1 | | x y | m | K ( x , y ) K t ( x , y ) | | f 2 ( y ) | d y k = 0 | α | = m D α b BMO ( w ) w ( x ˜ ) 2 k + 1 Q ˜ 2 k Q ˜ d δ | x 0 y | n + δ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y + C | α | = m k = 0 2 k + 1 Q ˜ | ( D α b ) 2 k + 1 Q ˜ ( D α b ) Q ˜ | d δ | x 0 y | n + δ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y + C | α | = m k = 0 2 k + 1 Q ˜ | D α b ( y ) ( D α b ) 2 k + 1 Q ˜ | d δ | x 0 y | n + δ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 k d δ ( 2 k d ) n + δ ( 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) d y ) 1 / r | 2 k Q ˜ | w ( 2 k Q ˜ ) 1 / r + C | α | = m k = 1 d δ ( 2 k d ) n + δ ( 2 k Q ˜ | D α b ( y ) ( D α b ) 2 k Q ˜ | r w ( y ) 1 r d y ) 1 / r × ( 2 k Q ˜ | f ( y ) | r w ( y ) d y ) 1 / r C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 k 2 k δ ( 1 w ( 2 k Q ˜ ) 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r + C | α | = m D α b BMO ( w ) k = 1 2 k δ w ( 2 k Q ˜ ) | 2 k Q ˜ | ( 1 w ( 2 k Q ˜ ) 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) k = 1 k 2 k δ C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .
Thus
I 5 C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .

These complete the proof of Theorem 1. □

Proof of Theorem 2 It suffices to prove for f C 0 ( R n ) and some constant C 0 that the following inequality holds:
( 1 | Q | Q | T b ( f ) ( x ) A t Q ( T b ( f ) ) ( x ) | η d x ) 1 / η C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) ,
where t Q = d 2 and d denotes the side length of Q. Fix a cube Q = Q ( x 0 , d ) and x ˜ Q . Similar to the proof of Theorem 1, we have, for f 1 = f χ Q ˜ and f 2 = f χ R n Q ˜ ,
( 1 | Q | Q | T b ( f ) ( x ) A t Q T b ( f ) ( x ) | η d x ) 1 / η ( 1 | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | η d x ) 1 / η + ( 1 | Q | Q | T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) ( x ) | η d x ) 1 / η + ( 1 | Q | Q | A t Q T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | η d x ) 1 / η + ( 1 | Q | Q | A t Q T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) ( x ) | η d x ) 1 / η + ( 1 | Q | Q | T b ˜ ( f 2 ) ( x ) A t Q T b ˜ ( f 2 ) ( x ) | η d x ) 1 / η = J 1 + J 2 + J 3 + J 4 + J 5 .
For J 1 and J 2 , by using the same argument as in the proof of Theorem 1, we get
| R m ( b ˜ ; x , y ) | C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | q w ( z ) q ( 1 r ) / r w ( z ) q ( r 1 ) / r d z ) 1 / q C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | r w ( z ) 1 r d z ) 1 / r × ( Q ˜ ( x , y ) w ( z ) q ( r 1 ) / ( r q ) d z ) ( r q ) / r q C | x y | m | α | = m | Q ˜ | 1 / q D α b Lip β ( w ) w ( Q ˜ ) β / n + 1 / r | Q ˜ | ( r q ) / r q × ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) p 0 d z ) ( r q ) / r q C | x y | m | α | = m D α b Lip β ( w ) | Q ˜ | 1 / q w ( Q ˜ ) β / n + 1 / r | Q ˜ | 1 / q 1 / r × ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) d z ) ( r 1 ) / r C | x y | m | α | = m D α b Lip β ( w ) | Q ˜ | 1 / q w ( Q ˜ ) β / n + 1 / r | Q ˜ | 1 / q 1 / r w ( Q ˜ ) 1 1 / r | Q ˜ | 1 / r 1 C | x y | m | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n + 1 | Q ˜ | C | x y | m | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n w ( x ˜ ) .
Thus
J 1 C | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n w ( x ˜ ) | Q | 1 / s ( R n | f 1 ( x ) | s d x ) 1 / s J 1 C | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n w ( x ˜ ) | Q | 1 / s ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 1 × ( Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s J 1 C | α | = m D α b Lip β ( w ) w ( x ˜ ) | Q ˜ | 1 / s w ( Q ˜ ) 1 / r ( 1 w ( Q ˜ ) 1 r β / n Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 1 × ( 1 | Q ˜ | Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s ( 1 | Q ˜ | Q ˜ w ( x ) d x ) 1 / r | Q ˜ | 1 / s w ( Q ˜ ) 1 / r J 1 C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) , J 2 C | α | = m 1 | Q | Q ˜ | D α b ( x ) ( D α b ) Q ˜ | w ( x ) 1 / r | f ( x ) | w ( x ) 1 / r d x J 2 C | α | = m 1 | Q | ( Q ˜ | ( D α b ( x ) ( D α b ) Q ˜ ) | r w ( x ) 1 r d x ) 1 / r ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 2 C | α | = m 1 | Q | D α b Lip β ( w ) w ( Q ˜ ) β / n + 1 / r w ( Q ˜ ) 1 / r β / n ( 1 w ( Q ˜ ) 1 r β / n Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 2 C | α | = m D α b Lip β ( w ) w ( Q ˜ ) | Q ˜ | M β , r , w ( f ) ( x ˜ ) J 2 C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) .
For J 3 and J 4 , by Lemma 9 and similar to the proof of J 1 and J 2 , we get
J 3 C | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) ( x ) | d x J 3 C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) , J 4 C | α | = m ( 1 | Q | Q | T ( D α b ˜ f 1 ) ( x ) | η d x ) 1 / η J 4 C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) .
For J 5 , by Lemma 7 and similar to the proof of J 1 , for k 0 , we have
| R m ( b ˜ ; x , y ) | C | x y | m | α | = m D α b Lip β ( w ) w ( 2 k Q ˜ ) β / n w ( x ˜ ) .
Thus
| T b ˜ ( f 2 ) ( x ) A t Q T b ˜ ( f 2 ) ( x 0 ) | R n | R m ( b ˜ ; x , y ) | | x y | m | K ( x , y ) K t ( x , y ) | | f 2 ( y ) | d y + | α | = m 1 α ! R n | D α b ˜ 1 ( y ) | | ( x y ) α 1 | | x y | m | K ( x , y ) K t ( x , y ) | | f 2 ( y ) | d y k = 0 | α | = m D α b Lip β ( w ) w ( x ˜ ) w ( 2 k Q ˜ ) β / n × 2 k + 1 Q ˜ 2 k Q ˜ d δ | x 0 y | n + δ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y + C | α | = m k = 0 2 k + 1 Q ˜ | ( D α b ) 2 k + 1 Q ˜ ( D α b ) Q ˜ | d δ | x 0 y | n + δ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y + C | α | = m k = 0 2 k + 1 Q ˜ | D α b ( y ) ( D α b ) 2 k + 1 Q ˜ | d δ | x 0 y | n + δ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y C | α | = m D α b Lip β ( w ) w ( x ˜ ) k = 1 k d δ ( 2 k d ) n + δ w ( 2 k Q ˜ ) β / n ( 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) d y ) 1 / r | 2 k Q ˜ | w ( 2 k Q ˜ ) 1 / r + C | α | = m k = 1 d δ ( 2 k d ) n + δ ( 2 k Q ˜ | D α b ( y ) ( D α b ) 2 k Q ˜ | r w ( y ) 1 r d y ) 1 / r × ( 2 k Q ˜ | f ( y ) | r w ( y ) d y ) 1 / r C | α | = m D α b Lip β ( w ) w ( x ˜ ) k = 1 k 2 k δ ( 1 w ( 2 k Q ˜ ) 1 r β / n 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r + C | α | = m D α b Lip β ( w ) k = 1 2 k δ w ( 2 k Q ˜ ) | 2 k Q ˜ | ( 1 w ( 2 k Q ˜ ) 1 r β / n 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) .

This completes the proof of Theorem 2. □

Proof of Theorem 3 Choose 1 < r < p in Theorem 1 and notice w 1 p A 1 , then we have, by Lemmas 3 and 4,
T b ( f ) L p ( w 1 p ) M η ( T b ( f ) ) L p ( w 1 p ) C M A , η # ( T b ( f ) ) L p ( w 1 p ) C | α | = m D α b BMO ( w ) w M r , w ( f ) L p ( w 1 p ) = C | α | = m D α b BMO ( w ) M r , w ( f ) L p ( w ) C | α | = m D α b BMO ( w ) f L p ( w ) .

This completes the proof of Theorem 3. □

Proof of Theorem 4 Choose 1 < r < p in Theorem 1 and notice w 1 p A 1 , then we have, by Lemmas 5 and 6,
T b ( f ) L p , φ ( w 1 p ) M η ( T b ( f ) ) L p , φ ( w 1 p ) C M A , η # ( T b ( f ) ) L p , φ ( w 1 p ) C | α | = m D α b BMO ( w ) w M r , w ( f ) L p , φ ( w 1 p ) = C | α | = m D α b BMO ( w ) M r , w ( f ) L p , φ ( w ) C | α | = m D α b BMO ( w ) f L p , φ ( w ) .

