Skip to main content

Sharp maximal function inequalities and boundedness for commutators related to generalized fractional singular integral operators

Abstract

In this paper, some sharp maximal function inequalities for the commutators related to certain generalized fractional singular integral operators are proved. As an application, we obtain the boundedness of the commutators on Lebesgue, Morrey and Triebel-Lizorkin spaces.

MSC:42B20, 42B25.

1 Introduction and preliminaries

Let b∈BMO( R n ) and T be the Calderón-Zygmund singular integral operator. The commutator [b,T] generated by b and T is defined by

[b,T]f(x)=b(x)Tf(x)−T(bf)(x).

By using a classical result of Coifman et al. (see [1]), we know that the commutator [b,T] is bounded on L p ( R n ) (1<p<∞). Now, as the development of singular integral operators and their commutators, some new integral operators and their commutators are studied (see [2–7]). In [5, 8, 9], the boundedness for the commutators generated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin and L p ( R n ) (1<p<∞) spaces are obtained. In [10], some singular integral operators with general kernel are introduced, and the boundedness for the operators and their commutators generated by BMO and Lipschitz functions are obtained (see [10, 11]). Motivated by these, in this paper, we will prove some sharp maximal function inequalities for the commutator associated with certain generalized fractional singular integral operators and the BMO and Lipschitz functions. As an application, we obtain the boundedness of the commutator on Lebesgue, Morrey and Triebel-Lizorkin space.

First, let us introduce some preliminaries. Throughout this paper, Q will denote a cube of R n with sides parallel to the axes. For any locally integrable function f, the sharp maximal function of f is defined by

M # (f)(x)= sup Q ∋ x 1 | Q | ∫ Q |f(y)− f Q |dy,

and here, and in what follows, f Q = | Q | − 1 ∫ Q f(x)dx. It is well known that (see [12, 13])

M # (f)(x)≈ sup Q ∋ x inf c ∈ C 1 | Q | ∫ Q | f ( y ) − c | dy.

We say that f belongs to BMO( R n ) if M # (f) belongs to L ∞ ( R n ) and define ∥ f ∥ B M O = ∥ M # ( f ) ∥ L ∞ . It is well known that (see [7])

∥ f − f 2 k Q ∥ B M O ≤Ck ∥ f ∥ B M O .

Let

M(f)(x)= sup Q ∋ x 1 | Q | ∫ Q | f ( y ) | dy.

For η>0, let M η (f)(x)=M ( | f | η ) 1 / η (x).

For 0<η<n and 1≤r<∞, set

M η , r (f)(x)= sup Q ∋ x ( 1 | Q | 1 − r η / n ∫ Q | f ( y ) | r d y ) 1 / r .

The A p weight is defined by (see [12])

A p = { w ∈ L loc 1 ( R n ) : sup Q ( 1 | Q | ∫ Q w ( x ) d x ) ( 1 | Q | ∫ Q w ( x ) − 1 / ( p − 1 ) d x ) p − 1 < ∞ } , 1 < p < ∞ ,

and

A 1 = { w ∈ L loc p ( R n ) : M ( w ) ( x ) ≤ C w ( x ) ,  a.e. } .

For β>0 and p>1, let F ˙ p β , ∞ ( R n ) be the homogeneous Triebel-Lizorkin space (see [9]).

For β>0, the Lipschitz space Lip β ( R n ) is the space of functions f such that

∥ f ∥ Lip β = sup x , y ∈ R n x ≠ y | f ( x ) − f ( y ) | | x − y | β <∞.

In this paper, we will study some singular integral operators as follows (see [10]).

Definition 1 Fix 0≤δ<n. Let T δ :S→ S ′ be a linear operator such that T δ is bounded on L 2 ( R n ) and has a kernel K, that is, there exists a locally integrable function K(x,y) on R n × R n ∖{(x,y)∈ R n × R n :x=y} such that

T δ (f)(x)= ∫ R n K(x,y)f(y)dy

for every bounded and compactly supported function f, where for K we have the following: there is a sequence of positive constant numbers { C k } such that for any k≥1,

∫ 2 | y − z | < | x − y | ( | K ( x , y ) − K ( x , z ) | + | K ( y , x ) − K ( z , x ) | ) dx≤C,

and

( ∫ 2 k | z − y | ≤ | x − y | < 2 k + 1 | z − y | ( | K ( x , y ) − K ( x , z ) | + | K ( y , x ) − K ( z , x ) | ) q d y ) 1 / q ≤ C k ( 2 k | z − y | ) − n / q ′ + δ ,
(1)

where 1< q ′ <2 and 1/q+1/ q ′ =1. We write T δ ∈GSIO(δ).

