# Majorization properties for certain new classes of analytic functions using the Salagean operator

## Abstract

In the present paper, we investigate the majorization properties for certain classes of multivalent analytic functions defined by the Salagean operator. Moreover, we point out some new and interesting consequences of our main result.

MSC:30C45.

## 1 Introduction and definitions

Let f and g be two analytic functions in the open unit disk

$\mathrm{\Delta }=\left\{z\in C:|z|<1\right\}.$
(1.1)

We say that f is majorized by g in Δ (see [1]) and write

$f\left(z\right)\ll g\left(z\right)\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right)$
(1.2)

if there exists a function φ, analytic in Δ, such that

$|\phi \left(z\right)|\le 1\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}f\left(z\right)=\phi \left(z\right)g\left(z\right)\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right).$
(1.3)

It may be noted here that (1.2) is closely related to the concept of quasi-subordination between analytic functions.

For two functions f and g, analytic in Δ, we say that the function f is subordinate to g in Δ if there exists a Schwarz function ω, which is analytic in Δ with

$\omega \left(0\right)=0\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}|\omega \left(z\right)|<1\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right),$

such that

$f\left(z\right)=g\left(\omega \left(z\right)\right)\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right).$

We denote this subordination by $f\left(z\right)\prec g\left(z\right)$. Furthermore, if the function g is univalent in Δ, then

$f\left(z\right)\prec g\left(z\right)\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right)\phantom{\rule{1em}{0ex}}⇔\phantom{\rule{1em}{0ex}}f\left(0\right)=g\left(0\right)\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}f\left(\mathrm{\Delta }\right)\subset g\left(\mathrm{\Delta }\right).$

Let ${A}_{p}$ denote the class of functions of the form

$f\left(z\right)={z}^{p}+\sum _{k=p+1}^{\mathrm{\infty }}{a}_{k}{z}^{k}\phantom{\rule{1em}{0ex}}\left(p\in N=\left\{1,2,\dots \right\}\right),$
(1.4)

that are analytic and p-valent in the open unit disk Δ. Also, let ${A}_{1}=A$.

For a function $f\in {A}_{p}$, let ${f}^{\left(q\right)}$ denote a q th-order ordinary differential operator by

${f}^{\left(q\right)}\left(z\right)=\frac{p!}{\left(p-q\right)!}{z}^{p-q}+\sum _{k=p+1}^{\mathrm{\infty }}\frac{k!}{\left(k-q\right)!}{a}_{k}{z}^{k-q},$
(1.5)

where $p>q$, $p\in N$, $q\in {N}_{0}=N\cup \left\{0\right\}$ and $z\in \mathrm{\Delta }$. Next, Frasin [2] introduced the differential operator ${D}^{m}{f}^{\left(q\right)}$ as follows:

${D}^{m}{f}^{\left(q\right)}\left(z\right)=\frac{p!{\left(p-q\right)}^{m}}{\left(p-q\right)!}{z}^{p-q}+\sum _{k=p+1}^{\mathrm{\infty }}\frac{k!{\left(k-q\right)}^{m}}{\left(k-q\right)!}{a}_{k}{z}^{k-q}.$
(1.6)

In view of (1.6), it is clear that ${D}^{0}{f}^{\left(0\right)}\left(z\right)=f\left(z\right)$, ${D}^{0}{f}^{\left(1\right)}\left(z\right)=z{f}^{\prime }\left(z\right)$ and ${D}^{m}{f}^{\left(0\right)}\left(z\right)={D}^{m}f\left(z\right)$ is a known operator introduced by Salagean [3].

Definition 1.1 A function $f\left(z\right)\in {A}_{p}$ is said to be in the class ${L}_{p,q}^{j,l}\left[A,B;\alpha ,\gamma \right]$ of p-valent functions of complex order $\gamma \ne 0$ in Δ if and only if

(1.7)

Clearly, we have the following relationships:

1. (1)

${L}_{p,q}^{j,l}\left[A,B;0,\gamma \right]={S}_{p,q}^{j,l}\left[A,B;\gamma \right]$;

2. (2)

${L}_{1,0}^{m,n}\left[A,B;\alpha ,1\right]={U}_{m,n}\left(\alpha ,A,B\right)$;