This completes the proof of Theorem 4. □

Proof of Theorem 5 Choose 1 < r < p in Theorem 2 and notice w 1 q A 1 , then we have, by Lemmas 3 and 4,
T b ( f ) L q ( w 1 q ) M η ( T b ( f ) ) L q ( w 1 q ) C M A , η # ( T b ( f ) ) L q ( w 1 q ) C | α | = m D α b Lip β ( w ) w M β , r , w ( f ) L q ( w 1 q ) = C | α | = m D α b Lip β ( w ) M β , r , w ( f ) L q ( w ) C | α | = m D α b Lip β ( w ) f L p ( w ) .

This completes the proof of Theorem 5. □

Proof of Theorem 6 Choose 1 < r < p in Theorem 2 and notice w 1 q A 1 , then we have, by Lemmas 5 and 6,
T b ( f ) L q , φ ( w 1 q ) M η ( T b ( f ) ) L q , φ ( w 1 q ) C M A , η # ( T b ( f ) ) L q , φ ( w 1 q ) C | α | = m D α b Lip β ( w ) w M β , r , w ( f ) L q , φ ( w 1 q ) = C | α | = m D α b Lip β ( w ) M β , r , w ( f ) L q , φ ( w ) C | α | = m D α b Lip β ( w ) f L p , β , φ ( w ) .

This completes the proof of Theorem 6. □

4 Applications

In this section we shall apply the theorems of the paper to the holomorphic functional calculus of linear elliptic operators. First, we review some definitions regarding the holomorphic functional calculus (see [13]). Given 0 θ < π . Define
S θ = { z C : | arg ( z ) | θ } { 0 }
and its interior by S θ 0 . Set S ˜ θ = S θ { 0 } . A closed operator L on some Banach space E is said to be of type θ if its spectrum σ ( L ) S θ and for every ν ( θ , π ] , there exists a constant C ν such that
| η | ( η I L ) 1 C ν , η S ˜ θ .
For ν ( 0 , π ] , let
H ( S μ 0 ) = { f : S θ 0 C : f  is holomorphic and  f L < } ,
where f L = sup { | f ( z ) | : z S μ 0 } . Set
Ψ ( S μ 0 ) = { g H ( S μ 0 ) : s > 0 , c > 0  such that  | g ( z ) | c | z | s 1 + | z | 2 s } .
If L is of type θ and g H ( S μ 0 ) , we define g ( L ) L ( E ) by
g ( L ) = ( 2 π i ) 1 Γ ( η I L ) 1 g ( η ) d η ,
where Γ is the contour { ξ = r e ± i ϕ : r 0 } parameterized clockwise around S θ with θ < ϕ < μ . If, in addition, L is one-to-one and has a dense range, then, for f H ( S μ 0 ) ,
f ( L ) = [ h ( L ) ] 1 ( f h ) ( L ) ,
where h ( z ) = z ( 1 + z ) 2 . L is said to have a bounded holomorphic functional calculus on the sector S μ if
g ( L ) N g L

for some N > 0 and for all g H ( S μ 0 ) .

Now, let L be a linear operator on L 2 ( R n ) with θ < π / 2 so that ( L ) generates a holomorphic semigroup e z L , 0 | arg ( z ) | < π / 2 θ . Applying Theorem 6 of [12] and Theorems 1-6, we get the following.

Corollary Assume that the following conditions are satisfied:
  1. (i)
    The holomorphic semigroup e z L , 0 | arg ( z ) | < π / 2 θ is represented by the kernels a z ( x , y ) which satisfy, for all ν > θ , an upper bound
    | a z ( x , y ) | c ν h | z | ( x , y )
     
for x , y R n , and 0 | arg ( z ) | < π / 2 θ , where h t ( x , y ) = C t n / 2 s ( | x y | 2 / t ) and s is a positive, bounded and decreasing function satisfying
lim r r n + ϵ s ( r 2 ) = 0 .
  1. (ii)
    The operator L has a bounded holomorphic functional calculus in L 2 ( R n ) ; that is, for all ν > θ and g H ( S μ 0 ) , the operator g ( L ) satisfies
    g ( L ) ( f ) L 2 c ν g L f L 2 .
     

Then Theorems 1-6 hold for the multilinear operator g ( L ) b associated to g ( L ) and b.

Author’s contributions

The author completed the paper, and read and approved the final manuscript.

Declarations

Acknowledgements

Project was supported by Scientific Research Fund of Hunan Provincial Education Departments (13C1007).