Let b be a locally integrable function on R n . The commutator related to T δ is defined by

T δ b (f)(x)= ∫ R n ( b ( x ) − b ( y ) ) K(x,y)f(y)dy.

Remark (a) Note that the classical Calderón-Zygmund singular integral operator satisfies Definition 1 with C j = 2 − j ε , ε>0 and δ=0 (see [12, 13]).

  1. (b)

    Also note that the fractional integral operator with rough kernel satisfies Definition 1 (see [2]), that is, for 0<δ<n, let T δ be the fractional integral operator with rough kernel defined by (see [2])

    T δ f(x)= ∫ R n Ω ( x − y ) | x − y | n − δ f(y)dy,

where Ω is homogeneous of degree zero on R n , ∫ S n − 1 Ω( x ′ )dσ( x ′ )=0 and Ω∈ Lip ε ( S n − 1 ) for some 0<ε≤1, that is, there exists a constant M>0 such that for any x,y∈ S n − 1 , |Ω(x)−Ω(y)|≤M | x − y | ε . When Ω≡1, T δ is the Riesz potential (fractional integral operator).

Definition 2 Let φ be a positive, increasing function on R + and there exists a constant D>0 such that

φ(2t)≤Dφ(t)for t≥0.

Let f be a locally integrable function on R n . Set, for 0≤η<n and 1≤p<n/η,

∥ f ∥ L p , η , φ = sup x ∈ R n , d > 0 ( 1 φ ( d ) 1 − p η / n ∫ Q ( x , d ) | f ( y ) | p d y ) 1 / p ,

where Q(x,d)={y∈ R n :|x−y|<d}. The generalized fractional Morrey space is defined by

L p , η , φ ( R n ) = { f ∈ L loc 1 ( R n ) : ∥ f ∥ L p , η , φ < ∞ } .

We write L p , η , φ ( R n )= L p , φ ( R n ) if η=0, which is the generalized Morrey space. If φ(d)= d η , η>0, then L p , φ ( R n )= L p , η ( R n ), which is the classical Morrey spaces (see [7, 14]). If φ(d)=1, then L p , φ ( R n )= L p ( R n ), which is the Lebesgue spaces.

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of operator on Morrey spaces (see [3, 4, 6, 15, 16]).

It is well known that commutators are of great interest in harmonic analysis, and they have been widely studied by many authors (see [2, 7]). In [7], Pérez and Trujillo-Gonzalez prove a sharp estimate for the commutator. The main purpose of this paper is to prove some sharp maximal inequalities for the commutator T δ b . As an application, we obtain the L p -norm inequality, and for Morrey and Triebel-Lizorkin spaces boundedness for the commutator.

2 Theorems

We shall prove the following theorems.

Theorem 1 Let there be a sequence { C k }∈ l 1 , 0<β<1, q ′ ≤s<∞ and b∈ Lip β ( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) for any p, r with 1<p<n/δ and 1/r=1/p−δ/n, and that it has a kernel K satisfying (1). Then there exists a constant C>0 such that, for any f∈ C 0 ∞ ( R n ) and x ˜ ∈ R n ,

M # ( T δ b ( f ) ) ( x ˜ )≤C ∥ b ∥ Lip β ( M β + δ , s ( f ) ( x ˜ ) + M β , s ( T δ ( f ) ) ( x ˜ ) ) .

Theorem 2 Let there be a sequence { 2 k β C k }∈ l 1 , 0<β<1, q ′ ≤s<∞ and b∈ Lip β ( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) for any p, r with 1<p<n/δ and 1/r=1/p−δ/n, and that it has a kernel K satisfying (1). Then there exists a constant C>0 such that, for any f∈ C 0 ∞ ( R n ) and x ˜ ∈ R n ,

sup Q ∋ x ˜ inf c 1 | Q | 1 + β / n ∫ Q | T δ b (f)(x)−c|dx≤C ∥ b ∥ Lip β ( M δ , s ( f ) ( x ˜ ) + M s ( T δ ( f ) ) ( x ˜ ) ) .

Theorem 3 Let there be a sequence {k C k }∈ l 1 , q ′ ≤s<∞ and b∈BMO( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) for any p, r with 1<p<n/δ and 1/r=1/p−δ/n, and that it has a kernel K satisfying (1). Then there exists a constant C>0 such that, for any f∈ C 0 ∞ ( R n ) and x ˜ ∈ R n ,

M # ( T δ b ( f ) ) ( x ˜ )≤C ∥ b ∥ B M O ( M δ , s ( f ) ( x ˜ ) + M s ( T δ ( f ) ) ( x ˜ ) ) .

Theorem 4 Let there be a sequence { C k }∈ l 1 , 0<β<min(1,n−δ), q ′ <p<n/(β+δ), 1/r=1/p−(β+δ)/n and b∈ Lip β ( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) and has a kernel K satisfying (1). Then T δ b is bounded from L p ( R n ) to L r ( R n ).