3. (3)

${L}_{1,0}^{1,0}\left[1-2\beta ,-1;\alpha ,1\right]=US\left(\alpha ,\beta \right)$ ($0\le \beta <1$) (α-uniformly starlike functions of order β);

4. (4)

${L}_{2,1}^{1,0}\left[1-2\beta ,-1;\alpha ,1\right]=UK\left(\alpha ,\beta \right)$ ($0\le \beta <1$) (α-uniformly convex functions of order β);

5. (5)

${L}_{p,0}^{n+1,n}\left[1,-1;\alpha ,\gamma \right]={S}_{n}\left(p,\alpha ,\gamma \right)$ ($n\in {N}_{0}$);

6. (6)

${L}_{1,0}^{1,0}\left[1,-1;\alpha ,\gamma \right]=S\left(\alpha ,\gamma \right)$ ($0\le \alpha <1$, $\gamma \in {C}^{\ast }$);

7. (7)

${L}_{1,0}^{2,1}\left[1,-1;\alpha ,\gamma \right]=K\left(\alpha ,\gamma \right)$ ($0\le \alpha <1$, $\gamma \in {C}^{\ast }$);

8. (8)

${L}_{1,0}^{1,0}\left[1,-1;\alpha ,1-\beta \right]={S}^{\ast }\left(\alpha ,\beta \right)$ ($0\le \alpha <1$, $0\le \beta <1$).

The classes ${S}_{p,q}^{j,l}\left[A,B;\gamma \right]$ and ${U}_{m,n}\left(\alpha ,A,B\right)$ were introduced by Goswami and Aouf [4] and Li and Tang [5], respectively. The classes $US\left(\alpha ,\beta \right)$ and $UK\left(\alpha ,\beta \right)$ were studied recently in [6] (see also [712]). The class ${S}_{n}\left(p,0,\gamma \right)={S}_{n}\left(p,\gamma \right)$ was introduced by Akbulut et al. [13]. Also, the classes $S\left(0,\gamma \right)=S\left(\gamma \right)$ and $K\left(0,\gamma \right)=K\left(\gamma \right)$ are said to be classes of starlike and convex of complex order $\gamma \ne 0$ in Δ which were considered by Nasr and Aouf [14] and Wiatrowski [15] (see also [16, 17]), and ${S}^{\ast }\left(0,\beta \right)={S}^{\ast }\left(\beta \right)$ denotes the class of starlike functions of order β in Δ.

A majorization problem for the class $S\left(\gamma \right)$ has recently been investigated by Altintas et al. [18]. Also, majorization problems for the classes ${S}^{\ast }\left(\beta \right)$ and ${S}_{p,q}^{j,l}\left[A,B;\gamma \right]$ have been investigated by MacGregor [1] and Goswami and Aouf [4], respectively. Very recently, Goyal and Goswami [19] (see also [20]) generalized these results for the fractional derivative operator. In the present paper, we investigate a majorization problem for the class ${L}_{p,q}^{j,l}\left[A,B;\alpha ,\gamma \right]$.

## 2 Majorization problem for the class ${L}_{p,q}^{j,l}\left[A,B;\alpha ,\gamma \right]$

We begin by proving the following result.

Theorem 2.1 Let the function $f\in {A}_{p}$ and suppose that $g\in {L}_{p,q}^{j,l}\left[A,B;\alpha ,\gamma \right]$. If ${D}^{j}{f}^{\left(q\right)}\left(z\right)$ is majorized by ${D}^{l}{g}^{\left(q\right)}\left(z\right)$ in Δ, and

${\left(p-q\right)}^{j-l}\ge \left[\frac{\left(A-B\right)|\gamma |}{1-\alpha }+{\left(p-q\right)}^{j-l}|B|\right]\delta ,$

then

$|{D}^{j+1}{f}^{\left(q\right)}\left(z\right)|\le |{D}^{l+1}{g}^{\left(q\right)}\left(z\right)|\phantom{\rule{1em}{0ex}}\left(|z|\le {r}_{0}\right),$
(2.1)

where ${r}_{0}={r}_{0}\left(p,q,\alpha ,\gamma ,j,l,A,B\right)$ is the smallest positive root of the equation

(2.2)