Authors’ Affiliations

(1)
College of Mathematics, Changsha University of Science and Technology

References

  1. Garcia-Cuerva J, Rubio de Francia JL North-Holland Mathematics Studies 16. In Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam; 1985.Google Scholar
  2. Stein EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton; 1993.MATHGoogle Scholar
  3. Coifman RR, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103: 611–635. 10.2307/1970954MathSciNetView ArticleMATHGoogle Scholar
  4. Pérez C: Endpoint estimate for commutators of singular integral operators. J. Funct. Anal. 1995, 128: 163–185. 10.1006/jfan.1995.1027MathSciNetView ArticleMATHGoogle Scholar
  5. Pérez C, Trujillo-Gonzalez R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 2002, 65: 672–692. 10.1112/S0024610702003174View ArticleMathSciNetMATHGoogle Scholar
  6. Chanillo S: A note on commutators. Indiana Univ. Math. J. 1982, 31: 7–16. 10.1512/iumj.1982.31.31002MathSciNetView ArticleMATHGoogle Scholar
  7. Janson S: Mean oscillation and commutators of singular integral operators. Ark. Mat. 1978, 16: 263–270. 10.1007/BF02386000MathSciNetView ArticleMATHGoogle Scholar
  8. Paluszynski M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J. 1995, 44: 1–17.MathSciNetView ArticleMATHGoogle Scholar
  9. Bloom S: A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 1985, 292: 103–122. 10.1090/S0002-9947-1985-0805955-5View ArticleMathSciNetMATHGoogle Scholar
  10. Hu B, Gu J: Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces. J. Math. Anal. Appl. 2008, 340: 598–605. 10.1016/j.jmaa.2007.08.034MathSciNetView ArticleMATHGoogle Scholar
  11. He YX, Wang YS: Commutators of Marcinkiewicz integrals and weighted BMO. Acta Math. Sin. Chin. Ser. 2011, 54: 513–520.MathSciNetMATHGoogle Scholar
  12. Duong XT, McIntosh A: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoam. 1999, 15: 233–265.MathSciNetView ArticleMATHGoogle Scholar
  13. Martell JM: Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Stud. Math. 2004, 161: 113–145. 10.4064/sm161-2-2MathSciNetView ArticleMATHGoogle Scholar
  14. Deng DG, Yan LX: Commutators of singular integral operators with non-smooth kernels. Acta Math. Sci. 2005, 25: 137–144.MathSciNetMATHGoogle Scholar
  15. Liu LZ: Sharp function boundedness for vector-valued multilinear singular integral operators with non-smooth kernels. J. Contemp. Math. Anal. 2010, 45: 185–196. 10.3103/S1068362310040011MathSciNetView ArticleMATHGoogle Scholar
  16. Liu LZ: Multilinear singular integral operators on Triebel-Lizorkin and Lebesgue spaces. Bull. Malays. Math. Sci. Soc. 2012, 35: 1075–1086.MathSciNetMATHGoogle Scholar
  17. Zhou XS, Liu LZ: Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey space. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2010, 104: 115–127. 10.5052/RACSAM.2010.11View ArticleMATHGoogle Scholar
  18. Cohen J, Gosselin J:On multilinear singular integral operators on R n . Stud. Math. 1982, 72: 199–223.MathSciNetMATHGoogle Scholar
  19. Cohen J, Gosselin J: A BMO estimate for multilinear singular integral operators. Ill. J. Math. 1986, 30: 445–465.MathSciNetMATHGoogle Scholar
  20. Ding Y, Lu SZ: Weighted boundedness for a class rough multilinear operators. Acta Math. Sin. 2001, 17: 517–526.MathSciNetView ArticleMATHGoogle Scholar
  21. Garcia-Cuerva J Dissert. Math. 162. Weighted Hp Spaces 1979.Google Scholar
  22. Di Fazio G, Ragusa MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112: 241–256. 10.1006/jfan.1993.1032MathSciNetView ArticleMATHGoogle Scholar
  23. Peetre J:On convolution operators leaving L p , λ -spaces invariant. Ann. Mat. Pura Appl. 1966, 72: 295–304. 10.1007/BF02414340MathSciNetView ArticleMATHGoogle Scholar
  24. Peetre J:On the theory of L p , λ -spaces. J. Funct. Anal. 1969, 4: 71–87. 10.1016/0022-1236(69)90022-6MathSciNetView ArticleGoogle Scholar
  25. Di Fazio G, Ragusa MA: Commutators and Morrey spaces. Boll. Unione Mat. Ital., A 1991, 5: 323–332.MathSciNetMATHGoogle Scholar
  26. Liu LZ: Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators. Acta Math. Sci. Ser. B 2005, 25: 89–94.MathSciNetMATHGoogle Scholar
  27. Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis: Proceedings of a Conference Held in Sendai, Japan 1990, 183–189.Google Scholar

Copyright

© Lu; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.