Theorem 5 Let there be a sequence { C k }∈ l 1 , 0<D< 2 n , 0<β<min(1,n−δ), q ′ <p<n/(β+δ), 1/r=1/p−(β+δ)/n and b∈ Lip β ( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) and has a kernel K satisfying (1). Then T δ b is bounded from L p , β + δ , φ ( R n ) to L r , φ ( R n ).

Theorem 6 Let there be a sequence { 2 k β C k }∈ l 1 , 0<β<1, q ′ <p<n/δ, 1/r=1/p−δ/n and b∈ Lip β ( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) and has a kernel K satisfying (1). Then T δ b is bounded from L p ( R n ) to F ˙ r β , ∞ ( R n ).

Theorem 7 Let there be a sequence {k C k }∈ l 1 , q ′ <p<n/δ, 1/r=1/p−δ/n and b∈BMO( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) and has a kernel K satisfying (1). Then T δ b is bounded from L p ( R n ) to L r ( R n ).

Theorem 8 Let there be a sequence {k C k }∈ l 1 , 0<D< 2 n , q ′ <p<n/δ, 1/r=1/p−δ/n and b∈BMO( R n ). Suppose T δ is a bounded linear operator from L p ( R n ) to L r ( R n ) and has a kernel K satisfying (1). Then T δ b is bounded from L p , δ , φ ( R n ) to L r , φ ( R n ).

Corollary Let T δ ∈GSIO(δ), that is, T δ is the singular integral operator as Definition  1. Then Theorems 1-8 hold for T δ b .

3 Proofs of theorems

To prove the theorems, we need the following lemma.

Lemma 1 (see [10])

Let T δ be the singular integral operator as Definition  1. Then T δ is bounded from L p ( R n ) to L r ( R n ) for 1<p<n/δ and 1/r=1/p−δ/n.

Lemma 2 (see [17])

For 0<β<1 and 1<p<∞, we have

∥ f ∥ F ˙ p β , ∞ ≈ ∥ sup Q ∋ ⋅ 1 | Q | 1 + β / n ∫ Q | f ( x ) − f Q | d x ∥ L p ≈ ∥ sup Q ∋ ⋅ inf c 1 | Q | 1 + β / n ∫ Q | f ( x ) − c | d x ∥ L p .

Lemma 3 (see [4])

Let 0<p<∞ and w∈ ⋃ 1 ≤ r < ∞ A r . Then, for any smooth function f for which the left-hand side is finite,

∫ R n M(f) ( x ) p w(x)dx≤C ∫ R n M # (f) ( x ) p w(x)dx.

Lemma 4 (see [2, 16])

Suppose that 0<η<n, 1<s<p<n/η and 1/r=1/p−η/n. Then

∥ M η , s ( f ) ∥ L r ≤C ∥ f ∥ L p .

Lemma 5 Let 1<p<∞, 0<D< 2 n . Then, for any smooth function f for which the left-hand side is finite,

∥ M ( f ) ∥ L p , φ ≤C ∥ M # ( f ) ∥ L p , φ .

Proof For any cube Q=Q( x 0 ,d) in R n , we know M( χ Q )∈ A 1 for any cube Q=Q(x,d) by [18]. Noticing that M( χ Q )≤1 and M( χ Q )(x)≤ d n / ( | x − x 0 | − d ) n if x∈ Q c , by Lemma 3, we have, for f∈ L p , φ ( R n ),

∫ Q M ( f ) ( x ) p d x = ∫ R n M ( f ) ( x ) p χ Q ( x ) d x ≤ ∫ R n M ( f ) ( x ) p M ( χ Q ) ( x ) d x ≤ C ∫ R n M # ( f ) ( x ) p M ( χ Q ) ( x ) d x = C ( ∫ Q M # ( f ) ( x ) p M ( χ Q ) ( x ) d x + ∑ k = 0 ∞ ∫ 2 k + 1 Q ∖ 2 k Q M # ( f ) ( x ) p M ( χ Q ) ( x ) d x ) ≤ C ( ∫ Q M # ( f ) ( x ) p d x + ∑ k = 0 ∞ ∫ 2 k + 1 Q ∖ 2 k Q M # ( f ) ( x ) p | Q | | 2 k + 1 Q | d x ) ≤ C ( ∫ Q M # ( f ) ( x ) p d x + ∑ k = 0 ∞ ∫ 2 k + 1 Q M # ( f ) ( x ) p 2 − k n d y ) ≤ C ∥ M # ( f ) ∥ L p , φ p ∑ k = 0 ∞ 2 − k n φ ( 2 k + 1 d ) ≤ C ∥ M # ( f ) ∥ L p , φ p ∑ k = 0 ∞ ( 2 − n D ) k φ ( d ) ≤ C ∥ M # ( f ) ∥ L p , φ p φ ( d ) ,

thus

( 1 φ ( d ) ∫ Q M ( f ) ( x ) p d x ) 1 / p ≤C ( 1 φ ( d ) ∫ Q M # ( f ) ( x ) p d x ) 1 / p

and

∥ M ( f ) ∥ L p , φ ≤C ∥ M # ( f ) ∥ L p , φ .

