Skip to main content

Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space

Abstract

Let (X,d,μ) be a geometrically doubling metric spaces and the measure μ satisfy the upper doubling condition. The aim of this paper, under this assumption, is to study the boundedness of the bilinear Calderón-Zygmund operator of type ω(t). As an application, we obtain the Morrey boundedness properties of the bilinear operator.

MSC:42B20, 42B25, 42B35.

1 Introduction and main results

In the last few decades, the classical theory of the singular integral has played an important role in harmonic analysis. One of the main features of these works is that the underlying spaces or domains possess the measure doubling property,

μ ( Q ( x , 2 r ) ) Cμ ( Q ( x , r ) ) ,
(1.1)

where μ is a Borel measure, Q(x,r) denotes the ball with center x and radius r>0. A metric space (X,d) equipped with such a measure μ is called a space of homogeneous type. It is well known that the measure doubling condition in the analysis on spaces of homogeneous type is a key assumption, such as that Euclidean spaces with weighted measures satisfy the doubling property (1.1).

However, recently, some works indicated that the measure doubling condition is superfluous for most of the classical singular integral operator theory, and many results on the Calderón-Zygmund theory have been proved valid if the condition (1.1) is replaced by a mild volume growth condition,

μ ( Q ( x , r ) ) C 0 r d ,
(1.2)

where C 0 is a positive constant, d is a dimension of the underlying spaces, xX, r(0,). Such a measure does not satisfy the doubling condition. For example, Tolsa [1] established Calderón-Zygmund theory for a nondoubling measure and introduced the RBMO spaces, a variant of the space BMO, and he proved that Calderón-Zygmund operators are bounded from H 1 (μ) into L 1 (μ). Nazarov et al. [2] showed that if T is a Calderón-Zygmund operator bounded on L 2 (μ), then T is bounded on L p (μ) for all p(1,) and from L 1 (μ) into L 1 , (μ).

Recently, Hytönen [3] gave a new class of metric measures spaces (X,d,μ) (instead of ( R n ,d,μ)), which are called non-homogeneous spaces, the measure μ satisfies the upper doubling condition (see definition 1.3). The new class of metric measures spaces are sufficiently general to include in a natural way both the space of homogeneous type and a metric space with the mild volume growth condition.

Anh and Doung [4] established the boundedness of Calderón-Zygmund operator on various function spaces on (X,d,μ) and they extended the work of Tolsa on the non-homogeneous spaces ( R n ,d,μ) to a more general non-homogeneous spaces (X,d,μ).

Meanwhile, multilinear Calderón-Zygmund theory has been studied by many researchers. The theory was introduced by Coifman and Meyer [5] in 1975 and it was further investigated by Grafakos and Torres [6]. Chen and Fan [7, 8] obtained some estimates for the bilinear singular integral. Xu [9] obtained the boundedness of a multilinear Calderón-Zygmund operator on L p ( R n ,μ), 1<p<.

Yabuta [10] introduced a generalized operator: a Calderón-Zygmund operator of type ω(t), which generalizes the classical Calderón-Zygmund operator. Maldonado and Naibo [11] developed a theory of the bilinear Calderón-Zygmund operator of type ω(t) (see Definition 1.4) and extended some results of Yabuta.

Theorem A [11]

Consider ω(t)Dini(1/2), and let T be a bilinear Calderón-Zygmund operator of type ω(t) in R n . If 1< p 1 , p 2 < and 1 2 p< such that 1 p = 1 p 1 + 1 p 2 , then T can be extended to a bounded operator from L p 1 ( R n )× L p 2 ( R n ) into L p ( R n ), where L p 1 ( R n ) or L p 2 ( R n ) should be replaced by L c ( R n ) if p 1 = or p 2 =, respectively.

In this paper, we study the boundedness of a bilinear Calderón-Zygmund operator of type ω(t) on a non-homogeneous metric space, where we only assume ωDini(1). And we also note that the condition of kernel (1.5) is more general than the size condition defined by Hu [12]. So this is a new result, which generalizes some works of Maldonado and Naibo [11] and Anh and Doung [4] on (X,d,μ). As an application, we investigate the boundedness of the bilinear Calderón-Zygmund operator of type ω(t) over a Morrey space on (X,d,μ).

Before stating our main results, we fix some notations and define some terminologies. Throughout this paper, a ball Q denotes Q=Q(x,r)={yX:d(x,y)<r} which is equipped with a fixed center xX and radius r>0. The center and radius of Q are denoted by x Q and r Q . For α>0 and Q=Q(x,r), the notation αQ:=Q(x,αQ) stands for the concentric dilation of Q. For notational convenience, we will occasionally write f =( f 1 , f 2 ). The following notions of geometrically doubling and upper doubling measures μ are originally from Hytönen [3].

We finally observe that in the sequel the letter C will be used to denote various constants which do not depend on the functions.

Definition 1.1 A metric space (X,d) is called geometrically doubling if there exists a number NN such that any open ball Q(x,r)X can be covered by at most N balls Q( x i , r 2 ).

Lemma 1.2 For a metric space (X,d), the following statements are equivalent:

  1. (1)

    (X,d) is geometrically doubling.

  2. (2)

    For any ϵ(0,1), any ball Q(x,r)X can be covered by at most N ϵ n balls Q( x i ,ϵr).

  3. (3)

    For every ϵ(0,1), any ball Q(x,r)X can contain at most N ϵ n centers x i of disjoint balls Q( x i ,ϵr).

  4. (4)

    There exists MN such that any ball Q(x,r)X can contain at most M centers x i of disjoint balls { Q ( x i , r / 4 ) } i = 1 M .

Definition 1.3 A Borel measure μ in the metric space (X,d,μ) is said to be an upper doubling measures if there exists a dominating function λ:X× R + R + and a constant C λ such that:

  1. (1)

    For any fixed xX, rλ(x,r) is increasing.

  2. (2)

    λ(x,2r) C λ λ(x,r).

  3. (3)

    The inequality μ(x,r):=μ(Q(x,r))λ(x,r) C λ λ(x,r/2) holds for all xX, 0<r<.

  4. (4)

    λ(x,r)λ(y,r) for all r>0, x,yX and d(x,y)r.

Remark 1 If we take the dominating function λ(x,r) to be μ(Q(x,r)), then the measure doubling is a special case of upper doubling. On the other hand, a Radon measure μ as in (1.2) on R d is also an upper doubling measure by taking the dominating function λ(x,r)= C 0 r d .

