Skip to main content

Weighted boundedness of multilinear singular integral operators

Abstract

In this paper, we establish the weighted sharp maximal function inequalities for the multilinear singular integral operators. As an application, we obtain the boundedness of the multilinear operators on weighted Lebesgue and Morrey spaces.

MSC:42B20, 42B25.

1 Introduction

As the development of singular integral operators (see [13]), their commutators operators have been well studied. In [46], the authors prove that the commutators generated by the singular integral operators and BMO functions are bounded on L p ( R n ) for 1<p<. Chanillo (see [7]) proves a similar result when singular integral operators are replaced by the fractional integral operators. In [8, 9], the boundedness for the commutators generated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin and L p ( R n ) (1<p<) spaces are obtained. In [10, 11], the boundedness for the commutators generated by the singular integral operators and the weighted BMO and Lipschitz functions on L p ( R n ) (1<p<) spaces are obtained (also see [12, 13]). In [1417], the authors studied some multilinear singular integral operators as follows (also see [18, 19]):

T b (f)(x)= R m + 1 ( b ; x , y ) | x y | m K(x,y)f(y)dy,

and they obtained some variant sharp function estimates and boundedness of the multilinear operators if D α bBMO( R n ) for all α with |α|=m. In this paper, we will study the multilinear operator generated by the singular integral operator and the weighted Lipschitz and BMO functions, that is, D α bBMO(w) or D α b Lip β (w) for all α with |α|=m.

2 Preliminaries

First, let us introduce some notations. Throughout this paper, Q will denote a cube of R n with sides parallel to the axes. For any locally integrable function f, the sharp maximal function of f is defined by

M # (f)(x)= sup Q x 1 | Q | Q | f ( y ) f Q | dy;

here, and in the following, f Q = | Q | 1 Q f(x)dx. It is well known that (see [1, 2])

M # (f)(x) sup Q x inf c C 1 | Q | Q | f ( y ) c | dy.

Let

M(f)(x)= sup Q x 1 | Q | Q | f ( y ) | dy.

For η>0, let M η # (f)(x)= M # ( | f | η ) 1 / η (x) and M η (f)(x)=M ( | f | η ) 1 / η (x).

For 0<η<n, 1p< and the non-negative weight function w, set

M η , p , w (f)(x)= sup Q x ( 1 w ( Q ) 1 p η / n Q | f ( y ) | p w ( y ) d y ) 1 / p .

We write M η , p , w (f)= M p , w (f) if η=0.

The A p weight is defined by (see [1]), for 1<p<,

A p = { w L loc 1 ( R n ) : sup Q ( 1 | Q | Q w ( x ) d x ) ( 1 | Q | Q w ( x ) 1 / ( p 1 ) d x ) p 1 < }

and

A 1 = { w L loc p ( R n ) : M ( w ) ( x ) C w ( x ) , a.e. } .

Given a non-negative weight function w. For 1p<, the weighted Lebesgue space L p ( R n ,w) is the space of functions f such that

f L p ( w ) = ( R n | f ( x ) | p w ( x ) d x ) 1 / p <.

For 0<β<1 and the non-negative weight function w, the weighted Lipschitz space Lip β (w) is the space of functions b such that

b Lip β ( w ) = sup Q 1 w ( Q ) β / n ( 1 w ( Q ) Q | b ( y ) b Q | p w ( x ) 1 p d y ) 1 / p <,

and the weighted BMO space BMO(w) is the space of functions b such that

b BMO ( w ) = sup Q ( 1 w ( Q ) Q | b ( y ) b Q | p w ( x ) 1 p d y ) 1 / p <.

Remark

  1. (1)

    It is well known that (see [10, 20]), for b Lip β (w), w A 1 and xQ,

    | b Q b 2 k Q |Ck b Lip β ( w ) w(x)w ( 2 k Q ) β / n .
  2. (2)

    It is well known that (see [11, 20]), for bBMO(w), w A 1 and xQ,

    | b Q b 2 k Q |Ck b BMO ( w ) w(x).
  3. (3)

    Let b Lip β (w) or bBMO(w) and w A 1 . By [20], we know that spaces Lip β (w) or BMO(w) coincide and the norms b Lip β ( w ) or b BMO ( w ) are equivalent with respect to different values 1p<.

Definition 1 Let φ be a positive, increasing function on R + and let there exist a constant D>0 such that

φ(2t)Dφ(t)for t0.

Let w be a non-negative weight function on R n and f be a locally integrable function on  R n . Set, for 1p<,

f L p , φ ( w ) = sup x R n , d > 0 ( 1 φ ( d ) Q ( x , d ) | f ( y ) | p w ( y ) d y ) 1 / p ,

where Q(x,d)={y R n :|xy|<d}. The generalized weighted Morrey space is defined by

L p , φ ( R n , w ) = { f L loc 1 ( R n ) : f L p , φ ( w ) < } .