This finishes the proof. □

Lemma 6 Let T δ be a bounded linear operator from L p ( R n ) to L r ( R n ) for any p, r with 1<p<n/δ and 1/r=1/p−δ/n, 0<D< 2 n . Then

∥ T δ ( f ) ∥ L r , φ ≤C ∥ f ∥ L p , δ , φ .

Lemma 7 Let 0<D< 2 n , 1≤s<p<n/η and 1/r=1/p−η/n. Then

∥ M η , s ( f ) ∥ L r , φ ≤C ∥ f ∥ L p , η , φ .

The proofs of two Lemmas are similar to that of Lemma 5 by Lemmas 1 and 4, we omit the details.

Proof of Theorem 1 It suffices to prove for f∈ C 0 ∞ ( R n ) and some constant C 0 that the following inequality holds:

1 | Q | ∫ Q | T δ b (f)(x)− C 0 |dx≤C ∥ b ∥ Lip β ( M β + δ , s ( f ) ( x ˜ ) + M β , s ( T δ ( f ) ) ( x ˜ ) ) .

Fix a cube Q=Q( x 0 ,d) and x ˜ ∈Q. Write, for f 1 =f χ 2 Q and f 2 =f χ ( 2 Q ) c ,

T δ b (f)(x)= ( b ( x ) − b 2 Q ) T δ (f)(x)− T δ ( ( b − b 2 Q ) f 1 ) (x)− T δ ( ( b − b 2 Q ) f 2 ) (x).

Then

1 | Q | ∫ Q | T δ b ( f ) ( x ) − T δ ( ( b 2 Q − b ) f 2 ) ( x 0 ) | d x ≤ 1 | Q | ∫ Q | ( b ( x ) − b 2 Q ) T δ ( f ) ( x ) | d x + 1 | Q | ∫ Q | T δ ( ( b − b 2 Q ) f 1 ) ( x ) | d x + 1 | Q | ∫ Q | T δ ( ( b − b 2 Q ) f 2 ) ( x ) − T δ ( ( b − b 2 Q ) f 2 ) ( x 0 ) | d x = I 1 + I 2 + I 3 .

For I 1 , by Hölder’s inequality, we obtain

I 1 ≤ 1 | Q | sup x ∈ 2 Q | b ( x ) − b 2 Q | ∫ Q | T δ ( f ) ( x ) | d x ≤ 1 | Q | sup x ∈ 2 Q | b ( x ) − b 2 Q | | Q | 1 − 1 / s ( ∫ Q | T δ ( f ) ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ Lip β | Q | − 1 / s | 2 Q | β / n | Q | 1 / s − β / n ( 1 | Q | 1 − s β / n ∫ Q | T δ ( f ) ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ Lip β M β , s ( T δ ( f ) ) ( x ˜ ) .

For I 2 , choose 1<r<∞ such that 1/r=1/s−δ/n, by ( L s , L r )-boundedness of T δ , we get

I 2 ≤ ( 1 | Q | ∫ R n | T δ ( ( b − b 2 Q ) f 1 ) ( x ) | r d x ) 1 / r ≤ C | Q | − 1 / r ( ∫ R n | ( b ( x ) − b 2 Q ) f 1 ( x ) | s d x ) 1 / s ≤ C | Q | − 1 / r ∥ b ∥ Lip β | 2 Q | β / n | 2 Q | 1 / s − ( β + δ ) / n ( 1 | 2 Q | 1 − s ( β + δ ) / n ∫ 2 Q | f ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ Lip β M β + δ , s ( f ) ( x ˜ ) .