In this paper, we assume that (X,d,μ) is a geometrically doubling metric spaces and the measure μ is an upper doubling measure. And we denote L p (X,μ) by L p (μ) for brevity.

We recall the Calderón-Zygmund operator defined by Anh and Doung [4]. A kernel K(,) L loc 1 (X×X{(x,y):x=y}) is called a Calderón-Zygmund kernel if it satisfies

| K ( x , y ) | min { 1 λ ( x , d ( x , y ) ) , 1 λ ( y , d ( x , y ) ) }
(1.3)

for all (x,y)X×X with xy. There exists 0<δ1 such that

| K ( x , y ) K ( x , y ) | + | K ( y , x ) K ( y , x ) | d ( x , x ) δ d ( x , y ) δ λ ( x , d ( x , y ) ) .
(1.4)

A linear operator T is called a Calderón-Zygmund operator with K(,) satisfying the above conditions if for all f L (μ) with bounded support and xsuppf,

Tf(x)= X k(x,y)f(y)dμ(y).

A new example of operators with kernel satisfying (1.3) and (1.4) is called Bergman-type operator; it appeared in [13].

For a>0, we write ωDini(a) if ω:[0,)[0,), ω is nondecreasing, concave, and

| ω | Dini ( a ) := 0 1 ω a (t) d t t <.

Now we define bilinear Calderón-Zygmund kernel of type ω(t) and the corresponding bilinear Calderón-Zygmund operators.

Denote

1 [ λ ( x , d ( x , y ˜ ) ) ] 2 = min i { 1 , 2 } { 1 ( λ ( x , d ( x , y i ) ) ) 2 } .

Definition 1.4 Let ω:[0,)[0,) be a nondecreasing function and K(x, y 1 , y 2 ) be a locally integrable function defined away from the diagonal x= y 1 = y 2 in ( X ) 3 . We say that K(x, y 1 , y 2 ) is a bilinear Calderón-Zygmund kernel of type ω(t) if it satisfies the size condition,

| K ( x , y 1 , y 2 ) | C K 1 [ λ ( x , d ( x , y ˜ ) ) ] 2
(1.5)

for some C K >0 and all (x, y 1 , y 2 ) ( X ) 3 with x y i for some i. We have the smoothness estimates,

| K ( x + h , y 1 , y 2 ) K ( x , y 1 , y 2 ) | + | K ( x , y 1 + h , y 2 ) K ( x , y 1 , y 2 ) | + | K ( x , y 1 , y 2 + h ) K ( x , y 1 , y 2 ) | C K 1 [ λ ( x , d ( x , y ˜ ) ) ] 2 ω ( | h | i = 1 2 d ( x , y i ) ) ,
(1.6)

whenever |h| 1 2 max i { 1 , 2 } d(x, y i ).

A bilinear operator T ω :S×S S is said to be associated with a bilinear Calderón-Zygmund kernel of type ω(t), if

T ω ( f 1 , f 2 )(x)= X X K(x, y 1 , y 2 ) f 1 ( y 1 ) f 2 ( y 2 )dμ( y 1 )dμ( y 2 )
(1.7)

for all f i C 0 , and x i = 1 2 supp f i .

If the bilinear operator T ω is associated with K(x, y 1 , y 2 ) and admits some bounded extensions

T ω : L r 1 (μ)× L r 2 (μ) L r , (μ)

for some 1< r i < (i=1,2) and r>1 with i = 1 2 1 r i = 1 r , or

T ω : L r 1 (μ)× L r 2 (μ) L 1 (μ)

for some 1< r i < (i=1,2) and i = 1 2 1 r i =1, then T ω is said to be a bilinear Calderón-Zygmund operator of type ω(t).

Note that λ(x,r)λ(y,r) for all r>0, x,yX and d(x,y)r. When ω(t)= t δ , δ(0,1], the linear Calderón-Zygmund operator of type ω(t) is the Calderón-Zygmund operator defined by Anh and Doung [4], so our results are more general.

Theorem 1.5 Consider ωDini(1), and let T ω be a bilinear Calderón-Zygmund operator of type ω(t) with K(x, y 1 , y 2 ). Assume 1<p, p 1 , p 2 <, i = 1 2 1 p i = 1 p and f i L p i (μ) with R d T ω ( f 1 , f 2 )(x)dμ(x)=0 if μ<. Suppose T ω is a bounded operator from L 1 (μ)× L 1 (μ) L 1 / 2 , (μ), then there exists a constant C such that

T ω ( f 1 , f 2 ) L p ( μ ) C i = 1 2 f i L p i ( μ ) ,

the constant C depends only on C K , p i , p.

Remark 2 The assumption of ω in [11] is ωDini(1/2), which is stronger than ωDini(1), and it is easy to see because ω(t) is nondecreasing,

0 1 ω(t) d t t = 0 1 ω 1 2 (t) ω 1 2 (t) d t t ω 1 2 (1) 0 1 ω 1 2 (t) d t t .

Next, we give the boundedness of the bilinear Calderón-Zygmund operator of type ω(t) over Morrey space on (X,d,μ) (for the Morrey space see Definition 3.1).

Theorem 1.6 Assume that T ω is a bilinear Calderón-Zygmund operator of type ω(t), let p i (1,) and f i L p i (μ) for i=1,2. Suppose T ω is a bounded operator from L 1 (μ)× L 1 (μ) to L 1 / 2 , (μ), then there exists a constant C such that

T ω ( f 1 , f 2 ) M q p ( μ ) C i = 1 2 f i M q i p i ( μ ) ,

where 1< q i p i and i = 1 2 1 p i = 1 p , i = 1 2 1 q i = 1 q .

2 Proof of the result

Before we prove Theorem 1.5, we need some notations and lemmas.

Definition 2.1 For any two balls QR, we define

K Q , R =1+ r Q d ( x , x Q ) r R 1 λ ( x Q , d ( x , x Q ) ) dμ(x).
(2.1)

For α,β>1, a ball QX is said to be (α,β)-doubling if μ(αQ)βμ(Q).

Lemma 2.2 [4]

  1. (1)

    If QRS are balls in , then

    max{ K Q , R , K R , S } K Q , S { K Q , R + K R , S }.
  2. (2)

    If QR are of compatible size, then K Q , R C.