If φ(d)= d δ , δ>0, then L p , φ ( R n ,w)= L p , δ ( R n ,w), which is the classical Morrey spaces (see [21, 22]). If φ(d)=1, then L p , φ ( R n ,w)= L p ( R n ,w), which is the weighted Lebesgue spaces (see [1]).

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [9, 2328]).

In this paper, we will study the singular integral operators as follows (see [5]).

Definition 2 Let T:S S be a linear operator such that T is bounded on L p ( R n ) for 1<p< and weak ( L 1 , L 1 )-bounded and there exists a locally integrable function K(x,y) on R n × R n {(x,y) R n × R n :x=y} such that

T(f)(x)= R n K(x,y)f(y)dy

for every bounded and compactly supported function f, where K satisfies, for fixed ε>0,

| K ( x , y ) | C | x y | n

and

| K ( y , x ) K ( z , x ) | + | K ( x , y ) K ( x , z ) | C | y z | ε | x z | n ε

if 2|yz||xz|.

Moreover, let m be the positive integer and b be the function on R n . Set

R m + 1 (b;x,y)=b(x) | α | m 1 α ! D α b(y) ( x y ) α .

The multilinear operator related to the operator T is defined by

T b (f)(x)= R n R m + 1 ( b ; x , y ) | x y | m K(x,y)f(y)dy.

Note that the classical Calderón-Zygmund singular integral operator satisfies the conditions of Definition 2 (see [1, 4]) and that the commutator [b,T](f)=bT(f)T(bf) is a particular operator of the multilinear operator T b if m=0. The multilinear operator T b are the non-trivial generalizations of the commutator. It is well known that commutators and multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [5, 6, 19]). The main purpose of this paper is to prove the sharp maximal inequalities for the multilinear operator T b . As the application, we obtain the weighted L p -norm inequality and Morrey space boundedness for the multilinear operator T b .

3 Theorems and lemmas

We shall prove the following theorems.

Theorem 1 Let T be the singular integral operator as Definition  2, w A 1 , 0<η<1, 1<r< and D α bBMO(w) for all α with |α|=m. Then there exists a constant C>0 such that, for any f C 0 ( R n ) and x ˜ R n ,

M η # ( T b ( f ) ) ( x ˜ )C | α | = m D α b BMO ( w ) w( x ˜ ) M r , w (f)( x ˜ ).

Theorem 2 Let T be the singular integral operator as Definition  2, w A 1 , 0<η<1, 1<r<, 0<β<1 and D α b Lip β (w) for all α with |α|=m. Then there exists a constant C>0 such that, for any f C 0 ( R n ) and x ˜ R n ,

M η # ( T b ( f ) ) ( x ˜ )C | α | = m D α b Lip β ( w ) w( x ˜ ) M β , r , w (f)( x ˜ ).

Theorem 3 Let T be the singular integral operator as Definition  2, w A 1 , 1<p< and D α bBMO(w) for all α with |α|=m. Then T b is bounded from L p ( R n ,w) to L p ( R n , w 1 p ).

Theorem 4 Let T be the singular integral operator as Definition  2, w A 1 , 1<p<, 0<D< 2 n and D α bBMO(w) for all α with |α|=m. Then T b is bounded from L p , φ ( R n ,w) to L p , φ ( R n , w 1 p ).

Theorem 5 Let T be the singular integral operator as Definition  2, w A 1 , 0<β<1, 1<p<n/β, 1/q=1/pβ/n and D α b Lip β (w) for all α with |α|=m. Then T b is bounded from L p ( R n ,w) to L q ( R n , w 1 q ).

Theorem 6 Let T be the singular integral operator as Definition  2, w A 1 , 0<β<1, 0<D< 2 n , 1<p<n/β, 1/q=1/pβ/n and D α b Lip β (w) for all α with |α|=m. Then T b is bounded from L p , φ ( R n ,w) to L q , φ ( R n , w 1 q ).

To prove the theorems, we need the following lemmas.

Lemma 1 (See [[1], p.485])

Let 0<p<q< and for any function f0. We define, for 1/r=1/p1/q,

f W L q = sup λ > 0 λ | { x R n : f ( x ) > λ } | 1 / q , N p , q (f)= sup Q f χ Q L p / χ Q L r ,

where the sup is taken for all measurable sets Q with 0<|Q|<. Then

f W L q N p , q (f) ( q / ( q p ) ) 1 / p f W L q .

