Open Access

Commutators of intrinsic square functions on generalized Morrey spaces

Journal of Inequalities and Applications20142014:128

https://doi.org/10.1186/1029-242X-2014-128

Received: 25 September 2013

Accepted: 13 March 2014

Published: 28 March 2014

Abstract

In this paper, we obtain the boundedness of intrinsic square functions and their commutators generated with BMO functions on generalized Morrey spaces. Our theorems extend some well-known results.

MSC:42B20, 42B35.

Keywords

intrinsic square functions commutators generalized Morrey spaces BMO functions

1 Introduction

The intrinsic square functions were first introduced by Wilson in [1, 2]. They are defined as follows. For 0 < α 1 , let C α be the family of functions ϕ : R n R such that ϕ’s support is contained in { x : | x | 1 } , ϕ d x = 0 , and for x , x R n ,
| ϕ ( x ) ϕ ( x ) | | x x | α .
For ( y , t ) R + n + 1 and f L loc 1 ( R n ) , set
A α f ( t , y ) sup ϕ C α | f ϕ t ( y ) | ,
where ϕ t ( y ) = t n ϕ ( y t ) . Then we define the varying-aperture intrinsic square (intrinsic Lusin) function of f by the formula
G α , β ( f ) ( x ) = ( Γ β ( x ) ( A α f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 ,

where Γ β ( x ) = { ( y , t ) R + n + 1 : | x y | < β t } . Denote G α , 1 ( f ) = G α ( f ) .

This function is independent of any particular kernel, such as Poisson kernel. It dominates pointwise the classical square function (Lusin area integral) and its real-variable generalizations. Although the function G α , β ( f ) depends on the kernels with uniform compact support, there is a pointwise relation between G α , β ( f ) with different β ( β 1 ):
G α , β ( f ) ( x ) β 3 n 2 + α G α ( f ) ( x ) .

We refer for details to [1].

The intrinsic Littlewood-Paley g-function and the intrinsic g λ -function are defined, respectively, by
g α f ( x ) = ( 0 ( A α f ( t , y ) ) 2 d t t ) 1 2 , g λ , α f ( x ) = ( R + n + 1 ( t t + | x y | ) n λ ( A α f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 .

In [1], Wilson proved the following result.

Theorem A Let 1 < p < , 0 < α 1 , then G α is bounded from L p ( R n ) to itself.

After that, Huang and Liu [3] studied the boundedness of intrinsic square functions on weighted Hardy spaces. Moreover, they characterized the weighted Hardy spaces by intrinsic square functions. In [4] and [5], Wang and Liu obtained some weak type estimates on weighted Hardy spaces. In [6] and [7], Wang considered intrinsic functions and the commutators generated with BMO functions on weighted Morrey spaces. Let b be a locally integrable function on R n . Setting
A α , b f ( t , y ) sup ϕ C α | R n [ b ( x ) b ( z ) ] ϕ t ( y z ) f ( z ) d z | ,
the commutators are defined by
[ b , G α ] f ( x ) = ( Γ ( x ) ( A α , b f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 , [ b , g α ] f ( x ) = ( 0 ( A α , b f ( t , y ) ) 2 d t t ) 1 2 ,
and
[ b , g λ , α ] f ( x ) = ( R + n + 1 ( t t + | x y | ) λ n ( A α , b f ( t , y ) ) 2 d y d t t n + 1 ) 1 2 .
A function f L loc 1 ( R n ) is said to be in BMO ( R n ) if
f = sup x R n , r > 0 1 | B ( x , r ) | B ( x , r ) | f ( y ) f B ( x , r ) | d y < ,

where f B ( x , r ) = 1 | B ( x , r ) | B ( x , r ) f ( y ) d y .