  3. (3)

    If αQ,, α N 1 Q are non-(α,β)-doubling balls (β> C λ log 2 α ), then K Q , α N Q C.

In what follows, unless α, β are specified otherwise, by a doubling ball we mean a (6, β 0 )-doubling with a fixed number β 0 >max{ C λ 3 log 2 6 , 6 3 n }, where n can be viewed as a geometric dimension of the spaces.

For any fixed ball QX, let N0 be the smallest integer such that 6 N Q is doubling, we denote this ball by Q ˜ . Denote by m Q f the mean value of f on Q, namely, m Q f= 1 μ ( Q ) Q f(x)dμ. Let η>1 be a fixed constant, we say that f L loc 1 (μ) is in RBMO(μ) if there exists a constant such that

1 μ ( η Q ) Q | f ( y ) m Q ˜ f | dμ(y)A
(2.2)

for any ball Q, and

| m Q f m R f|A K Q , R
(2.3)

for any two doubling balls QR. The minimal constant is the RBMO(μ) norm of f, and it will be denoted by f .

We will prove Theorem 1.5 via the boundedness of sharp maximal estimates. Let f be a function in L loc 1 (μ), the sharp maximal function of f is defined by

M f(x)= sup Q x 1 μ ( 30 Q ) Q | f ( y ) m Q ˜ f | dμ(y)+ sup R Q x Q , R doubling | m Q f m R f | K Q , R ,
(2.4)

where the supremum is taking over all the balls Q containing the point x. In order to prove our results, we need a variant of (2.4)

M δ f(x)= ( M | f | δ ( x ) ) 1 δ .

For k5, we denote the non-centered Hardy-Littlewood maximal operator

M ( k ) f(x)= sup x Q X 1 μ ( k Q ) Q | f ( y ) | dμ(y),

which is bounded on L p (X,μ) for p>1, we can find the proof in [3]. We also need the following multilinear maximal operator:

M ( k ) ( f )(x)= sup x Q X i = 1 2 1 μ ( k Q ) Q | f i ( y i ) | dμ( y i ),k5,

which is introduced by Lerner [14] when μ is Lebesgue measure and k=1. It obvious that the operator M k ( f ) is strictly controlled by the 2-fold product of M ( k ) f.

The non-centered doubling maximal operator is defined by

Nf(x)= sup Q x Q doubling 1 μ ( Q ) Q | f ( y ) | dμ(y),
(2.5)

we denote N δ f(x)= ( N | f | δ ( x ) ) 1 δ . By the Lebesgue differential theorem, it is easy to see that |f(x)| N δ f(x) for any f L loc 1 (μ) and μ-a.e. xX.

Lemma 2.3 Let f L loc 1 (μ) with the extra condition fdμ=0 if μ:=μ(X)<. Assume that for some p, 1<p<, inf{1,Nf} L p (X,μ). Then we have

N δ f L p ( μ ) C M δ f L p ( μ ) .

The proof of Lemma 2.3 needs a slight modification of the proof of Theorem 4.2 in [4], so we omit the details.

In the following proofs we will employ several times the following simple Kolmogorov inequality. Let (X,d,μ) be a probability measure spaces and let 0<p<q<, then there is a constant C= C p , q such that for any measurable function f,

f L p ( μ ) C f L q , ( μ ) .
(2.6)

Lemma 2.4 Let T ω be a bilinear Calderón-Zygmund operator of type ω(t), 0<δ< 1 2 . Suppose T ω is bounded from L 1 (μ)× L 1 (μ) to L 1 / 2 , (μ), then there exists a constant C such that

M δ ( T ω ( f ) ) (x)C M ( 5 ) ( f )(x),
(2.7)

for any f i L c (μ) and for every xX.

Proof In order to prove (2.7), we combine the techniques of Theorem 3.2 in [14] with the methods of Theorem 9.1 in [1], so it suffices to prove that

( 1 μ ( 30 Q ) Q | T ω ( f ) ( y ) h Q | δ d μ ( y ) ) 1 δ C M ( 5 ) ( f )(x)
(2.8)

and

| h Q h R |C K Q , R M ( 5 ) ( f )(x)
(2.9)

hold for any balls QR with xQ, Q is an arbitrary ball,

h Q = m Q ( T ω ( f 1 0 , f 2 ) + T ω ( f 1 , f 2 0 ) + T ω ( f 1 , f 2 ) ) , h R = m R ( T ω ( f 1 0 , f 2 ) + T ω ( f 1 , f 2 0 ) + T ω ( f 1 , f 2 ) ) ,

where we split each f i as f i = f i 0 + f i , f i 0 = f i χ 6 Q and f i = f i f i 0 , and we have

| T ω ( f ) ( y ) | = | T ω ( f 1 , f 2 ) ( y ) | | T ω ( f 1 0 , f 2 0 ) ( y ) | + | T ω ( f 1 0 , f 2 ) ( y ) | + | T ω ( f 1 , f 2 0 ) ( y ) | + | T ω ( f 1 , f 2 ) ( y ) | .

So we obtain

1 μ ( 30 Q ) Q | T ω ( f ) ( y ) h Q | δ d μ ( y ) 1 μ ( 30 Q ) Q | T ω ( f 1 0 , f 2 0 ) ( y ) | δ d μ ( y ) + 1 μ ( 30 Q ) 1 μ ( Q ) Q Q | [ T ω ( f 1 0 , f 2 ) ( y ) T ω ( f 1 0 , f 2 ) ( z ) ] + [ T ω ( f 1 , f 2 0 ) ( y ) T ω ( f 1 , f 2 0 ) ( z ) ] | δ d μ ( z ) d μ ( y ) + 1 μ ( 30 Q ) 1 μ ( Q ) Q Q | T ω ( f 1 , f 2 ) ( y ) T ω ( f 1 , f 2 ) ( z ) | δ d μ ( z ) d μ ( y ) : = I + I I + I I I .