Proof Suppose that $g\in {L}_{p,q}^{j,l}\left[A,B;\alpha ,\gamma \right]$. Then, making use of the fact that

$\varpi -\alpha |\varpi -1|\prec \frac{1+Az}{1+Bz}\phantom{\rule{1em}{0ex}}⇔\phantom{\rule{1em}{0ex}}\varpi \left(1-\alpha {e}^{-i\varphi }\right)+\alpha {e}^{-i\varphi }\prec \frac{1+Az}{1+Bz}\phantom{\rule{1em}{0ex}}\left(\varphi \in R\right),$

and letting

$\varpi =1+\frac{1}{\gamma }\left(\frac{{D}^{j}{g}^{\left(q\right)}\left(z\right)}{{D}^{l}{g}^{\left(q\right)}\left(z\right)}-{\left(p-q\right)}^{j-l}\right)$

in (1.7), we obtain

$\left[1+\frac{1}{\gamma }\left(\frac{{D}^{j}{g}^{\left(q\right)}\left(z\right)}{{D}^{l}{g}^{\left(q\right)}\left(z\right)}-{\left(p-q\right)}^{j-l}\right)\right]\left(1-\alpha {e}^{-i\varphi }\right)+\alpha {e}^{-i\varphi }\prec \frac{1+Az}{1+Bz}$

or, equivalently,

$1+\frac{1}{\gamma }\left(\frac{{D}^{j}{g}^{\left(q\right)}\left(z\right)}{{D}^{l}{g}^{\left(q\right)}\left(z\right)}-{\left(p-q\right)}^{j-l}\right)\prec \frac{1+\left(\frac{A-\alpha B{e}^{-i\varphi }}{1-\alpha {e}^{-i\varphi }}\right)z}{1+Bz}$
(2.3)

which holds true for all $z\in \mathrm{\Delta }$.

We find from (2.3) that

$1+\frac{1}{\gamma }\left(\frac{{D}^{j}{g}^{\left(q\right)}\left(z\right)}{{D}^{l}{g}^{\left(q\right)}\left(z\right)}-{\left(p-q\right)}^{j-l}\right)=\frac{1+\left(\frac{A-\alpha B{e}^{-i\varphi }}{1-\alpha {e}^{-i\varphi }}\right)\omega \left(z\right)}{1+B\omega \left(z\right)},$
(2.4)

where $\omega \left(z\right)={c}_{1}z+{c}_{2}{z}^{2}+\cdots$ , $\omega \in P$, P denotes the well-known class of the bounded analytic functions in Δ and satisfies the conditions

$\omega \left(0\right)=0\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}|\omega \left(z\right)|\le |z|\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right).$

From (2.4), we get

$\frac{{D}^{j}{g}^{\left(q\right)}\left(z\right)}{{D}^{l}{g}^{\left(q\right)}\left(z\right)}=\frac{{\left(p-q\right)}^{j-l}+\left[\frac{\left(A-B\right)\gamma }{1-\alpha {e}^{-i\varphi }}+{\left(p-q\right)}^{j-l}B\right]\omega \left(z\right)}{1+B\omega \left(z\right)}.$
(2.5)

By virtue of (2.5), we obtain

$\begin{array}{rcl}|{D}^{l}{g}^{\left(q\right)}\left(z\right)|& \le & \frac{1+|B||z|}{{\left(p-q\right)}^{j-l}-|\frac{\left(A-B\right)\gamma }{1-\alpha {e}^{-i\varphi }}+{\left(p-q\right)}^{j-l}B||z|}|{D}^{j}{g}^{\left(q\right)}\left(z\right)|\\ \le & \frac{1+|B||z|}{{\left(p-q\right)}^{j-l}-\left[\frac{\left(A-B\right)|\gamma |}{1-\alpha }+{\left(p-q\right)}^{j-l}|B|\right]|z|}|{D}^{j}{g}^{\left(q\right)}\left(z\right)|.\end{array}$
(2.6)

Next, since ${D}^{j}{f}^{\left(q\right)}\left(z\right)$ is majorized by ${D}^{l}{g}^{\left(q\right)}\left(z\right)$ in Δ, thus from (1.3), we have

${D}^{j}{f}^{\left(q\right)}\left(z\right)=\phi \left(z\right){D}^{l}{g}^{\left(q\right)}\left(z\right).$