In this paper, we will consider G α , g α , g λ , α and their commutators on generalized Morrey spaces. Let φ ( x , r ) be a positive measurable function on R n × R + . For any f L loc p ( R n ) , we denote by L p , φ ( R n ) the generalized Morrey spaces, if
f L p , φ ( R n ) = sup x R n , r > 0 φ ( x , r ) 1 ( B ( x , r ) | f ( x ) | p d x ) 1 p < .
In [8], Mizuhara introduced these generalized Morrey spaces L p , φ ( R n ) and discussed the boundedness of the Calderón-Zygmund singular integral operators. Note that the generalized Morrey spaces L p , ω ( R n ) with normalized norm
f L p , ω ( R n ) = sup x R n , r > 0 ω ( x , r ) 1 | B ( x , r ) | 1 p ( B ( x , r ) | f ( x ) | p d x ) 1 p ,

were first defined by Guliyev in [9]. When ω ( x , r ) = r λ n p , L p , ω ( R n ) = L p , λ ( R n ) . It is the classical Morrey space which was first introduced by Morrey in [10]. There are many papers discussed the conditions on ω ( x , r ) to obtain the boundedness of operators on the generalized Morrey spaces. For example, in [8], the function φ is supposed to be a positively growth function and satisfy the double condition: for all r > 0 , φ ( 2 r ) D φ ( r ) , where D 1 is a constant independent of r. This type of conditions on φ is studied by many authors; see, for example, [11, 12]. In [13], the following statement was proved by Nakai for the Calderón-Zygmund singular integral operators T.

Theorem B Let 1 p < and let ω ( x , r ) satisfy the conditions
c 1 ω ( x , r ) ω ( x , t ) c ω ( x , r ) ,
whenever r t 2 r , where c (≥1) does not depend on t , r , x R n and
r ω ( x , t ) p d t t c ω ( x , r ) p ,

where c does not depend on x and r. Then the operator T is bounded on L p , ω ( R n ) for p > 1 and from L 1 , ω ( R n ) to W L 1 , ω ( R n ) for p = 1 .

The following statement, containing some results which were obtained in [8] and [13], was proved by Guliyev in [14, 15] (also see [16]).

Theorem C Let 1 p < and let the pair ( ω 1 , ω 2 ) satisfy the condition
t ω 1 ( x , r ) d r r c ω 2 ( x , t ) ,
(1)

where c does not depend on x and t. Then the operator T is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) for p > 1 and from L 1 , ω 1 ( R n ) to W L 1 , ω 2 ( R n ) for p = 1 .

Recently, in [17] and [9], Guliyev et al. introduced a weaker condition for the boundedness of Calderón-Zygmund singular integral operators from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) : If 1 p < + , for any x R n and t > 0 , there exists a constant c > 0 , such that
t ess inf r < s < ω 1 ( x , s ) s n p r n p + 1 d r c ω 2 ( x , t ) .
(2)

By an easy computation, we can check that if the pair ( ω 1 , ω 2 ) satisfies double condition, then it will satisfy condition (1). Moreover, if ( ω 1 , ω 2 ) satisfies condition (1), it will also satisfy condition (2). But the opposite is not true. We refer to [13] and Remark 4.7 in [9] for details.

In this paper, we will obtain the boundedness of the intrinsic function, the intrinsic Littlewood-Paley g function, the intrinsic g λ function and their commutators on generalized Morrey spaces when the pair ( ω 1 , ω 2 ) satisfies condition (2) or the following inequality:
t ( 1 + ln r t ) ess inf r < s < ω 1 ( x , s ) s n p r n p + 1 d r c ω 2 ( x , t ) .
(3)

Our main results in this paper are stated as follows.

Theorem 1.1 Let 1 < p < , 0 < α 1 , let ( ω 1 , ω 2 ) satisfy condition (2), then G α is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) .

Theorem 1.2 Let 1 < p < , 0 < α 1 , let ( ω 1 , ω 2 ) satisfy condition (2), then for λ > 3 + 2 α n , we have g λ , α is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) .

Theorem 1.3 Let 1 < p < , 0 < α 1 , b BMO , let ( ω 1 , ω 2 ) satisfy condition (3), then [ b , G α ] is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) .

Theorem 1.4 Let 1 < p < , 0 < α 1 , b BMO , let ( ω 1 , ω 2 ) satisfy condition (3), then for λ > 3 + 2 α n , [ b , g λ , α ] is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) .

In [1], the author proved that the functions G α and g α are pointwise comparable. Thus, as a consequence of Theorem 1.1 and Theorem 1.3, we have the following results.

Corollary 1.5 Let 1 < p < , 0 < α 1 , let ( ω 1 , ω 2 ) satisfy condition (2), then g α is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) .