Lemma 2 (See [1, 20])

Let 0η<n, 1s<p<n/η, 1/q=1/pη/n and w A 1 . Then

M η , s , w ( f ) L q ( w ) C f L p ( w ) .

Lemma 3 (See [1])

Let 0<p,η< and w 1 r < A r . Then, for any smooth function f for which the left-hand side is finite,

R n M η (f) ( x ) p w(x)dxC R n M η # (f) ( x ) p w(x)dx.

Lemma 4 (See [1])

Let 0<p<, 0<η<, 0<D< 2 n and w A 1 . Then, for any smooth function f for which the left-hand side is finite,

M η ( f ) L p , φ ( w ) C M η # ( f ) L p , φ ( w ) .

Lemma 5 (See [20])

Let 0η<n, 0<D< 2 n , 1s<p<n/η, 1/q=1/pη/n and w A 1 . Then

M η , s , w ( f ) L q , φ ( w ) C f L p , φ ( w ) .

Lemma 6 (See [16])

Let b be a function on R n and D α A L q ( R n ) for all α with |α|=m and any q>n. Then

| R m ( b ; x , y ) | C | x y | m | α | = m ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) | D α b ( z ) | q d z ) 1 / q ,

where Q ˜ is the cube centered at x and having side length 5 n |xy|.

4 Proofs of theorems

Proof of Theorem 1 It suffices to prove for f C 0 ( R n ) and some constant C 0 , the following inequality holds:

( 1 | Q | Q | T b ( f ) ( x ) C 0 | η d x ) 1 / η C | α | = m D α b BMO ( w ) w( x ˜ ) M s , w (f)( x ˜ ).

Fix a cube Q=Q( x 0 ,d) and x ˜ Q. Let Q ˜ =5 n Q and b ˜ (x)=b(x) | α | = m 1 α ! ( D α b ) Q ˜ x α , then R m (b;x,y)= R m ( b ˜ ;x,y) and D α b ˜ = D α b ( D α b ) Q ˜ for |α|=m. We write, for f 1 =f χ Q ˜ and f 2 =f χ R n Q ˜ ,

T b ( f ) ( x ) = R n R m ( b ˜ ; x , y ) | x y | m K ( x , y ) f 1 ( y ) d y | α | = m 1 α ! R n ( x y ) α D α b ˜ ( y ) | x y | m K ( x , y ) f 1 ( y ) d y + R n R m + 1 ( b ˜ ; x , y ) | x y | m K ( x , y ) f 2 ( y ) d y = T ( R m ( b ˜ ; x , ) | x | m f 1 ) T ( | α | = m 1 α ! ( x ) α D α b ˜ | x | m f 1 ) + T b ˜ ( f 2 ) ( x ) ,

then

( 1 | Q | Q | T b ( f ) ( x ) T b ( f 2 ) ( x 0 ) | η d x ) 1 / η C ( 1 | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) | η d x ) 1 / η + C ( 1 | Q | Q | T ( | α | = m ( x ) α D α b ˜ | x | m f 1 ) | η d x ) 1 / η + C ( 1 | Q | Q | T b ˜ ( f 2 ) ( x ) T b ˜ ( f 2 ) ( x 0 ) | η d x ) 1 / η = I 1 + I 2 + I 3 .

For I 1 , noting that w A 1 , w satisfies the reverse of Hölder’s inequality:

( 1 | Q | Q w ( x ) p 0 d x ) 1 / p 0 C | Q | Q w(x)dx

for all cube Q and some 1< p 0 < (see [1]). We take q=r p 0 /(r+ p 0 1) in Lemma 6 and have 1<q<r and p 0 =q(r1)/(rq), then by the Lemma 6 and Hölder’s inequality, we obtain

| R m ( b ˜ ; x , y ) | C | x y | m | α | = m ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) | D α b ˜ ( z ) | q d z ) 1 / q C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | q w ( z ) q ( 1 r ) / r w ( z ) q ( r 1 ) / r d z ) 1 / q C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | r w ( z ) 1 r d z ) 1 / r × ( Q ˜ ( x , y ) w ( z ) q ( r 1 ) / ( r q ) d z ) ( r q ) / ( r q ) C | x y | m | α | = m | Q ˜ | 1 / q D α b BMO ( w ) w ( Q ˜ ) 1 / r | Q ˜ | ( r q ) / r q × ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) p 0 d z ) ( r q ) / r q C | x y | m | α | = m D α b BMO ( w ) | Q ˜ | 1 / q w ( Q ˜ ) 1 / r | Q ˜ | 1 / q 1 / r ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) d z ) ( r 1 ) / r C | x y | m | α | = m D α b BMO ( w ) | Q ˜ | 1 / q w ( Q ˜ ) 1 / r | Q ˜ | 1 / q 1 / r w ( Q ˜ ) 1 1 / r | Q ˜ | 1 / r 1 C | x y | m | α | = m D α b BMO ( w ) w ( Q ˜ ) | Q ˜ | C | x y | m | α | = m D α b BMO ( w ) w ( x ˜ ) ,

thus, by the L s -boundedness of T (see Lemma 2) for 1<s<r and w A 1 A r / s , we obtain