For I 3 , recalling that s> q ′ , we have

I 3 ≤ 1 | Q | ∫ Q ∫ ( 2 Q ) c | b ( y ) − b 2 Q | | f ( y ) | | K ( x , y ) − K ( x 0 , y ) | d y d x ≤ 1 | Q | ∫ Q ∑ k = 1 ∞ ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | | b ( y ) − b 2 k + 1 Q | | f ( y ) | d y d x + 1 | Q | ∫ Q ∑ k = 1 ∞ ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | | b 2 k + 1 Q − b 2 Q | | f ( y ) | d y d x ≤ C | Q | ∫ Q ∑ k = 1 ∞ ( ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | q d y ) 1 / q × sup y ∈ 2 k + 1 Q | b ( y ) − b 2 k + 1 Q | ( ∫ 2 k + 1 Q | f ( y ) | q ′ d y ) 1 / q ′ d x + C | Q | ∫ Q ∑ k = 1 ∞ | b 2 k + 1 Q − b 2 Q | ( ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | q d y ) 1 / q × ( ∫ 2 k + 1 Q | f ( y ) | q ′ d y ) 1 / q ′ d x ≤ C ∑ k = 1 ∞ C k ( 2 k d ) − n / q ′ + δ | 2 k + 1 Q | β / n ∥ b ∥ Lip β | 2 k + 1 Q | 1 / q ′ − 1 / s | 2 k + 1 Q | 1 / s − ( β + δ ) / n × ( 1 | 2 k + 1 Q | 1 − s ( β + δ ) / n ∫ 2 k + 1 Q | f ( y ) | s d y ) 1 / s + C ∑ k = 1 ∞ ∥ b ∥ Lip β | 2 k Q | β / n C k ( 2 k d ) − n / q ′ + δ | 2 k + 1 Q | 1 / q ′ − 1 / s | 2 k + 1 Q | 1 / s − ( β + δ ) / n × ( 1 | 2 k + 1 Q | 1 − s ( β + δ ) / n ∫ 2 k + 1 Q | f ( y ) | s d y ) 1 / s ≤ C ∥ b ∥ Lip β M β + δ , s ( f ) ( x ˜ ) ∑ k = 1 ∞ C k ≤ C ∥ b ∥ Lip β M β + δ , s ( f ) ( x ˜ ) .

These complete the proof of Theorem 1. □

Proof of Theorem 2 It suffices to prove for f∈ C 0 ∞ ( R n ) and some constant C 0 that the following inequality holds:

1 | Q | 1 + β / n ∫ Q | T δ b (f)(x)− C 0 |dx≤C ∥ b ∥ Lip β ( M δ , s ( f ) ( x ˜ ) + M s ( T δ ( f ) ) ( x ˜ ) ) .

Fix a cube Q=Q( x 0 ,d) and x ˜ ∈Q. Write, for f 1 =f χ 2 Q and f 2 =f χ ( 2 Q ) c ,

T δ b (f)(x)= ( b ( x ) − b 2 Q ) T δ (f)(x)− T δ ( ( b − b 2 Q ) f 1 ) (x)− T δ ( ( b − b 2 Q ) f 2 ) (x).

Then

1 | Q | 1 + β / n ∫ Q | T δ b ( f ) ( x ) − T δ ( ( b 2 Q − b ) f 2 ) ( x 0 ) | d x ≤ 1 | Q | 1 + β / n ∫ Q | ( b ( x ) − b 2 Q ) T δ ( f ) ( x ) | d x + 1 | Q | 1 + β / n ∫ Q | T δ ( ( b − b 2 Q ) f 1 ) ( x ) | d x + 1 | Q | 1 + β / n ∫ Q | T δ ( ( b − b 2 Q ) f 2 ) ( x ) − T δ ( ( b − b 2 Q ) f 2 ) ( x 0 ) | d x = I I 1 + I I 2 + I I 3 .

By using the same argument as in the proof of Theorem 1, we get, for 1<r<∞ with 1/r=1/s−δ/n,