Corollary 1.6 Let 1 < p < , 0 < α 1 , b BMO , and let ( ω 1 , ω 2 ) satisfy condition (3), then [ b , g α ] is bounded from L p , ω 1 ( R n ) to L p , ω 2 ( R n ) .

Throughout this paper, we use the notation A B to mean that there is a positive constant C (≥1) independent of all essential variables such that A C B . Moreover, C maybe different from place to place.

2 Proofs of main theorems

Before proving the main theorems, we need the following lemmas.

Lemma 2.1 ([18])

The inequality ess sup t > 0 ω ( t ) H g ( t ) ess sup t > 0 v ( t ) g ( t ) holds for all non-negative and non-increasing g on ( 0 , ) if and only if
A : = sup t > 0 ω ( t ) t 0 t d r ess sup 0 < s < r v ( s ) < ,
(4)

where H g ( t ) is the Hardy operator H g ( t ) : = 1 t 0 t g ( r ) d r , 0 < t < .

Lemma 2.2 ([19])
  1. (1)
    For 1 < p < ,
    f sup x R n , r > 0 ( 1 | B ( x , r ) | B ( x , r ) | f ( y ) f B ( x , r ) | p d y ) 1 p .
     
  2. (2)
    Let f BMO ( R n ) , 0 < 2 r < t , then
    | f B ( x , r ) f B ( x , t ) | f ln t r .
     
Lemma 2.3 For j Z + , denote
G α , 2 j ( f ) ( x ) = ( 0 | x y | 2 j t ( A α f ( y , t ) ) 2 d y d t t n + 1 ) 1 2 .
Let 1 < p < , 0 < α 1 , then we have
G α , 2 j ( f ) L p ( R n ) 2 j ( 3 n 2 + α ) G α ( f ) L p ( R n ) .
From [1], we know that
G α , β ( f ) ( x ) β 3 n 2 + α G α ( f ) ( x ) .

Then, by an easy computation, we get Lemma 2.3.

By a similar argument as in [20], we can easily get the following lemma.

Lemma 2.4 Let 1 < p < , 0 < α 1 , then the commutators [ b , G α ] is bounded from L p ( R n ) to itself whenever b BMO .

Now we are in a position to prove the theorems.

Proof of Theorem 1.1 The main ideas of these proofs come from [9]. We decompose f = f 1 + f 2 , where f 1 ( y ) = f ( y ) χ 2 B ( y ) , f 2 ( y ) = f ( y ) f 1 ( y ) , B : = B ( x 0 , r ) . Then
G α f L p ( B ( x 0 , r ) ) G α f 1 L p ( B ( x 0 , r ) ) + G α f 2 L p ( B ( x 0 , r ) ) : = I + II .
First, let us estimate I. By Theorem A, we obtain
I G α f 1 L p ( R n ) f 1 L p ( R n ) = f L p ( 2 B ) r n p 2 r f L p ( B ( x 0 , t ) ) t n p 1 d t .