I 1 C | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) | d x C | α | = m D α b BMO ( w ) w ( x ˜ ) ( 1 | Q | R n | T ( f 1 ) ( x ) | s d x ) 1 / s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s ( R n | f 1 ( x ) | s d x ) 1 / s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s ( Q ˜ | f ( x ) | s w ( x ) s / r w ( x ) s / r d x ) 1 / s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r ( Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s C | α | = m D α b BMO ( w ) w ( x ˜ ) | Q | 1 / s w ( Q ˜ ) 1 / r ( 1 w ( Q ˜ ) Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r × ( 1 | Q ˜ | Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s ( 1 | Q ˜ | Q ˜ w ( x ) d x ) 1 / r | Q ˜ | 1 / s w ( Q ˜ ) 1 / r C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .

For I 2 , by the weak ( L 1 , L 1 ) boundedness of T (see Lemma 2) and Kolmogoro’s inequality (see Lemma 1), we obtain

I 2 C | α | = m ( 1 | Q | Q | T ( D α b ˜ f 1 ) ( x ) | η d x ) 1 / η C | α | = m | Q | 1 / η 1 | Q | 1 / η T ( D α b ˜ f 1 ) χ Q L η χ Q L η / ( 1 η ) C | α | = m 1 | Q | T ( D α b ˜ f 1 ) W L 1 C | α | = m 1 | Q | R n | D α b ˜ ( x ) f 1 ( x ) | d x C | α | = m 1 | Q | Q ˜ | D α b ( x ) ( D α b ) Q ˜ | w ( x ) 1 / r | f ( x ) | w ( x ) 1 / r d x C | α | = m 1 | Q | ( Q ˜ | ( D α b ( x ) ( D α b ) Q ˜ ) | r w ( x ) 1 r d x ) 1 / r ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r C | α | = m 1 | Q | D α b BMO ( w ) w ( Q ˜ ) 1 / r w ( Q ˜ ) 1 / r ( 1 w ( Q ˜ ) Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r C | α | = m D α b BMO ( w ) w ( Q ˜ ) | Q ˜ | M r , w ( f ) ( x ˜ ) C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .

For I 3 , note that |xy|| x 0 y| for xQ and y R n Q, we write

T b ˜ ( f 2 ) ( x ) T b ˜ ( f 2 ) ( x 0 ) = R n ( R m ( b ˜ ; x , y ) R m ( b ˜ ; x 0 , y ) ) K ( x , y ) | x y | m | f 2 ( y ) | d y + R n ( K ( x , y ) | x y | m K ( x 0 , y ) | x 0 y | m ) R m ( b ˜ ; x 0 , y ) f 2 ( y ) d y + | α | = m 1 α ! R n ( K ( x , y ) | x y | m K ( x 0 , y ) | x 0 y | m ) ( x y ) α D α b ˜ ( y ) f 2 ( y ) d y + | α | = m 1 α ! R n ( ( x y ) α | x y | m ( x 0 y ) α | x 0 y | m ) K ( x 0 , y ) D α b ˜ ( y ) f 2 ( y ) d y = I 3 ( 1 ) ( x ) + I 3 ( 2 ) ( x ) + I 3 ( 3 ) ( x ) + I 3 ( 4 ) ( x ) .

For I 3 ( 1 ) (x), by the formula (see [16]):

R m ( b ˜ ;x,y) R m ( b ˜ ; x 0 ,y)= | γ | < m 1 γ ! R m | γ | ( D γ b ˜ ; x , x 0 ) ( x y ) γ

and Lemma 6, we have, similar to the proof of I 1 ,

| R m ( b ˜ ; x , y ) R m ( b ˜ ; x 0 , y ) | C | γ | < m | α | = m | x x 0 | m | γ | | x y | | γ | D α b BMO ( w ) w( x ˜ ),

thus, by w A 1 A r ,

| I 3 ( 1 ) ( x ) | k = 0 2 k + 1 Q ˜ 2 k Q ˜ | R m ( b ˜ ; x , y ) R m ( b ˜ ; x 0 , y ) | | K ( x , y ) | | x y | m | f ( y ) | d y C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 0 2 k + 1 Q ˜ 2 k Q ˜ | x x 0 | | x 0 y | n + 1 | f ( y ) | d y C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 d ( 2 k d ) n + 1 2 k Q ˜ | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y C | α | = m D α b BMO ( w ) w ( x ˜ ) × k = 1 d ( 2 k d ) n + 1 ( 2 k Q ˜ | f ( y ) | r w ( y ) d y ) 1 / r ( 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 d ( 2 k d ) n + 1 w ( 2 k Q ˜ ) 1 / r ( 1 w ( 2 k Q ˜ ) 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) d y ) 1 / r | 2 k Q ˜ | w ( 2 k Q ˜ ) 1 / r C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) k = 1 2 k C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .

For I 3 ( 2 ) (x), by the conditions of K, we get

| I 3 ( 2 ) ( x ) | C k = 0 2 k + 1 Q ˜ 2 k Q ˜ | K ( x , y ) | x y | m K ( x 0 , y ) | x 0 y | m | | R m ( b ˜ ; x 0 , y ) | | f ( y ) | d y C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 0 2 k + 1 Q ˜ 2 k Q ˜ ( | x x 0 | | x 0 y | n + 1 + | x x 0 | ε | x 0 y | n + ε ) | f ( y ) | d y C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) 2 k Q ˜ | f ( y ) | d y C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) k = 1 ( 2 k + 2 k ε ) C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .

Similarly, we have

| I 3 ( 3 ) ( x ) | + | I 3 ( 4 ) ( x ) | C | α | = m k = 0 2 k + 1 Q ˜ 2 k Q ˜ ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) | f ( y ) | | D α b ˜ ( y ) | d y C | α | = m k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) × 2 k Q ˜ | D α b ( y ) ( D α b ) 2 k Q ˜ | w ( y ) 1 / r | f ( y ) | w ( y ) 1 / r d y + C | α | = m k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) × 2 k Q ˜ | ( D α b ) 2 k Q ˜ ( D α b ) Q ˜ | | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y C | α | = m k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) ( 2 k Q ˜ | ( D α b ( y ) ( D α b ) 2 k Q ˜ ) | r w ( y ) 1 r d y ) 1 / r × ( 2 k Q ˜ | f ( y ) | r w ( y ) d y ) 1 / r + C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 k ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) ( 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) d y ) 1 / r | 2 k Q ˜ | w ( 2 k Q ˜ ) 1 / r C | α | = m D α b BMO ( w ) k = 1 ( 2 k + 2 k ε ) w ( 2 k Q ˜ ) | 2 k Q ˜ | ( 1 w ( 2 k Q ˜ ) 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r + C | α | = m D α b BMO ( w ) w ( x ˜ ) k = 1 k ( 2 k + 2 k ε ) ( 1 w ( 2 k Q ˜ ) 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r C | α | = m D α b BMO ( w ) w ( x ˜ ) M r , w ( f ) ( x ˜ ) .

Thus

I 3 C | α | = m D α b BMO ( w ) w( x ˜ ) M r , w (f)( x ˜ ).

These complete the proof of Theorem 1. □

Proof of Theorem 2 It suffices to prove for f C 0 ( R n ) and some constant C 0 , the following inequality holds:

( 1 | Q | Q | T b ( f ) ( x ) C 0 | η d x ) 1 / η C | α | = m D α b Lip β ( w ) w( x ˜ ) M β , r , w (f)( x ˜ ).

Fix a cube Q=Q( x 0 ,d) and x ˜ Q. Similar to the proof of Theorem 1, we have, for f 1 =f χ Q ˜ and f 2 =f χ R n Q ˜ ,

( 1 | Q | Q | T b ( f ) ( x ) T b ˜ ( f 2 ) ( x 0 ) | η d x ) 1 / η C ( 1 | Q | Q | T ( R m ( b ˜ ; x , ) | x | m f 1 ) | η d x ) 1 / η + C ( 1 | Q | Q | T ( | α | = m ( x ) α D α b ˜ | x | m f 1 ) | η d x ) 1 / η + C ( 1 | Q | Q | T b ˜ ( f 2 ) ( x ) T b ˜ ( f 2 ) ( x 0 ) | η d x ) 1 / η = J 1 + J 2 + J 3 .