I I 1 ≤ C | Q | 1 + β / n sup x ∈ 2 Q | b ( x ) − b 2 Q | | Q | 1 − 1 / s ( ∫ Q | T δ ( f ) ( x ) | s d x ) 1 / s ≤ C | Q | − 1 − β / n ∥ b ∥ Lip β | 2 Q | β / n | Q | 1 − 1 / s | Q | 1 / s ( 1 | Q | ∫ Q | T δ ( f ) ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ Lip β M s ( T δ ( f ) ) ( x ˜ ) , I I 2 ≤ 1 | Q | 1 + β / n | Q | 1 − 1 / r ( ∫ R n | T δ ( ( b − b 2 Q ) f 1 ) ( x ) | r d x ) 1 / r ≤ C | Q | 1 + β / n | Q | 1 − 1 / r ( ∫ R n | ( b ( x ) − b 2 Q ) f 1 ( x ) | s d x ) 1 / s ≤ C | Q | 1 + β / n | Q | 1 − 1 / r ∥ b ∥ Lip β | 2 Q | β / n | 2 Q | 1 / s − δ / n ( 1 | 2 Q | 1 − s δ / n ∫ 2 Q | f ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ Lip β M δ , s ( f ) ( x ˜ ) , I I 3 ≤ 1 | Q | 1 + β / n ∫ Q ∫ ( 2 Q ) c | b ( y ) − b 2 Q | | f ( y ) | | K ( x , y ) − K ( x 0 , y ) | d y d x ≤ 1 | Q | 1 + β / n ∫ Q ∑ k = 1 ∞ ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | | b ( y ) − b 2 k + 1 Q | | f ( y ) | d y d x + 1 | Q | 1 + β / n ∫ Q ∑ k = 1 ∞ ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | | b 2 k + 1 Q − b 2 Q | | f ( y ) | d y d x ≤ C | Q | 1 + β / n ∫ Q ∑ k = 1 ∞ ( ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | q d y ) 1 / q × sup y ∈ 2 k + 1 Q | b ( y ) − b 2 k + 1 Q | ( ∫ 2 k + 1 Q | f ( y ) | q ′ d y ) 1 / q ′ d x + C | Q | 1 + β / n ∫ Q ∑ k = 1 ∞ | b 2 k + 1 Q − b 2 Q | ( ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | q d y ) 1 / q × ( ∫ 2 k + 1 Q | f ( y ) | q ′ d y ) 1 / q ′ d x ≤ C | Q | − β / n ∑ k = 1 ∞ C k ( 2 k d ) − n / q ′ + δ | 2 k + 1 Q | β / n ∥ b ∥ Lip β | 2 k + 1 Q | 1 / q ′ − δ / n × ( 1 | 2 k + 1 Q | 1 − s δ / n ∫ 2 k + 1 Q | f ( y ) | s d y ) 1 / s + C | Q | − β / n ∑ k = 1 ∞ ∥ b ∥ Lip β | 2 k Q | β / n C k ( 2 k d ) − n / q ′ + δ | 2 k + 1 Q | 1 / q ′ − δ / n × ( 1 | 2 k + 1 Q | 1 − s δ / n ∫ 2 k + 1 Q | f ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ Lip β M δ , s ( f ) ( x ˜ ) ∑ k = 1 ∞ 2 k β C k ≤ C ∥ b ∥ Lip β M δ , s ( f ) ( x ˜ ) .

This completes the proof of Theorem 2. □

Proof of Theorem 3 It suffices to prove for f∈ C 0 ∞ ( R n ) and some constant C 0 that the following inequality holds:

1 | Q | ∫ Q | T δ b (f)(x)− C 0 |dx≤C ∥ b ∥ B M O ( M δ , s ( f ) ( x ˜ ) + M s ( T δ ( f ) ) ( x ˜ ) ) .

Fix a cube Q=Q( x 0 ,d) and x ˜ ∈Q. Write, for f 1 =f χ 2 Q and f 2 =f χ ( 2 Q ) c ,

T δ b (f)(x)= ( b ( x ) − b 2 Q ) T δ (f)(x)− T δ ( ( b − b 2 Q ) f 1 ) (x)− T δ ( ( b − b 2 Q ) f 2 ) (x).

Then

1 | Q | ∫ Q | T δ b ( f ) ( x ) − T δ ( ( b 2 Q − b ) f 2 ) ( x 0 ) | d x ≤ 1 | Q | ∫ Q | ( b ( x ) − b 2 Q ) T δ ( f ) ( x ) | d x + 1 | Q | ∫ Q | T δ ( ( b − b 2 Q ) f 1 ) ( x ) | d x + 1 | Q | ∫ Q | T δ ( ( b − b 2 Q ) f 2 ) ( x ) − T δ ( ( b − b 2 Q ) f 2 ) ( x 0 ) | d x = I I I 1 + I I I 2 + I I I 3 .

For II I 1 , by Hölder’s inequality, we get

I I I 1 ≤ ( 1 | Q | ∫ Q | b ( x ) − b 2 Q | s ′ d x ) 1 / s ′ ( 1 | Q | ∫ Q | T δ ( f ) ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ B M O M s ( T δ ( f ) ) ( x ˜ ) .

For II I 2 , choose 1<p<s such that 1/r=1/p−δ/n, by Hölder’s inequality and ( L p , L r )-boundedness of T δ , we obtain

I I I 2 ≤ ( 1 | Q | ∫ R n | T δ ( ( b − b 2 Q ) f 1 ) ( x ) | r d x ) 1 / r ≤ C | Q | − 1 / r ( ∫ R n | ( b − b 2 Q ) f 1 ( x ) | p d x ) 1 / p ≤ C | Q | − 1 / r ( ∫ 2 Q | b ( x ) − b 2 Q | s p / ( s − p ) d x ) ( s − p ) / s p ( ∫ 2 Q | f ( x ) | s d x ) 1 / s ≤ C | Q | − 1 / r | 2 Q | ( s − p ) / s p ( 1 | 2 Q | ∫ 2 Q | b ( x ) − b 2 Q | s p / ( s − p ) d x ) ( s − p ) / s p × | 2 Q | 1 / s − δ / n ( 1 | 2 Q | 1 − s δ / n ∫ 2 Q | f ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ B M O | Q | − 1 / r + 1 / p − δ / n ( 1 | 2 Q | 1 − s δ / n ∫ 2 Q | f ( x ) | s d x ) 1 / s ≤ C ∥ b ∥ B M O M δ , s ( f ) ( x ˜ ) .