(5)
Then let us estimate II. Recalling the properties of function ϕ, we know that
| f 2 ϕ t ( y ) | = | t n | y z | t ϕ ( y z t ) f 2 ( z ) d z | t n | y z | t | f 2 ( z ) | d z .
Since x B ( x 0 , r ) , ( y , t ) Γ ( x ) and | z x 0 | 2 r , we have
r | z x 0 | | x 0 x | | x z | | x y | + | y z | 2 t .
So, we obtain
G α f 2 ( x ) ( Γ ( x ) | t n | y z | t | f 2 ( z ) | d z | 2 d y d t t n + 1 ) 1 2 ( t > r / 2 | x y | < t ( | z x | 2 t | f 2 ( z ) | d z ) 2 d y d t t 3 n + 1 ) 1 2 ( t > r / 2 ( | z x | 2 t | f 2 ( z ) | d z ) 2 d t t 2 n + 1 ) 1 2 .
By Minkowski’s inequality and | z x | | z x 0 | | x 0 x | 1 2 | z x 0 | , we have
G α f 2 ( x ) R n ( t > | z x | 2 d t t 2 n + 1 ) 1 2 | f 2 ( z ) | d z | z x 0 | > 2 r | f ( z ) | | z x | n d z | z x 0 | > 2 r | f ( z ) | | z x 0 | n d z | z x 0 | > 2 r | f ( z ) | | z x 0 | + 1 t n + 1 d t d z = 2 r + 2 r < | z x 0 | < t | f ( z ) | d z 1 t n + 1 d t 2 r f L p ( B ( x 0 , t ) ) t n p 1 d t .
The last inequality is due to Hölder’s inequality. Thus,
G α f 2 L p ( B ( x 0 , r ) ) r n p 2 r f L p ( B ( x 0 , t ) ) t n p 1 d t .
(6)
By combining (5) and (6), we have
G α f L p ( B ( x 0 , r ) ) r n p 2 r f L p ( B ( x 0 , t ) ) t n p 1 d t .
So, let t = s p n ; we have
G α f L p , ω 2 ( R n ) sup x 0 R n , r > 0 ω 2 ( x 0 , r ) 1 | B ( x 0 , r ) | 1 p r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 d t sup x 0 R n , r > 0 ω 2 ( x 0 , r ) 1 0 r n p f L p ( B ( x 0 , s p n ) ) d s = sup x 0 R n , r > 0 ω 2 ( x 0 , r p n ) 1 0 r f L p ( B ( x 0 , s p n ) ) d s .
Take w ( t ) = ω 2 ( x 0 , t p n ) 1 t , v ( t ) = ω 1 ( x 0 , t p n ) 1 t . Since ( ω 1 , ω 2 ) satisfies condition (2), we can verify that w ( t ) , v ( t ) satisfy condition (4). Let g ( s ) = f L p ( B ( x 0 , s p n ) ) . Obviously, it is decreasing on variable s. So, by Lemma 2.1, we can conclude the following estimates:
G α f L p , ω 2 ( R n ) sup x 0 R n , r > 0 ω 1 ( x 0 , r p n ) 1 r f L p ( B ( x 0 , r p n ) ) = f L p , ω 1 ( R n ) .