For the first term I, applying Kolmogorov’s inequality (2.6) with p=δ and q=1/2, we derive

I 1 δ = ( 1 μ ( 30 Q ) Q | T ω ( f 1 0 , f 2 0 ) ( y ) | δ d μ ( y ) ) 1 δ C δ ( μ ( Q ) μ ( 30 Q ) ) 1 δ T ω ( f 1 χ 6 Q , f 2 χ 6 Q ) L 1 / m , ( Q , d μ μ ( Q ) ) C δ ( μ ( Q ) μ ( 30 Q ) ) 1 δ i = 1 2 1 μ ( Q ) 6 Q | f i ( y i ) | d μ ( y i ) C δ ( μ ( Q ) μ ( 30 Q ) ) 1 δ i = 1 2 μ ( 5 × 6 Q ) μ ( Q ) 1 μ ( 5 × 6 Q ) 6 Q | f i ( y i ) | d μ ( y i ) C δ ( μ ( Q ) μ ( 30 Q ) ) 1 δ 2 M ( 5 ) ( f ) ( x ) C M ( 5 ) ( f ) ( x ) ,

since T: L 1 (μ)× L 1 (μ) L 1 / 2 , (μ).

Next we consider II. Firstly, the condition d(y,z) 1 2 max{d(y, y 1 ),d(y, y 2 )} holds since y,zQ, y 1 6Q, y 2 ( 6 Q ) c , then we have the following estimates:

| T ω ( f 1 , f 2 0 ) ( y ) T ω ( f 1 , f 2 0 ) ( z ) | C 6 Q X 6 Q 1 [ λ ( y , d ( y , y ˜ ) ) ] 2 ω ( d ( z , y ) i = 1 2 d ( y , y i ) ) | f 1 ( y 1 ) | | f 2 ( y 2 ) | d μ ( y 1 ) d μ ( y 2 ) C 6 Q | f 2 ( y 2 ) | X 6 Q | f 1 ( y 1 ) | [ λ ( y , d ( y , y 1 ) ) ] 2 ω ( d ( z , y ) d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) C λ ( y , d ( y , y 2 ) ) 6 Q | f 2 ( y 2 ) | k = 1 6 k + 1 Q 6 k Q 1 λ ( y , d ( y , y 1 ) ) ω ( d ( z , y ) d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) C λ ( x Q , 6 r Q ) 6 Q | f 2 ( y 2 ) | d μ ( y 2 ) k = 1 1 λ ( x Q , 6 k r Q ) 6 k + 1 Q 6 k Q | f 1 ( y 1 ) | d μ ( y 1 ) ω ( 6 k ) C μ ( 5 × 6 Q ) λ ( x Q , 6 r Q ) 1 μ ( 5 × 6 Q ) 6 Q | f 2 ( y 2 ) | d μ ( y 2 ) × k = 1 ω ( 6 k ) μ ( 5 × 6 k + 2 Q ) λ ( x Q , 6 k r Q ) 1 μ ( 5 × 6 k + 2 Q ) 6 k + 2 Q | f 1 ( y 1 ) | d μ ( y 1 ) C M ( 5 ) ( f ) ( x ) k = 1 ω ( 6 k ) C M ( 5 ) ( f ) ( x ) .

Here the series k = 1 ω( 6 k ) is equivalent to 0 1 ω(t) d t t , where ωDini(1). We use the estimate, since λ(x,2r) C λ λ(x,r),

μ ( 5 × 6 Q ) λ ( x Q , 6 r Q ) λ ( x Q , 5 × 6 r Q ) λ ( x Q , 6 r Q ) C λ log 2 5 + 1 ,

and

μ ( 5 × 6 k + 2 Q ) λ ( x Q , 6 k r Q ) λ ( x Q , 5 × 6 2 × 6 k r Q ) λ ( x Q , 6 k r Q ) C λ 6 log 2 5 + 1 .

We will use the same methods several times.

Similarly, we have

| T ω ( f 1 0 , f 2 ) ( y ) T ω ( f 1 0 , f 2 ) ( z ) | C M ( 5 ) ( f )(x).

By the estimates above, we have

I I 1 δ C M ( 5 ) ( f )(x).

It remains to consider the term in III. For y,zQ, noting that d(y,z) 1 2 max{d(y, y 1 ),d(y, y 2 )} for y i ( 6 Q ) c (i=1,2), we use the condition of kernel (1.6) to obtain

| T ω ( f 1 , f 2 ) ( y ) T ω ( f 1 , f 2 ) ( z ) | C X 6 Q X 6 Q 1 [ λ ( y , d ( y , y ˜ ) ) ] 2 × ω ( d ( z , y ) i = 1 2 d ( y , y i ) ) | f 1 ( y 1 ) | | f 2 ( y 2 ) | d μ ( y 1 ) d μ ( y 2 ) C k = 1 j = k 6 k + 1 Q 6 k Q | f 2 ( y 2 ) | 6 j + 1 Q 6 j Q | f 1 ( y 1 ) | [ λ ( y , d ( y , y 1 ) ) ] 2 × ω ( d ( y , z ) d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) + C k = 1 j = 1 k 1 6 k + 1 Q 6 k Q | f 2 ( y 2 ) | [ λ ( y , d ( y , y 2 ) ) ] 2 ω ( d ( y , z ) d ( y , y 2 ) ) × 6 j + 1 Q 6 j Q | f 1 ( y 1 ) | d μ ( y 1 ) d μ ( y 2 ) C k = 1 j = k 6 k + 1 Q 6 k Q | f 2 ( y 2 ) | 6 j + 1 Q 6 j Q | f 1 ( y 1 ) | [ λ ( y , d ( y , y 1 ) ) ] 2 × ω ( d ( y , z ) d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) + C k = 1 6 k + 1 Q 6 k Q | f 2 ( y 2 ) | [ λ ( y , d ( y , y 2 ) ) ] 2 × ω ( d ( y , z ) d ( y , y 2 ) ) 6 k Q 6 Q | f 1 ( y 1 ) | d μ ( y 1 ) d μ ( y 2 ) : = I I I 1 + I I I 2 .

A trivial computation now shows that

I I I 1 C j = 1 ( 1 [ λ ( x Q , 6 j r Q ) ] 2 6 j + 1 Q 6 j Q | f 1 ( y 1 ) | d μ ( y 1 ) ω ( r Q 6 j r Q ) ) × k = 1 j 6 k + 1 Q 6 k Q | f 2 ( y 2 ) | d μ ( y 2 ) C j = 1 ( C λ log 2 30 + 1 1 [ λ ( x Q , 5 × 6 j + 1 r Q ) ] 2 6 j + 1 Q | f 1 ( y 1 ) | d μ ( y 1 ) ) ω ( r Q 6 j r Q ) × 6 j + 1 Q | f 2 ( y 2 ) | d μ ( y 2 ) C M ( 5 ) ( f ) ( x ) j = 1 ω ( 6 j ) C M ( 5 ) ( f ) ( x ) .