For J 1 and J 2 , by using the same argument as in the proof of Theorem 1, we get

| R m ( b ˜ ; x , y ) | C | x y | m | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | q w ( z ) q ( 1 r ) / r w ( z ) q ( r 1 ) / r d z ) 1 / q C | x y | m × | α | = m | Q ˜ | 1 / q ( Q ˜ ( x , y ) | D α b ˜ ( z ) | r w ( z ) 1 r d z ) 1 / r ( Q ˜ ( x , y ) w ( z ) q ( r 1 ) / ( r q ) d z ) ( r q ) / r q C | x y | m × | α | = m | Q ˜ | 1 / q D α b Lip β ( w ) w ( Q ˜ ) β / n + 1 / r | Q ˜ | ( r q ) / r q ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) p 0 d z ) ( r q ) / r q C | x y | m × | α | = m D α b Lip β ( w ) | Q ˜ | 1 / q w ( Q ˜ ) β / n + 1 / r | Q ˜ | 1 / q 1 / r ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) w ( z ) d z ) ( r 1 ) / r C | x y | m | α | = m D α b Lip β ( w ) | Q ˜ | 1 / q w ( Q ˜ ) β / n + 1 / r | Q ˜ | 1 / q 1 / r w ( Q ˜ ) 1 1 / r | Q ˜ | 1 / r 1 C | x y | m | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n + 1 | Q ˜ | C | x y | m | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n w ( x ˜ ) ,

thus

J 1 C | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n w ( x ˜ ) | Q | 1 / s ( R n | f 1 ( x ) | s d x ) 1 / s J 1 C | α | = m D α b Lip β ( w ) w ( Q ˜ ) β / n w ( x ˜ ) | Q | 1 / s ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 1 × ( Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s J 1 C | α | = m D α b Lip β ( w ) w ( x ˜ ) | Q ˜ | 1 / s w ( Q ˜ ) 1 / r ( 1 w ( Q ˜ ) 1 r β / n Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 1 × ( 1 | Q ˜ | Q ˜ w ( x ) s / ( r s ) d x ) ( r s ) / r s ( 1 | Q ˜ | Q ˜ w ( x ) d x ) 1 / r | Q ˜ | 1 / s w ( Q ˜ ) 1 / r J 1 C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) , J 2 C | α | = m 1 | Q | Q ˜ | D α b ( x ) ( D α b ) Q ˜ | w ( x ) 1 / r | f ( x ) | w ( x ) 1 / r d x J 2 C | α | = m 1 | Q | ( Q ˜ | ( D α b ( x ) ( D α b ) Q ˜ ) | r w ( x ) 1 r d x ) 1 / r ( Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 2 C | α | = m 1 | Q | D α b Lip β ( w ) w ( Q ˜ ) β / n + 1 / r w ( Q ˜ ) 1 / r β / n ( 1 w ( Q ˜ ) 1 r β / n Q ˜ | f ( x ) | r w ( x ) d x ) 1 / r J 2 C | α | = m D α b Lip β ( w ) w ( Q ˜ ) | Q ˜ | M β , r , w ( f ) ( x ˜ ) J 2 C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) .

For J 3 , we have

| R m ( b ˜ ; x , y ) R m ( b ˜ ; x 0 , y ) | C | γ | < m | α | = m | x x 0 | m | γ | | x y | | γ | D α b Lip β ( w ) w ( x ˜ ) w ( 2 k Q ˜ ) β / n ,

thus

| T b ˜ ( f 2 ) ( x ) T b ˜ ( f 2 ) ( x 0 ) | k = 0 2 k + 1 Q ˜ 2 k Q ˜ | R m ( b ˜ ; x , y ) R m ( b ˜ ; x 0 , y ) | | K ( x , y ) | | x y | m | f ( y ) | d y + k = 0 2 k + 1 Q ˜ 2 k Q ˜ | K ( x , y ) | x y | m K ( x 0 , y ) | x 0 y | m | | R m ( b ˜ ; x 0 , y ) | | f ( y ) | d y + C | α | = m k = 0 2 k + 1 Q ˜ 2 k Q ˜ | K ( x , y ) | x y | m K ( x 0 , y ) | x 0 y | m | | ( x y ) α | | D α b ˜ ( y ) | | f ( y ) | d y + C | α | = m k = 0 2 k + 1 Q ˜ 2 k Q ˜ | ( x y ) α | x y | m ( x 0 y ) α | x 0 y | m | | K ( x 0 , y ) | | D α b ˜ ( y ) | | f ( y ) | d y C | α | = m D α b Lip β ( w ) w ( x ˜ ) k = 0 w ( 2 k + 1 Q ˜ ) β / n × 2 k + 1 Q ˜ 2 k Q ˜ ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) | f ( y ) | d y + C | α | = m k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) × 2 k Q ˜ | D α b ( y ) ( D α b ) 2 k Q ˜ | w ( y ) 1 / r | f ( y ) | w ( y ) 1 / r d y + C | α | = m k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) × 2 k Q ˜ | ( D α b ) 2 k Q ˜ ( D α b ) Q ˜ | | f ( y ) | w ( y ) 1 / r w ( y ) 1 / r d y C | α | = m D α b Lip β ( w ) w ( x ˜ ) × k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) w ( 2 k Q ˜ ) β / n ( 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) d y ) 1 / r | 2 k Q ˜ | w ( 2 k Q ˜ ) 1 / r + C | α | = m k = 1 ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) ( 2 k Q ˜ | ( D α b ( y ) ( D α b ) 2 k Q ˜ ) | r w ( y ) 1 r d y ) 1 / r × ( 2 k Q ˜ | f ( y ) | r w ( y ) d y ) 1 / r + C | α | = m D α b Lip β ( w ) w ( x ˜ ) k = 1 k w ( 2 k Q ˜ ) β / n ( d ( 2 k d ) n + 1 + d ε ( 2 k d ) n + ε ) × ( 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) 1 / ( r 1 ) d y ) ( r 1 ) / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ w ( y ) d y ) 1 / r | 2 k Q ˜ | w ( 2 k Q ˜ ) 1 / r C | α | = m D α b Lip β ( w ) w ( x ˜ ) k = 1 k ( 2 k + 2 k ε ) ( 1 w ( 2 k Q ˜ ) 1 r β / n 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r + C | α | = m D α b Lip β ( w ) × k = 1 ( 2 k + 2 k ε ) w ( 2 k Q ˜ ) | 2 k Q ˜ | ( 1 w ( 2 k Q ˜ ) 1 r β / n 2 k Q ˜ | f ( y ) | r w ( y ) d x ) 1 / r C | α | = m D α b Lip β ( w ) w ( x ˜ ) M β , r , w ( f ) ( x ˜ ) .