 □

Proof of Theorem 1.2
[ g λ , α ( f ) ( x ) ] 2 = 0 | x y | < t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 + 0 | x y | t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 : = III + IV .
First, let us estimate III:
III 0 + | x y | < t ( A α f ( y , t ) ) 2 d y d t t n + 1 = ( G α f ( x ) ) 2 .
Then let us estimate IV:
IV j = 1 0 2 j 1 t | x y | 2 j t ( t t + | x y | ) n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 j = 1 0 2 j 1 t | x y | 2 j t 2 j n λ ( A α f ( y , t ) ) 2 d y d t t n + 1 j = 1 2 j n λ 0 | x y | 2 j t ( A α f ( y , t ) ) 2 d y d t t n + 1 : = j = 1 2 j n λ ( G α , 2 j ( f ) ( x ) ) 2 .
Thus,
g λ , α ( f ) L p , ω 2 ( R n ) G α f L p , ω 2 ( R n ) + j = 1 2 j n λ 2 G α , 2 j ( f ) L p , ω 2 ( R n ) .
(7)
By Theorem 1.1, we have
G α f L p , ω 2 ( R n ) f L p , ω 1 ( R n ) .
(8)
To complete the proof, it suffices to estimate G α , 2 j ( f ) L p , ω 2 ( R n ) . Take f 1 ( y ) = f ( y ) χ 2 B ( y ) , f 2 ( y ) = f ( y ) f 1 ( y ) , 2 B = B ( x 0 , 2 r ) . Then
G α , 2 j ( f ) L p ( B ( x 0 , r ) ) G α , 2 j ( f 1 ) L p ( B ( x 0 , r ) ) + G α , 2 j ( f 2 ) L p ( B ( x 0 , r ) ) .
(9)
For the first part, by Lemma 2.3, we obtain
G α , 2 j ( f 1 ) L p ( B ( x 0 , r ) ) 2 j ( 3 n 2 + α ) G α ( f 1 ) L p ( R n ) 2 j ( 3 n 2 + α ) f L p ( 2 B ) 2 j ( 3 n 2 + α ) r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 d t .
(10)
For the other part, we know
G α , 2 j ( f 2 ) ( x ) = ( 0 | x y | 2 j t ( A α f 2 ( y , t ) ) 2 d y d t t n + 1 ) 1 2 = ( 0 | x y | 2 j t ( sup ϕ C α | f 2 ϕ t ( y ) | ) 2 d y d t t n + 1 ) 1 2 ( 0 | x y | 2 j t ( | z y | t | f 2 ( z ) | d z ) 2 d y d t t 3 n + 1 ) 1 2 .
Since | z x | | z y | + | y x | 2 j + 1 t , by Minkowski’s inequality, we get
G α , 2 j ( f 2 ) ( x ) ( 0 | x y | 2 j t ( | z x | 2 j + 1 t | f 2 ( z ) | d z ) 2 d y d t t 3 n + 1 ) 1 2 ( 0 ( | z x | 2 j + 1 t | f 2 ( z ) | d z ) 2 2 j n d t t 2 n + 1 ) 1 2 2 j n 2 R n ( t | z x | 2 j + 1 | f 2 ( z ) | 2 1 t 2 n + 1 d t ) 1 2 d z 2 3 j n 2 | z x 0 | > 2 r | f ( z ) | | z x | n d z .
For x B ( x 0 , r ) , we have | z x | | z x 0 | | x 0 x | | z x 0 | 1 2 | z x 0 | = 1 2 | z x 0 | . So by Fubini’s theorem and Hölder’s inequality, we obtain
G α , 2 j ( f 2 ) ( x ) 2 3 j n 2 | z x 0 | > 2 r | f ( z ) | | z x 0 | n d z 2 3 j n 2 | z x 0 | > 2 r | f ( z ) | | z x 0 | 1 t n + 1 d t d z = 2 3 j n 2 2 r | z x 0 | < t | f ( z ) | 1 t n + 1 d z d t 2 3 j n 2 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 d t .
Thus,
G α , 2 j ( f 2 ) L p ( B ( x 0 , r ) ) 2 3 j n 2 r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 d t .
(11)
Combining by (9), (10), and (11), we have
G α , 2 j ( f ) L p ( B ( x 0 , r ) ) 2 j ( 3 n 2 + α ) r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 d t .
Thus, by substitution of variables and Lemma 2.1, we get
G α , 2 j ( f ) L p , ω 2 ( R n ) 2 j ( 3 n 2 + α ) sup x 0 R n , r > 0 ω 2 ( B ( x 0 , r ) ) 1 | B ( x 0 , r ) | 1 p 0 r n p f L p ( B ( x 0 , s p n ) ) d s = 2 j ( 3 n 2 + α ) sup x 0 R n , r > 0 ω 2 ( x 0 , r p n ) 1 0 r f L p ( B ( x 0 , s p n ) ) d s 2 j ( 3 n 2 + α ) sup x 0 R n , r > 0 ω 1 ( x 0 , r p n ) 1 r f L p ( B ( x 0 , r p n ) ) = 2 j ( 3 n 2 + α ) f L p , ω 1 ( R n ) .
(12)