Differentiating the above equality with respect to z and multiplying by z, we get

${D}^{j+1}{f}^{\left(q\right)}\left(z\right)=z{\phi }^{\prime }\left(z\right){D}^{l}{g}^{\left(q\right)}\left(z\right)+\phi \left(z\right){D}^{l+1}{g}^{\left(q\right)}\left(z\right).$
(2.7)

Thus, by noting that $\phi \left(z\right)\in P$ satisfies the inequality (see, e.g., Nehari [21])

$|{\phi }^{\prime }\left(z\right)|\le \frac{1-{|\phi \left(z\right)|}^{2}}{1-{|z|}^{2}}\phantom{\rule{1em}{0ex}}\left(z\in \mathrm{\Delta }\right)$
(2.8)

and making use of (2.6) and (2.8) in (2.7), we obtain

$\begin{array}{rcl}|{D}^{j+1}{f}^{\left(q\right)}\left(z\right)|& \le & \left(|\phi \left(z\right)|+\frac{1-{|\phi \left(z\right)|}^{2}}{1-{|z|}^{2}}\cdot \frac{\left(1+|B||z|\right)|z|}{\left[{\left(p-q\right)}^{j-l}-\left(\frac{\left(A-B\right)|\gamma |}{1-\alpha }+{\left(p-q\right)}^{j-l}|B|\right)|z|\right]}\right)\\ ×|{D}^{l+1}{g}^{\left(q\right)}\left(z\right)|,\end{array}$
(2.9)

which, upon setting

$|z|=r\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}|\phi \left(z\right)|=\rho \phantom{\rule{1em}{0ex}}\left(0\le \rho \le 1\right),$

where

$\begin{array}{rcl}\psi \left(\rho \right)& =& -r\left(1+|B|r\right){\rho }^{2}+\left(1-{r}^{2}\right)\left[{\left(p-q\right)}^{j-l}-\left(\frac{\left(A-B\right)|\gamma |}{1-\alpha }+{\left(p-q\right)}^{j-l}|B|\right)r\right]\rho \\ +r\left(1+|B|r\right)\end{array}$
(2.10)

takes its maximum value at $\rho =1$ with ${r}_{0}={r}_{0}\left(p,q,\alpha ,\gamma ,j,l,A,B\right)$, where

${r}_{0}={r}_{0}\left(p,q,\alpha ,\gamma ,j,l,A,B\right)$

is the smallest positive root of equation (2.2). Furthermore, if $0\le \delta \le {r}_{0}\left(p,q,\alpha ,\gamma ,j,l,A,B\right)$, then the function $\psi \left(\rho \right)$ defined by

$\begin{array}{rcl}\psi \left(\rho \right)& =& -\delta \left(1+|B|\delta \right){\rho }^{2}+\left(1-{\delta }^{2}\right)\left[{\left(p-q\right)}^{j-l}-\left(\frac{\left(A-B\right)|\gamma |}{1-\alpha }+{\left(p-q\right)}^{j-l}|B|\right)\delta \right]\rho \\ +\delta \left(1+|B|\delta \right)\end{array}$
(2.11)

is an increasing function on the interval $0\le \rho \le 1$ so that

(2.12)

Hence, upon setting $\rho =1$ in (2.11), we conclude that (2.1) of Theorem 2.1 holds true for $|z|\le {r}_{0}\left(p,q,\alpha ,\gamma ,j,l,A,B\right)$, which completes the proof of Theorem 2.1. □

Setting $\alpha =0$ in Theorem 2.1, we get the following result.

Corollary 2.1 Let the function $f\in {A}_{p}$ and suppose that $g\in {S}_{p,q}^{j,l}\left[A,B;\gamma \right]$. If ${D}^{j}{f}^{\left(q\right)}\left(z\right)$ is majorized by ${D}^{l}{g}^{\left(q\right)}\left(z\right)$ in Δ, and

${\left(p-q\right)}^{j-l}\ge \left[\left(A-B\right)|\gamma |+{\left(p-q\right)}^{j-l}|B|\right]\delta ,$

then

$|{D}^{j+1}{f}^{\left(q\right)}\left(z\right)|\le |{D}^{l+1}{g}^{\left(q\right)}\left(z\right)|\phantom{\rule{1em}{0ex}}\left(|z|\le {r}_{0}\right),$
(2.13)

where ${r}_{0}={r}_{0}\left(p,q,\gamma ,j,l,A,B\right)$ is the smallest positive root of the equation

(2.14)

Remark 2.1 Corollary 2.1 improves the result of Goswami and Aouf [[4], Theorem 1].