For II I 3 , recalling that s> q ′ , taking 1<p<∞ with 1/p+1/q+1/s=1, by Hölder’s inequality, we obtain

I I I 3 ≤ 1 | Q | ∫ Q ∑ k = 1 ∞ ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | | b ( y ) − b 2 Q | | f ( y ) | d y d x ≤ 1 | Q | ∫ Q ∑ k = 1 ∞ ( ∫ 2 k d ≤ | y − x 0 | < 2 k + 1 d | K ( x , y ) − K ( x 0 , y ) | q d y ) 1 / q × ( ∫ 2 k + 1 Q | b ( x ) − b 2 Q | p d x ) 1 / p ( ∫ 2 k + 1 Q | f ( y ) | s d y ) 1 / s d x ≤ C ∑ k = 1 ∞ C k ( 2 k d ) − n / q ′ + δ k ( 2 k d ) n / p ∥ b ∥ B M O ( 2 k d ) n ( 1 / s − δ / n ) × ( 1 | 2 k + 1 Q | 1 − s δ / n ∫ 2 k + 1 Q | f ( y ) | s d y ) 1 / s ≤ C ∥ b ∥ B M O ∑ k = 1 ∞ k C k ( 2 k d ) n ( − 1 + 1 / q + 1 / p + 1 / s ) ( 1 | 2 k + 1 Q | 1 − s δ / n ∫ 2 k + 1 Q | f ( y ) | s d y ) 1 / s ≤ C ∥ b ∥ B M O M δ , s ( f ) ( x ˜ ) ∑ k = 1 ∞ k C k ≤ C ∥ b ∥ B M O M δ , s ( f ) ( x ˜ ) .

This completes the proof of Theorem 3. □

Proof of Theorem 4 Choose q ′ <s<p in Theorem 1 and let 1/t=1/p−δ/n, then 1/r=1/t−β/n, thus we have, by Lemmas 1, 3, and 4,

∥ T δ b ( f ) ∥ L r ≤ ∥ M ( T δ b ( f ) ) ∥ L r ≤ C ∥ M # ( T δ b ( f ) ) ∥ L r ≤ C ∥ b ∥ Lip β ( ∥ M β , s ( T δ ( f ) ) ∥ L r + ∥ M β + δ , s ( f ) ∥ L r ) ≤ C ∥ b ∥ Lip β ( ∥ T δ ( f ) ∥ L t + ∥ f ∥ L p ) ≤ C ∥ b ∥ Lip β ∥ f ∥ L p .

This completes the proof of Theorem 4. □

Proof of Theorem 5 Choose q ′ <s<p in Theorem 1 and let 1/t=1/p−δ/n, then 1/r=1/t−β/n, thus we have, by Lemmas 5-7,

∥ T δ b ( f ) ∥ L r , φ ≤ ∥ M ( T δ b ( f ) ) ∥ L r , φ ≤ C ∥ M # ( T δ b ( f ) ) ∥ L r , φ ≤ C ∥ b ∥ Lip β ( ∥ M β , s ( T δ ( f ) ) ∥ L r , φ + ∥ M β + δ , s ( f ) ∥ L r , φ ) ≤ C ∥ b ∥ Lip β ( ∥ T δ ( f ) ∥ L t , β , φ + ∥ f ∥ L p , β + δ , φ ) ≤ C ∥ b ∥ Lip β ∥ f ∥ L p , β + δ , φ .

This completes the proof of Theorem 5. □

Proof Theorem 6 Choose q ′ <s<p in Theorem 2. By using Lemma 2, we obtain

∥ T δ b ( f ) ∥ F ˙ r β , ∞ ≤ C ∥ sup Q ∋ ⋅ 1 | Q | 1 + β / n ∫ Q | T δ b ( f ) ( x ) − T δ ( ( b 2 Q − b ) f 2 ) ( x 0 ) | d x ∥ L r ≤ C ∥ b ∥ Lip β ( ∥ M s ( T δ ( f ) ) ∥ L r + ∥ M δ , s ( f ) ∥ L r ) ≤ C ∥ b ∥ Lip β ( ∥ T δ ( f ) ∥ L r + ∥ f ∥ L p ) ≤ C ∥ b ∥ Lip β ∥ f ∥ L p .