Since λ > 3 + 2 α n , by (7), (8) and (12), we have the desired theorem. □

Proof of Theorem 1.3 We decompose f = f 1 + f 2 as in the proof of Theorem 1.2, where f 1 = f χ 2 B and f 2 = f f 1 . Then
[ b , G α ] f L p ( B ( x 0 , r ) ) [ b , G α ] f 1 L p ( B ( x 0 , r ) ) + [ b , G α ] f 2 L p ( B ( x 0 , r ) ) .
By Lemma 2.4, we have
[ b , G α ] f 1 L p ( B ( x 0 , r ) ) f 1 L p ( R n ) = f L p ( 2 B ) r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 d t .
Next, we estimate the second part. We divide it into two parts. We have
[ b , G α ] f 2 ( x ) = ( Γ ( x ) sup ϕ C α | R n [ b ( x ) b ( z ) ] ϕ t ( y z ) f 2 ( z ) d z | 2 d y d t t n + 1 ) 1 2 ( Γ ( x ) sup ϕ C α | R n [ b ( x ) b B ] ϕ t ( y z ) f 2 ( z ) d z | 2 d y d t t n + 1 ) 1 2 + ( Γ ( x ) sup ϕ C α | R n [ b B b ( z ) ] ϕ t ( y z ) f 2 ( z ) d z | 2 d y d t t n + 1 ) 1 2 : = V + VI .
First, for V, we find that
V = | b ( x ) b B | ( Γ ( x ) sup ϕ C α | R n ϕ t ( y z ) f 2 ( z ) d z | 2 d y d t t n + 1 ) 1 2 = | b ( x ) b B | G α f 2 ( x ) .
Following the proof in Theorem 1.1, we get
( B ( x 0 , r ) | b ( x ) b B | p | G α f 2 ( x ) | p d x ) 1 p ( B ( x 0 , r ) | b ( x ) b B | p d x ) 1 p 2 r + f L p ( B ( x 0 , t ) ) d t t n p + 1 b r n p 2 r + f L p ( B ( x 0 , t ) ) d t t n p + 1 .
For VI, since | y x | < t , we get | x z | < 2 t . Thus, by Minkowski’s inequality, we obtain
VI ( Γ ( x ) | | x z | < 2 t | b B b ( z ) | | f 2 ( z ) | d z | 2 d y d t t 3 n + 1 ) 1 2 ( 0 | | x z | < 2 t | b B b ( z ) | | f 2 ( z ) | d z | 2 d t t 2 n + 1 ) 1 2 | x 0 z | > 2 r | b B b ( z ) | | f ( z ) | 1 | x z | n d z .
Since | z x | 1 2 | z x 0 | , by Fubini’s theorem, we get
( B ( x 0 , r ) | VI | p d x ) 1 p ( B ( x 0 , r ) | | x 0 z | > 2 r | b B b ( z ) | | f ( z ) | 1 | x z | n d z | p d x ) 1 p r n p | x 0 z | > 2 r | b B b ( z ) | | f ( z ) | 1 | x 0 z | n d z r n p | x 0 z | > 2 r | b B b ( z ) | | f ( z ) | | x 0 z | + 1 t n + 1 d t d z r n p 2 r + B ( x 0 , t ) | b B b ( z ) | | f ( z ) | d z 1 t n + 1 d t r n p 2 r + B ( x 0 , t ) | b B b B ( x 0 , t ) | | f ( z ) | d z 1 t n + 1 d t + r n p 2 r + B ( x 0 , t ) | b ( z ) b B ( x 0 , t ) | | f ( z ) | d z 1 t n + 1 d t : = A + B .
For A, using Lemma 2.2 and Hölder’s inequality, we have
A b r n p 2 r + B ( x 0 , t ) | f ( z ) | d z 1 t n + 1 ln t r d t r n p 2 r + ln t r f L p ( B ( x 0 , t ) ) d t t n p + 1 .
For B, we denote D = B ( x 0 , t ) | f ( z ) | | b B ( x 0 , t ) b ( z ) | d z . Then, by Hölder’s inequality and Lemma 2.2, we get
D ( B ( x 0 , t ) | f ( z ) | p d z ) 1 p ( B ( x 0 , t ) | b B ( x 0 , t ) b ( z ) | p d z ) 1 p t n p b f L p ( B ( x 0 , t ) ) .
This yields B r n p 2 r + f L p ( B ( x 0 , t ) ) d t t n p + 1 . Thus,
[ b , G α ] f L p ( B ( x 0 , r ) ) r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 ( 1 + ln t r ) d t .
By a change of variables, we obtain
[ b , G α ] f L p , ω 2 ( R n ) sup x 0 R n , r > 0 ω 2 ( x 0 , r ) 1 | B ( x 0 , r ) | 1 p r n p 2 r f L p ( B ( x 0 , t ) ) 1 t n p + 1 ( 1 + ln t r ) d t sup x 0 R n , r > 0 ω 2 ( x 0 , r ) 1 0 r n p f L p ( B ( x 0 , s p n ) ) ( 1 + ln s p n r ) d s = sup x 0 R n , r > 0 ω 2 ( x 0 , r p n ) 1 0 r f L p ( B ( x 0 , s p n ) ) ( 1 + p n ln r s ) d s .
Let w ( t ) = ω 2 ( x 0 , t p n ) 1 t , v ( t ) = ω 1 ( x 0 , t p n ) 1 t . Since ( ω 1 , ω 2 ) satisfies condition (3), by a similarly argument with Theorem 1.1, we conclude the following estimates:
[ b , G α ] f L p , ω 2 ( R n ) sup x 0 R n , r > 0 ω 1 ( x 0 , r p n ) 1 r f L p ( B ( x 0 , r p n ) ) = f L p , ω 1 ( R n ) .