This completes the proof of Theorem 2. □

Proof of Theorem 3 By putting 1<r<p in Theorem 1 and noticing that w 1 p A 1 , by Lemma 3 and 4, we obtain

T b ( f ) L p ( w 1 p ) M η ( T b ( f ) ) L p ( w 1 p ) C M η # ( T b ( f ) ) L p ( w 1 p ) C | α | = m D α b BMO ( w ) w M r , w ( f ) L p ( w 1 p ) = C | α | = m D α b BMO ( w ) M r , w ( f ) L p ( w ) C | α | = m D α b BMO ( w ) f L p ( w ) .

This completes the proof of Theorem 3. □

Proof of Theorem 4 By choosing 1<r<p in Theorem 1 and noticing that w 1 p A 1 , by Lemmas 5 and 6, we get

T b ( f ) L p , φ ( w 1 p ) M η ( T b ( f ) ) L p , φ ( w 1 p ) C M η # ( T b ( f ) ) L p , φ ( w 1 p ) C | α | = m D α b BMO ( w ) w M r , w ( f ) L p , φ ( w 1 p ) = C | α | = m D α b BMO ( w ) M r , w ( f ) L p , φ ( w ) C | α | = m D α b BMO ( w ) f L p , φ ( w ) .

This completes the proof of Theorem 4. □

Proof of Theorem 5 By setting 1<r<p in Theorem 2 and noting that w 1 q A 1 , by Lemmas 3 and 4, we have

T b ( f ) L q ( w 1 q ) M η ( T b ( f ) ) L q ( w 1 q ) C M η # ( T b ( f ) ) L q ( w 1 q ) C | α | = m D α b Lip β ( w ) w M β , r , w ( f ) L q ( w 1 q ) = C | α | = m D α b Lip β ( w ) M β , r , w ( f ) L q ( w ) C | α | = m D α b Lip β ( w ) f L p ( w ) .

This completes the proof of Theorem 5. □

Proof of Theorem 6 By choosing 1<r<p in Theorem 2, and noticing that w 1 q A 1 , by Lemmas 5 and 6, we get

T b ( f ) L q , φ ( w 1 q ) M η ( T b ( f ) ) L q , φ ( w 1 q ) C M η # ( T b ( f ) ) L q , φ ( w 1 q ) C | α | = m D α b Lip β ( w ) w M β , r , w ( f ) L q , φ ( w 1 q ) = C | α | = m D α b Lip β ( w ) M β , r , w ( f ) L q , φ ( w ) C | α | = m D α b Lip β ( w ) f L p , φ ( w ) .

This completes the proof of Theorem 6. □

References

  1. Garcia-Cuerva J, Rubio de Francia JL 16. In Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam; 1985.

    Google Scholar 

  2. Stein EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton; 1993.

    Google Scholar 

  3. Torchinsky A Pure and Applied Math. 123. In Real Variable Methods in Harmonic Analysis. Academic Press, New York; 1986.