And

I I I 2 C k = 1 ( 1 [ λ ( x Q , 6 k r Q ) ] 2 6 k + 1 Q | f 2 ( y 2 ) | d μ ( y 2 ) ) × j = 1 k 1 6 k + 1 Q 6 k Q | f 1 ( y 1 ) | d μ ( y 1 ) ω ( 6 k ) k = 1 ( 1 [ λ ( x Q , 6 k r Q ) ] 2 6 k + 1 Q | f 2 ( y 2 ) | d μ ( y 2 ) ) 6 k Q | f 1 ( y 1 ) | d μ ( y 1 ) ω ( 6 k ) k = 1 ( C λ log 2 30 + 1 1 λ ( x Q , 5 × 6 k + 1 r Q ) 6 k + 1 Q | f 2 ( y 2 ) | d μ ( y 2 ) ) × ( C λ log 2 5 + 1 1 λ ( x Q , 5 × 6 k r Q ) 6 k Q | f 1 ( y 1 ) | d μ ( y 2 ) ) ω ( 6 k ) C M ( 5 ) ( f ) ( x ) k = 1 ω ( 6 k ) C M ( 5 ) ( f ) ( x ) .

Therefore,

| T ω ( f 1 , f 2 ) (y) T ω ( f 1 , f 2 ) (z)| χ Q (y)C M ( 5 ) ( f )(x).
(2.10)

By the above estimate, we have

I I I 1 δ = ( 1 μ ( 30 Q ) 1 μ ( Q ) Q Q | T ω ( f 1 , f 2 ) ( y ) T ω ( f 1 , f 2 ) ( z ) | δ d μ ( z ) d μ ( y ) ) 1 δ C M ( 5 ) ( f ) ( x ) .

Fix any balls QR with xQ, where Q is an arbitrary ball and R is a doubling ball. Noting that R is a doubling ball we have R= R ˜ . We denote N Q , R +1 by N such that 6R 10 N Q. Let f i 0 = f i χ 6 Q , f i N = f i χ 10 N Q , f i Q N = f i χ 10 N Q 6 Q , f i = f i χ X 10 N Q , f i R = f i χ 6 R and f i R N = f i χ 10 N Q 6 R , write the difference h Q h R in the following way:

| h Q h R | | m Q ( T ω ( f 1 0 , f 2 Q N ) + T ω ( f 1 Q N , f 2 0 ) ) | + | m Q ( T ω ( f 1 Q N , f 2 Q N ) ) | + | m Q ( T ω ( f 1 N , f 2 N ) ) m R ( T ω ( f 1 N , f 2 N ) ) | + | m Q ( T ω ( f 1 , f 2 N ) ) m R ( T ω ( f 1 , f 2 N ) ) | + | m Q ( T ω ( f 1 N , f 2 ) ) m R ( T ω ( f 1 N , f 2 ) ) | + | m R ( T ω ( f 1 R , f 2 R N ) + T ω ( f 1 R N , f 2 N ) ) | + | m R ( T ω ( f 1 R N , f 2 R N ) ) | = A 1 + A 2 + A 3 + A 4 + A 5 + A 6 + A 7 .

For the term A 1 , we, firstly, deal with T ω ( f 1 0 , f 2 Q N ); it follows from the size of kernel (1.5), for all yQ,

| T ω ( f 1 0 , f 2 Q N ) ( y ) | C 6 Q 10 N Q 6 Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | [ λ ( y , d ( y , y ˜ ) ) ] 2 d μ ( y 2 ) d μ ( y 1 ) C 6 Q f 1 ( y 1 ) λ ( y , d ( y , y 2 ) ) d μ ( y 1 ) 10 N Q 6 Q f 2 ( y 2 ) λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) C ( k = 1 N Q , R 10 k + 1 Q 10 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) + 10 Q 6 Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) ) × μ ( 5 × 6 Q ) λ ( x Q , 6 r Q ) 1 μ ( 5 × 6 Q ) 6 Q | f 1 ( y 1 ) | d μ ( y 1 ) C K Q , R M ( 5 ) ( f ) ( x ) .

Using the analogous methods to deal with the term T ω ( f 1 Q N , f 2 0 ), we have

A 1 C K Q , R M ( 5 ) ( f )(x).

By an argument similar to the estimate for A 1 , we see that

A 6 C K Q , R M ( 5 ) ( f )(x).

For all yQ, we have

| T ω ( f 1 Q N , f 2 Q N ( y ) | C 10 N Q 6 Q 10 N Q 6 Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | [ λ ( y , d ( y , y ˜ ) ) ] 2 d μ ( y 1 ) d μ ( y 2 ) C k = 1 N 1 j = 1 N 1 10 k + 1 Q 10 k Q 10 j + 1 Q 10 j Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | [ λ ( y , d ( y , y ˜ ) ) ] 2 d μ ( y 1 ) d μ ( y 2 ) + C 10 Q 6 Q 10 Q 6 Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | [ λ ( y , d ( y , y ˜ ) ) ] 2 d μ ( y 1 ) d μ ( y 2 ) = : D 1 + D 2 .

Firstly, for D 2 , we note that yQ, y i 10Q6Q, so 5 r Q d(y, y i )11 r Q , i=1,2. The properties of λ imply that

1 λ ( y , 11 r Q ) 1 λ ( y , d ( y , y i ) ) 1 λ ( y , 5 r Q ) , D 2 C [ λ ( y , 5 r Q ) ] 2 10 Q 6 Q 10 Q 6 Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | d μ ( y 1 ) d μ ( y 2 ) C [ λ ( x Q , 5 r Q ) ] 2 10 Q 6 Q 10 Q 6 Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | d μ ( y 1 ) d μ ( y 2 ) i = 1 2 μ ( 50 Q ) λ ( x Q , 5 r Q ) 1 μ ( 50 Q ) 10 Q | f i ( y i ) | d μ ( y i ) C M ( 5 ) ( f ) ( x ) .