Using an argument similar to the above proofs and that of Theorem 1.2, we can also show the boundedness of [ b , g λ , α ] . □

Declarations

Acknowledgements

This work was completed with the support of Scientific Research Fund of Zhejiang Provincial Education Department No. Y201225707.

Authors’ Affiliations

(1)
Department of Mathematics, Xingzhi College, Zhejiang Normal University
(2)
Department of Mathematics, Zhejiang University

References

  1. Wilson M: The intrinsic square function. Rev. Mat. Iberoam. 2007, 23: 771-791.MATHMathSciNetView ArticleGoogle Scholar
  2. Wilson M Lecture Notes in Math. 1924. In Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Springer, Berlin; 2007.Google Scholar
  3. Huang JZ, Liu Y: Some characterizations of weighted Hardy spaces. J. Math. Anal. Appl. 2010, 363: 121-127. 10.1016/j.jmaa.2009.07.054MATHMathSciNetView ArticleGoogle Scholar
  4. Wang H: Boundedness of intrinsic square functions on the weighted weak Hardy spaces. Integr. Equ. Oper. Theory 2013, 75: 135-149. 10.1007/s00020-012-2011-7MATHView ArticleGoogle Scholar
  5. Wang H, Liu HP: Weak type estimates of intrinsic square functions on the weighted Hardy spaces. Arch. Math. 2011, 97: 49-59. 10.1007/s00013-011-0264-zMATHView ArticleGoogle Scholar
  6. Wang H: Weak type estimates for intrinsic square functions on weighted Morrey spaces. Anal. Theory Appl. 2013,29(2):104-119.MATHMathSciNetGoogle Scholar
  7. Wang H: Intrinsic square functions on the weighted Morrey spaces. J. Math. Anal. Appl. 2012, 396: 302-314. 10.1016/j.jmaa.2012.06.021MATHMathSciNetView ArticleGoogle Scholar
  8. Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. ICM-90 Conference Proceedings. In Harmonic Analysis. Edited by: Lgari S. Springer, Tokyo; 1991:183-189.Google Scholar
  9. Guliyev VS, Aliyev SS, Karaman T, Shukurov PS: Boundedness of sublinear operators and commutators on generalized Morrey spaces. Integr. Equ. Oper. Theory 2011, 71: 327-355. 10.1007/s00020-011-1904-1MATHMathSciNetView ArticleGoogle Scholar
  10. Morrey C: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 1938, 43: 126-166. 10.1090/S0002-9947-1938-1501936-8MathSciNetView ArticleGoogle Scholar
  11. Ding Y, Yang DC, Zhou Z:Boundedness of sublinear operators and commutators on L p ( R n ) . Yokohama Math. J. 1998, 46: 15-27.MATHMathSciNetGoogle Scholar
  12. Wang, H: Boundedness of intrinsic square functions on generalized Morrey spaces. arXiv:1103.1715v2Google Scholar
  13. Nakai E: Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 1994, 166: 95-103. 10.1002/mana.19941660108MATHMathSciNetView ArticleGoogle Scholar
  14. Guliyev VS: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009., 2009: Article ID 503948Google Scholar
  15. Guliyev, VS: Integral operators on function spaces on the homogeneous groups and on domains in Rn, Doctor’s degree dissertation, Mat. Inst. Steklov, Moscow, 329 pp. (1994) (in Russian)Google Scholar
  16. Guliyev, VS: Function spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications, Cashioglu, Baku, 332 pp. (1999) (in Russian)Google Scholar
  17. Aliyev SS, Guliyev VS: Boundedness of the parametric Marcinkiewicz integral operator and its commutators on generalized Morrey spaces. Georgian Math. J. 2012, 19: 195-208.MathSciNetGoogle Scholar
  18. Carro M, Pick L, Soria J, Stepanow VD: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 2001,4(3):397-428.MATHMathSciNetGoogle Scholar
  19. John F, Nirenberg L: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 1961, 14: 415-426. 10.1002/cpa.3160140317MATHMathSciNetView ArticleGoogle Scholar
  20. Ding Y, Lu SZ, Yabuta K: On commutators of Marcinkiewicz integrals with rough kernel. J. Math. Anal. Appl. 2002, 275: 60-68. 10.1016/S0022-247X(02)00230-5MATHMathSciNetView ArticleGoogle Scholar

Copyright

© Wu and Zheng; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.