    Google Scholar 

  4. Coifman RR, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103: 611-635. 10.2307/1970954

    MathSciNet  Article  Google Scholar 

  5. Pérez C: Endpoint estimate for commutators of singular integral operators. J. Funct. Anal. 1995, 128: 163-185. 10.1006/jfan.1995.1027

    MathSciNet  Article  Google Scholar 

  6. Pérez C, Trujillo-Gonzalez R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 2002, 65: 672-692. 10.1112/S0024610702003174

    Article  Google Scholar 

  7. Chanillo S: A note on commutators. Indiana Univ. Math. J. 1982, 31: 7-16. 10.1512/iumj.1982.31.31002

    MathSciNet  Article  Google Scholar 

  8. Janson S: Mean oscillation and commutators of singular integral operators. Ark. Math. 1978, 16: 263-270. 10.1007/BF02386000

    MathSciNet  Article  Google Scholar 

  9. Paluszynski M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J. 1995, 44: 1-17.

    MathSciNet  Article  Google Scholar 

  10. Bloom S: A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 1985, 292: 103-122. 10.1090/S0002-9947-1985-0805955-5

    Article  Google Scholar 

  11. Hu B, Gu J: Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces. J. Math. Anal. Appl. 2008, 340: 598-605. 10.1016/j.jmaa.2007.08.034

    MathSciNet  Article  Google Scholar 

  12. He YX, Wang YS: Commutators of Marcinkiewicz integrals and weighted BMO. Acta Math. Sinica (Chin. Ser.) 2011, 54: 513-520.

    MathSciNet  Google Scholar 

  13. Zhou XS, Liu LZ: Necessary and sufficient conditions for boundedness of commutators of strongly singular integral operators with weighted Lipschitz functions. Indian J. Pure Appl. Math. 2011, 42: 405-416. 10.1007/s13226-011-0026-4

    MathSciNet  Article  Google Scholar 

  14. Cohen J:A sharp estimate for a multilinear singular integral on R n . Indiana Univ. Math. J. 1981, 30: 693-702. 10.1512/iumj.1981.30.30053

    MathSciNet  Article  Google Scholar 

  15. Cohen J, Gosselin J:On multilinear singular integral operators on R n . Stud. Math. 1982, 72: 199-223.

    MathSciNet  Google Scholar 

  16. Cohen J, Gosselin J: A BMO estimate for multilinear singular integral operators. Ill. J. Math. 1986, 30: 445-465.

    MathSciNet  Google Scholar 

  17. Coifman R, Meyer Y Cambridge Studies in Advanced Math. 48. In Wavelets, Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge; 1997.

    Google Scholar 

  18. Ding Y, Lu SZ: Weighted boundedness for a class rough multilinear operators. Acta Math. Sin. 2001, 17: 517-526.

    MathSciNet  Article  Google Scholar 

  19. Hu G, Yang DC: A variant sharp estimate for multilinear singular integral operators. Stud. Math. 2000, 141: 25-42.

    MathSciNet  Google Scholar 

  20. Garcia-Cuerva J:Weighted H p spaces. Diss. Math. 1979, 162: 1-63.

    MathSciNet  Google Scholar 

  21. Peetre J:On convolution operators leaving L p , λ -spaces invariant. Ann. Mat. Pura Appl. 1966, 72: 295-304. 10.1007/BF02414340

    MathSciNet  Article  Google Scholar 

  22. Peetre J:On the theory of L p , λ -spaces. J. Funct. Anal. 1969, 4: 71-87. 10.1016/0022-1236(69)90022-6

    MathSciNet  Article  Google Scholar 

  23. Di FaZio G, Ragusa MA: Commutators and Morrey spaces. Boll. Unione Mat. Ital. 1991, 5-A: 323-332.

    MathSciNet  Google Scholar 

  24. Di Fazio G, Ragusa MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112: 241-256. 10.1006/jfan.1993.1032

    MathSciNet  Article  Google Scholar 

  25. Liu LZ: Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators. Acta Math. Sci. Ser. B 2005, 25: 89-94.

    Google Scholar 

  26. Liu LZ: Sharp maximal function estimates and boundedness for commutators associated with general integral operator. Filomat 2011, 25: 137-151.

    Article  Google Scholar 

  27. Liu LZ: Multilinear singular integral operators on Triebel-Lizorkin and Lebesgue spaces. Bull. Malays. Math. Sci. Soc. 2012, 35: 1075-1086.

    MathSciNet  Google Scholar 

  28. Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis 1990, 183-189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors completed the paper together. They also read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Kuang, WP., Wang, ZG. Weighted boundedness of multilinear singular integral operators. J Inequal Appl 2014, 115 (2014). https://doi.org/10.1186/1029-242X-2014-115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-115

Keywords

  • multilinear operator
  • singular integral operator
  • sharp maximal function
  • weighted BMO
  • weighted Lipschitz function