Putting $p=1$, $q=0$, $j=m$, $l=n$, $m>n$ and $\gamma =1$ in Theorem 2.1, we obtain the following result.

Corollary 2.2 Let the function $f\in A$ and suppose that $g\in {U}_{m,n}\left(\alpha ,A,B\right)$. If ${D}^{m}f\left(z\right)$ is majorized by ${D}^{n}g\left(z\right)$ in Δ, then

$|{D}^{m+1}f\left(z\right)|\le |{D}^{n+1}g\left(z\right)|\phantom{\rule{1em}{0ex}}\left(|z|\le {r}_{0}\right),$
(2.15)

where ${r}_{0}={r}_{0}\left(\alpha ,A,B\right)$ is the smallest positive root of the equation

(2.16)

For $A=1-2\beta$, $B=-1$, putting $m=1$, $n=0$ and $m=2$, $n=1$ in Corollary 2.2, respectively, we obtain the following Corollaries 2.3 and 2.4.

Corollary 2.3 Let the function $f\in A$ and suppose that $g\in US\left(\alpha ,\beta \right)$. If $Df\left(z\right)$ is majorized by $g\left(z\right)$ in Δ, then

$|{f}^{\prime }\left(z\right)+z{f}^{″}\left(z\right)|\le |{g}^{\prime }\left(z\right)|\phantom{\rule{1em}{0ex}}\left(|z|\le {r}_{0}\right),$

where ${r}_{0}={r}_{0}\left(\alpha ,\beta \right)$ is the smallest positive root of the equation

$\left[\frac{2\left(1-\beta \right)}{1-\alpha }+1\right]{r}^{3}-3{r}^{2}-\left[\frac{2\left(1-\beta \right)}{1-\alpha }+3\right]r+1=0\phantom{\rule{1em}{0ex}}\left(0\le \alpha <1;0\le \beta <1\right).$

Corollary 2.4 Let the function $f\in A$ and suppose that $g\in UK\left(\alpha ,\beta \right)$. If ${D}^{2}f\left(z\right)$ is majorized by $Dg\left(z\right)$ in Δ, then

$|{D}^{3}f\left(z\right)|\le |{D}^{2}g\left(z\right)|\phantom{\rule{1em}{0ex}}\left(|z|\le {r}_{0}\right),$

where ${r}_{0}={r}_{0}\left(\alpha ,\beta \right)$ is the smallest positive root of the equation

$\left[\frac{2\left(1-\beta \right)}{1-\alpha }+1\right]{r}^{3}-3{r}^{2}-\left[\frac{2\left(1-\beta \right)}{1-\alpha }+3\right]r+1=0\phantom{\rule{1em}{0ex}}\left(0\le \alpha <1;0\le \beta <1\right).$

Also, putting $A=1$, $B=-1$, $q=0$, $j=n+1$ and $l=n$ in Theorem 2.1, we obtain the following result.

Corollary 2.5 Let the function $f\in {A}_{p}$ and suppose that $g\in {S}_{n}\left(p,\alpha ,\gamma \right)$. If ${D}^{n+1}f\left(z\right)$ is majorized by ${D}^{n}g\left(z\right)$ in Δ, then

$|{D}^{n+2}f\left(z\right)|\le |{D}^{n+1}g\left(z\right)|\phantom{\rule{1em}{0ex}}\left(|z|\le {r}_{0}\right),$
(2.17)

where ${r}_{0}={r}_{0}\left(p,\alpha ,\gamma \right)$ is the smallest positive root of the equation

(2.18)

## References

1. MacGregor TH: Majorization by univalent functions. Duke Math. J. 1967, 34: 95–102. 10.1215/S0012-7094-67-03411-4

2. Frasin BA: Neighborhoods of certain multivalent functions with negative coefficients. Appl. Math. Comput. 2007, 193: 1–6. 10.1016/j.amc.2007.03.026

3. Salagean GS: Subclasses of univalent functions. Lecture Notes in Math. 1013. In Complex Analysis - Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981). Springer, Berlin; 1983:362–372.