For D 1 , we have

D 1 C k = 1 N 1 j = k N 1 10 k + 1 Q 10 k Q | f 1 ( y 1 ) | 10 j + 1 Q 10 j Q | f 2 ( y 2 ) | [ λ ( y , d ( y , y 2 ) ) ] 2 d μ ( y 2 ) d μ ( y 1 ) + k = 1 N 1 j = 1 k 1 10 k + 1 Q 10 k Q | f 1 ( y 1 ) | [ λ ( y , d ( y , y 1 ) ) ] 2 10 j + 1 Q 10 j Q | f 1 ( y 1 ) | d μ ( y 2 ) d μ ( y 1 ) : = D 11 + D 12 .

In the following, we will estimate D 11 and D 12 , respectively:

D 11 j = 1 N 1 1 [ λ ( x Q , 10 j r Q ) ] 2 10 j + 1 Q 10 j Q | f 2 ( y 2 ) | d μ ( y 2 ) k = 1 j 10 k + 1 Q 10 k Q | f 1 ( y 1 ) | d μ ( y 1 ) j = 1 N 1 1 [ λ ( x Q , 10 j r Q ) ] 2 10 j + 1 Q | f 2 ( y 2 ) | d μ ( y 2 ) 10 j + 1 Q | f 1 ( y 1 ) | d μ ( y 1 ) C K Q , R M ( 5 ) ( f ) ( x ) , D 12 k = 1 N 1 10 k + 1 Q 10 k Q | f 1 ( y 1 ) | [ λ ( y , d ( y , y 1 ) ) ] 2 d μ ( y 1 ) 10 k Q | f 2 ( y 2 ) | d μ ( y 2 ) k = 1 N 1 1 [ λ ( x Q , 10 k r Q ) ] 2 10 k + 1 Q | f 1 ( y 1 ) | d μ ( y 1 ) 10 k Q | f 2 ( y 2 ) | d μ ( y 2 ) C K Q , R M ( 5 ) ( f ) ( x ) .

The estimates of D 1 and D 2 imply that

A 2 C K Q , R M ( 5 ) ( f )(x).

Analogously,

A 7 C K Q , R M ( 5 ) ( f )(x).

Some estimates similar to III yield

A 3 C M ( 5 ) ( f )(x).

Finally, using a similar argument as that of II, which involves the kernel condition (1.6), we obtain

A 4 + A 5 C M ( 5 ) ( f )(x).

Combining all the estimates for A i with i{1,,7}, we get (2.9).

Let us see how from (2.8) and (2.9) one gets (2.7). Use the definition of M δ ( f )(x) and the fact | | α | γ | β | γ | | α β | γ , 0<γ<1, if Q is a doubling ball and xQ, we have

( 1 μ ( 30 Q ) Q | | T ω ( f ) | δ m Q ˜ ( | T ω ( f ) | δ ) | d μ ( y ) ) 1 δ C ( 1 μ ( 30 Q ) Q | | T ω ( f ) | δ | h Q | δ | d μ ) 1 δ + C ( 1 μ ( 30 Q ) Q | | h Q | δ | h Q ˜ | δ | d μ ) 1 δ + C ( 1 μ ( 30 Q ) Q | | h Q ˜ | δ m Q ˜ ( | T ω ( f ) | δ ) | d μ ) 1 δ C ( 1 μ ( 30 Q ) Q | T ω ( f ) h Q | δ d μ ) 1 δ + C ( 1 μ ( 30 Q ) Q | | h Q | δ | h Q ˜ | δ | d μ ) 1 δ + C ( μ ( Q ) μ ( 30 Q ) ) 1 δ | | h Q ˜ | δ m Q ˜ ( | T ω ( f ) | δ ) | 1 δ C ( 1 μ ( 30 Q ) Q | T ω ( f ) h Q | δ d μ ) 1 δ + C ( 1 μ ( 30 Q ) Q | h Q h Q ˜ | δ d μ ) 1 δ + C ( μ ( Q ) μ ( 30 Q ) ) 1 δ ( 1 μ ( Q ˜ ) Q ˜ | T ω ( f ) h Q ˜ | δ d μ ( y ) ) 1 δ ,

and for all doubling balls QR with xQ, we have

| m Q ( | T ω ( f ) | δ ) m R ( | T ω ( f ) | δ ) | 1 δ C | m Q ( | T ω ( f ) | δ ) | h Q | δ | 1 δ + C | | h R | δ m R ( | T ω ( f ) | δ ) | 1 δ + C | | h Q | δ | h R | δ | 1 δ C ( 1 μ ( Q ) Q | | T ω ( f ) | δ | h Q | δ | d μ ) 1 δ + ( 1 μ ( R ) R | | h R | δ | T ω ( f ) | δ | d μ ) 1 δ + C | h Q h R | C ( 1 μ ( Q ) Q | T ω ( f ) h Q | δ d μ ) 1 δ + ( 1 μ ( R ) R | h R T ω ( f ) | δ d μ ) 1 δ + C | h Q h R | .

Since we proved (2.8) and (2.9), (2.7) holds obviously. □

Now we give the proof of Theorem 1.5.

Proof Since L c (μ) is dense in L p (μ), 1<p<, Lemma 2.4 holds for f i L p i (μ). Using Lemma 2.3, Hölder’s inequality, and the boundedness of M ( k ) (f), we get

T ω ( f ) L p ( μ ) N δ ( T ω ( f ) ) L p ( μ ) C M δ ( T ω ( f ) ) L p ( μ ) C M ( 5 ) ( f ) L p ( μ ) C M ( 5 ) ( f 1 ) L p 1 ( μ ) M ( 5 ) ( f 2 ) L p 2 ( μ ) C i = 1 2 f i L p i ( μ ) .

 □

3 Boundedness on Morrey spaces

We recall the definition of the Morrey space with non-doubling measure.

Definition 3.1 Let k>1 and 1qp<; the Morrey space M q p (k,μ) is defined as

M q p (k,μ):= { f L loc q ( μ ) ; f M q p ( k , μ ) < }

with the norm

f M q p ( k , μ ) := sup Q X μ ( k Q ) 1 p 1 q ( Q | f | q d μ ) 1 q .

As is easily seen, the space M q p (k,μ) is a Banach space with its norm. The Morrey space norm reflects local regularity of f more precisely than the Lebesgue space norm. It is easy to see from Hölder’s inequality that L p (μ)= M p p (k,μ) M q 1 p (k,μ) M q 2 p (k,μ) whenever 1 q 2 q 1 p<. Moreover, the definition of the spaces is independent of the constant k>1, and the norms for different choice of k>1 are equivalent, see [1518] for details. We will denote M q p (6,μ) by M q p (μ).