This completes the proof of Theorem 6. □

Proof of Theorem 7 Choose q ′ ≤s<p in Theorem 3 and similar to the proof of Theorem 4, we have

∥ T δ b ( f ) ∥ L r ≤ ∥ M ( T δ b ( f ) ) ∥ L r ≤ C ∥ M # ( T δ b ( f ) ) ∥ L r ≤ C ∥ b ∥ B M O ( ∥ M s ( T δ ( f ) ) ∥ L r + ∥ M δ , s ( f ) ∥ L r ) ≤ C ∥ b ∥ B M O ( ∥ T δ ( f ) ∥ L r + ∥ f ∥ L p ) ≤ C ∥ b ∥ B M O ∥ f ∥ L p .

This completes the proof of the theorem. □

Proof of Theorem 8 Choose q ′ ≤s<p in Theorem 3 and similar to the proof of Theorem 5, we have

∥ T δ b ( f ) ∥ L r , φ ≤ ∥ M ( T δ b ( f ) ) ∥ L r , φ ≤ C ∥ M # ( T δ b ( f ) ) ∥ L r , φ ≤ C ∥ b ∥ B M O ( ∥ M s ( T δ ( f ) ) ∥ L r , φ + ∥ M δ , s ( f ) ∥ L r , φ ) ≤ C ∥ b ∥ B M O ( ∥ T δ ( f ) ∥ L r , φ + ∥ f ∥ L p , δ , φ ) ≤ C ∥ b ∥ B M O ∥ f ∥ L p , δ , φ .

This completes the proof of the theorem. □

References

  1. Coifman R, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103: 611–635. 10.2307/1970954

    Article  MathSciNet  MATH  Google Scholar 

  2. Chanillo S: A note on commutators. Indiana Univ. Math. J. 1982, 31: 7–16. 10.1512/iumj.1982.31.31002

    Article  MathSciNet  MATH  Google Scholar 

  3. Di Fazio G, Ragusa MA: Commutators and Morrey spaces. Boll. Unione Mat. Ital., A (7) 1991, 5: 323–332.

    MathSciNet  MATH  Google Scholar 

  4. Di Fazio G, Ragusa MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112: 241–256. 10.1006/jfan.1993.1032

    Article  MathSciNet  MATH  Google Scholar 

  5. Janson S: Mean oscillation and commutators of singular integral operators. Ark. Mat. 1978, 16: 263–270. 10.1007/BF02386000

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu LZ: Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators. Acta Math. Sci. 2005,25(1):89–94.

    MathSciNet  MATH  Google Scholar 

  7. Pérez C, Trujillo-Gonzalez R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 2002, 65: 672–692. 10.1112/S0024610702003174

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen WG: Besov estimates for a class of multilinear singular integrals. Acta Math. Sin. 2000, 16: 613–626. 10.1007/s101140000059

    Article  MathSciNet  MATH  Google Scholar 

  9. Paluszynski M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J. 1995, 44: 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang DC, Li JF, Xiao J: Weighted scale estimates for Calderón-Zygmund type operators. Contemp. Math. 2007, 446: 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin Y: Sharp maximal function estimates for Calderón-Zygmund type operators and commutators. Acta Math. Sci. Ser. A Chin. Ed. 2011, 31: 206–215.

    MathSciNet  MATH  Google Scholar 

  12. Garcia-Cuerva J, Rubio de Francia JL North-Holland Mathematics Studies 16. In Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam; 1985.

    Google Scholar 

  13. Stein EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton; 1993.

    MATH  Google Scholar 

  14. Peetre J: On the theory of L p , λ -spaces. J. Funct. Anal. 1969, 4: 71–87. 10.1016/0022-1236(69)90022-6

    Article  MathSciNet  Google Scholar 

  15. Chiarenza F, Frasca M: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. 1987, 7: 273–279.

    MathSciNet  MATH  Google Scholar 

  16. Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis. ICM-90Satellite Conference Proceedings (Sendai, 1990) pp. 183-189 (1991).

    Google Scholar 

  17. Muckenhoupt B, Wheeden RL: Weighted norm inequalities for fractional integral. Trans. Am. Math. Soc. 1974, 192: 261–274.

    Article  MathSciNet  MATH  Google Scholar 

  18. Coifman R, Rochberg R: Another characterization of BMO. Proc. Am. Math. Soc. 1980, 79: 249–254. 10.1090/S0002-9939-1980-0565349-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Project supported by Hunan Provincial Natural Science Foundation of China (12JJ6003) and Scientific Research Fund of Hunan Provincial Education Departments (12K017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangze Gu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors completed the paper together. They also read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, G., Cai, M. Sharp maximal function inequalities and boundedness for commutators related to generalized fractional singular integral operators. J Inequal Appl 2014, 211 (2014). https://doi.org/10.1186/1029-242X-2014-211

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-211

Keywords