4. Goswami P, Aouf MK: Majorization properties for certain classes of analytic functions using the Salagean operator. Appl. Math. Lett. 2010, 23: 1351–1354. 10.1016/j.aml.2010.06.030

5. Li S-H, Tang H: Certain new classes of analytic functions defined by using the Salagean operator. Bull. Math. Anal. Appl. 2010, 4(2):62–75.

6. Kanas S, Srivastava HM: Linear operators associated with k -uniformly convex functions. Integral Transforms Spec. Funct. 2000, 9: 121–132. 10.1080/10652460008819249

7. Kanas S, Yaguchi T: Subclasses of k -uniformly convex and starlike functions defined by generalized derivative, I. Indian J. Pure Appl. Math. 2001, 32(9):1275–1282.

8. Kanas S: Integral operators in classes k -uniformly convex and k -starlike functions. Mathematica (Cluj-Napoca, 1992) 2001, 43(66)(1):77–87.

9. Kanas S, Wiśniowska A: Conic regions and k -uniform convexity, II. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1998, 170: 65–78.

10. Kanas S: Differential subordination related to conic sections. J. Math. Anal. Appl. 2006, 317(2):650–658. 10.1016/j.jmaa.2005.09.034

11. Ramachandran C, Srivastava HM, Swaminathan A: A unified class of k -uniformly convex functions defined by the Salagean derivative operator. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 2007, 55: 47–59.

12. Shams S, Kulkarni SR, Jahangiri JM: On a class of univalent functions defined by Ruscheweyh derivatives. Kyungpook Math. J. 2003, 43: 579–585.

13. Akbulut S, Kadioglu E, Ozdemir M: On the subclass of p -valently functions. Appl. Math. Comput. 2004, 147(1):89–96. 10.1016/S0096-3003(02)00653-7

14. Nasr MA, Aouf MK: Starlike function of complex order. J. Nat. Sci. Math. 1985, 25(1):1–12.

15. Wiatrowski P: On the coefficients of some family of holomorphic functions. Zeszyry Nauk. Univ. Lodz. Nauk. Mat.-Przyrod. Ser. II 1970, 39: 75–85.

16. Kanas S, Darwish HE: Fekete-Szego problem for starlike and convex functions of complex order. Appl. Math. Lett. 2010, 23: 777–782. 10.1016/j.aml.2010.03.008

17. Kanas S, Sugawa T: On conformal representation of the interior of an ellipse. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 2006, 31: 329–348.

18. Altintas O, Ozkan O, Srivastava HM: Majorization by starlike functions of complex order. Complex Var. Theory Appl. 2001, 46: 207–218. 10.1080/17476930108815409

19. Goyal SP, Goswami P: Majorization for certain classes of analytic functions defined by fractional derivatives. Appl. Math. Lett. 2009, 22(12):1855–1858. 10.1016/j.aml.2009.07.009

20. Prajapat JK, Aouf MK: Majorization problem for certain class of p -valently analytic function defined by generalized fractional differential operator. Comput. Math. Appl. 2012, 63: 42–47.

21. Nehari Z: Conformal Mapping. McGraw-Hill, New York; 1955.

## Acknowledgements

Dedicated to Professor Hari M. Srivastava.

The present investigation is partly supported by the Natural Science Foundation of Inner Mongolia of People’s Republic of China under Grant 2009MS0113, 2010MS0117. The authors would like to thank the referees for their helpful comments and suggestions to improve our manuscript.

## Author information

Authors

### Corresponding author

Correspondence to Shu-Hai Li.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors jointly worked on the results and they read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Li, SH., Tang, H. & Ao, E. Majorization properties for certain new classes of analytic functions using the Salagean operator. J Inequal Appl 2013, 86 (2013). https://doi.org/10.1186/1029-242X-2013-86

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1029-242X-2013-86

### Keywords

• analytic functions
• multivalent functions
• α-uniformly starlike functions of order β
• α-uniformly convex functions of order β
• subordination
• majorization property