For the proof of Theorem 1.6, we need some lemmas.

Lemma 3.2 [19]

Let Q=Q(x,r), λ(x,r) satisfying conditions of definition (1.3), q>1, 1 q + 1 q =1, then

[ X Q 1 [ λ ( x , d ( x , y ) ) ] q d μ ( y ) ] 1 q C ( λ ( x , r ) ) 1 q .

Lemma 3.3 Let 1<q<p< and f M q p (μ), for xQ(x,r), we have

X Q | f ( y ) | λ ( x , d ( x , y ) ) dμ(y)Cμ ( Q ) 1 q f L q ( μ ) .

Proof Using Hölder’s inequality and Lemma 3.2, we get

X Q | f ( y ) | λ ( x , d ( x , y ) ) d μ ( y ) C ( X Q | f ( y ) | q d μ ( y ) ) 1 q ( X Q 1 [ λ ( x , d ( x , y ) ) ] q d μ ( y ) ) 1 q C f L q ( μ ) ( λ ( x , r ) ) 1 q ,

since μ(Q(x,r))λ(x,r),

X Q | f ( y ) | λ ( x , d ( x , y ) ) dμ(y)Cμ ( Q ) 1 q f L q ( μ ) .

 □

Now we are ready to give the proof of Theorem 1.6.

Proof Fix a ball QX and we split each f i as f i = f i 0 + f i , where f i 0 = f i χ 2 Q and f i = f i f i 0 , and this yields

| T ω ( f ) ( y ) | = | T ω ( f 1 , f 2 ) ( y ) | | T ω ( f 1 0 , f 2 0 ) ( y ) | + | T ω ( f 1 0 , f 2 ) ( y ) | + | T ω ( f 1 , f 2 0 ) ( y ) | + | T ω ( f 1 , f 2 ) ( y ) | : = H 1 + H 2 + H 3 + H 4 .

For the first term H 1 , using the results of Theorem 1.5, we have

T ω ( f 1 0 , f 2 0 ) M q p ( μ ) sup Q X μ ( 6 Q ) 1 p 1 q ( Q | T ω ( f 1 0 , f 2 0 ) ( y ) | q d μ ( y ) ) 1 q sup Q X μ ( 6 Q ) 1 p 1 q T ω ( f 1 0 , f 2 0 ) L q ( μ ) C sup Q X μ ( 6 Q ) 1 p 1 q i = 1 2 f i 0 L q i ( μ ) C sup Q X μ ( 6 Q ) 1 p 1 q i = 1 2 ( 2 Q | f i | q i d μ ( y ) ) 1 q i C sup Q X i = 1 2 μ ( 6 Q ) 1 p i 1 q i ( 2 Q | f i | q i d μ ( y ) ) 1 q i C i = 1 2 f i M q i p i ( μ ) .

Considering the case H 4 , firstly, we deal with | T ω ( f 1 , f 2 )|. For yQ, we have

| T ω ( f 1 , f 2 ) | χ Q ( y ) C X 2 Q X 2 Q | f 1 ( y 1 ) | | f 2 ( y 2 ) | [ λ ( y , d ( y , y ˜ ) ) ] 2 d μ ( y 1 ) d μ ( y 2 ) C k = 1 j = k 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | [ λ ( y , d ( y , y 1 ) ) ] 2 d μ ( y 1 ) d μ ( y 2 ) + C k = 1 j = 1 k 1 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | [ λ ( y , d ( y , y 2 ) ) ] 2 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | d μ ( y 1 ) d μ ( y 2 ) : = E 1 + E 2 .

For the term E 1 , it follows that

E 1 = C k = 1 j = k 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 1 ) ) 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | λ ( y , d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) C k = 1 j = k 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | λ ( y , d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) C j = 1 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | λ ( y , d ( y , y 1 ) ) d μ ( y 1 ) k = 1 j 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) C j = 1 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | λ ( y , d ( y , y 1 ) ) d μ ( y 1 ) 2 j + 1 Q 2 Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) C i = 1 2 X 2 Q | f i ( y i ) | λ ( y , d ( y , y i ) ) d μ ( y i ) .

And

E 2 = C k = 1 j = 1 k 1 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 1 ) d μ ( y 2 ) C k = 1 j = 1 k 1 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) 2 j + 1 Q 2 j Q | f 1 ( y 1 ) | λ ( y , d ( y , y 1 ) ) d μ ( y 1 ) d μ ( y 2 ) C k = 1 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) 2 k Q 2 Q | f 1 ( y 1 ) | λ ( y , d ( y , y 1 ) ) d μ ( y 1 ) C i = 1 2 X 2 Q | f i ( y i ) | λ ( y , d ( y , y i ) ) d μ ( y i ) .

For the term i = 1 2 X 2 Q | f i ( y i ) | λ ( y , d ( y , y i ) ) dμ( y i ), using Lemma 3.3, we get

i = 1 2 X 2 Q | f i ( y i ) | λ ( y , d ( y , y i ) ) d μ ( y i ) C i = 1 2 μ ( 2 Q ) 1 q i f i L q i ( μ ) = C i = 1 2 μ ( 2 Q ) 1 q i μ ( 6 Q ) 1 p i + 1 q i μ ( 6 Q ) 1 p i 1 q i f i L q i ( μ ) C ( μ ( 6 Q ) μ ( 2 Q ) ) 1 q μ ( 6 Q ) 1 p i = 1 2 f i M q i p i ( μ ) .

According to the estimate above, we obtain

T ω ( f 1 , f 2 ) M q p ( μ ) sup Q X μ ( 6 Q ) 1 p 1 q ( Q | T ω ( f 1 , f 2 ) ( y ) | q d μ ( y ) ) 1 q C μ ( 6 Q ) 1 p 1 q μ ( Q ) 1 q ( μ ( 6 Q ) μ ( 2 Q ) ) 1 q μ ( 6 Q ) 1 p i = 1 2 f i M q i p i ( μ ) C i = 1 2 f i M q i p i ( μ ) .

What remain to be considered are the terms in H 2 and H 3 . For H 2 , we use the size condition of kernel (1.5) and the property of λ:λ(y,r)λ(x,r), d(x,y)r,

| T ω ( f 1 0 , f 2 ) ( y ) | C 2 Q | f 1 ( y 1 ) | X 2 Q | f 2 ( y 2 ) | [ λ ( y , d ( y , y 2 ) ) ] 2 d μ ( y 2 ) d μ ( y 1 ) C 2 Q | f 1 ( y 1 ) | k = 1 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | [ λ ( y , d ( y , y 2 ) ) ] 2 d μ ( y 2 ) d μ ( y 1 ) C 2 Q | f 1 ( y 1 ) | 1 λ ( x Q , 2 k r Q ) k = 1 2 k + 1 Q 2 k Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) d μ ( y 1 ) C μ ( 2 Q ) 1 2 Q | f 1 ( y 1 ) | d μ ( y 1 ) X 2 Q | f 2 ( y 2 ) | λ ( y , d ( y , y 2 ) ) d μ ( y 2 ) C μ ( 2 Q ) 1 ( μ ( 2 Q ) ) 1 1 q 1 f 1 L q 1 ( μ ) ( μ ( 2 Q ) ) 1 q 2 f 2 L q 2 ( μ ) C ( μ ( 6 Q ) μ ( 2 Q ) ) 1 q μ ( 6 Q ) 1 p i = 1 2 f i M q i p i ( μ ) .

Then using the above estimate, we get

T ω ( f 1 0 , f 2 ) M q p ( μ ) sup Q X μ ( 6 Q ) 1 p 1 q ( Q | T ω ( f 1 0 , f 2 ) ( y ) | q d μ ( y ) ) 1 q C i = 1 2 f i M q i p i ( μ ) .

Analogously, for H 3 , we have

T ω ( f 1 , f 2 0 ) M q p ( μ ) sup Q X μ ( 6 Q ) 1 p 1 q ( Q | T ω ( f 1 , f 2 0 ) ( y ) | q d μ ( y ) ) 1 q C i = 1 2 f i M q i p i ( μ ) .

 □

References

  1. Tolsa X:BMO, H 1 and Calderón-Zygmund operators for non doubling measures. Math. Ann. 2001, 319: 89-149. 10.1007/PL00004432

    Article  MathSciNet  MATH  Google Scholar 

  2. Nazarov F, Treil S, Volberg A: The Tb-theorem on non-homogeneous spaces. Acta Math. 2003,190(2):151-239. 10.1007/BF02392690

    Article  MathSciNet  MATH  Google Scholar 

  3. Hytönen T: A framework for non-homogeneous analysis on metric spaces, and the RBMO spaces of Tolsa. Publ. Math. 2010,54(2):485-504.

    Article  MathSciNet  MATH  Google Scholar 

  4. Anh BT, Duong XT: Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J. Geom. Anal. 2013, 23: 895-932. 10.1007/s12220-011-9268-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Coifman RR, Meyer Y: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 1975, 212: 315-331.

    Article  MathSciNet  MATH  Google Scholar 

  6. Grafakos L, Torres R: Multilinear Calderón-Zygmund theory. Adv. Math. 2002, 165: 124-164. 10.1006/aima.2001.2028

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen JC, Fan DS: A bilinear estimate. J. Korean Math. Soc. 2009, 46: 609-622. 10.4134/JKMS.2009.46.3.609

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen JC, Fan DS: Rough bilinear fractional integrals with variable kernels. Front. Math. China 2010,5(3):369-378. 10.1007/s11464-010-0061-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu JS: Boundedness of multilinear singular integrals for non-doubling measure. J. Math. Anal. Appl. 2007, 327: 471-480. 10.1016/j.jmaa.2006.04.049

    Article  MathSciNet  MATH  Google Scholar 

  10. Yabuta K: Generalization of Calderón-Zygmund operators. Stud. Math. 1985, 82: 17-31.

    MathSciNet  MATH  Google Scholar 

  11. Maldonado D, Naibo V: Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity. J. Fourier Anal. Appl. 2009, 15: 218-261. 10.1007/s00041-008-9029-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu GE, Meng Y, Yang DC: Weighted norm inequalities for multilinear Calderón-Zygmund operators on non-homogeneous metric measure spaces. Forum Math. 2012. 10.1515/forum-2011-0042

    Google Scholar 

  13. Volberg A, Wick BD: Bergman-type singular operators and the characterization of Carleson measures for Besov-Sobolev spaces on the complex ball. Am. J. Math. 2012,134(4):949-992. 10.1353/ajm.2012.0028

    Article  MathSciNet  MATH  Google Scholar 

  14. Lerner AK, Ombrosi S, Perez C, Torres RH, Trujillo-Gonzalez R: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 2009, 220: 1222-1264. 10.1016/j.aim.2008.10.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Sawano Y, Tanaka H: Morrey spaces for non-doubling measures. Acta Math. Sin. 2005, 21: 1535-1544. 10.1007/s10114-005-0660-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Sawano Y, Tanaka H: Sharp maximal inequality and commutators on Morrey spaces with non-doubling measures. Taiwan. J. Math. 2007,11(4):1091-1112.

    MathSciNet  MATH  Google Scholar 

  17. Tao XX, Zheng TT: Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures. Nonlinear Differ. Equ. Appl. 2011,18(3):287-308. 10.1007/s00030-010-0096-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi YL, Tao XX, Zheng TT: Multilinear Riesz potential on Morrey-Herz spaces with nondoubling measures. J. Inequal. Appl. 2010. 10.1155/2010/731016

    Google Scholar 

  19. Hytönen T, Liu SL, Yang DC, Yang DY: Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Can. J. Math. 2012,64(4):892-923. 10.4153/CJM-2011-065-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the National Nature Science Foundation of China under grant #11271330 and #11171306 and partially sponsored by the Science Foundation of Zhejiang Province of China under grant #Y604563 and the Education Foundation of Zhejiang Province under grant #Y201225707. Thanks are also given to the anonymous referees for careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Wu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TZ formulated the considered problem and gave the construction of Theorems 1.5 and 1.6. Additionally, TZ participated in the process of the proofs of Theorems 1.5 and 1.6. XT participated in the proof of Theorem 1.5. XW participated in the proof of Theorem 1.6. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zheng, T., Tao, X. & Wu, X. Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space. J Inequal Appl 2014, 113 (2014). https://doi.org/10.1186/1029-242X-2014-113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-113

Keywords