Skip to content

Advertisement

  • Research
  • Open Access

Nearly n-homomorphisms and n-derivations in fuzzy ternary Banach algebras

  • 1,
  • 1,
  • 2Email author and
  • 3
Journal of Inequalities and Applications20132013:71

https://doi.org/10.1186/1029-242X-2013-71

  • Received: 2 March 2012
  • Accepted: 7 February 2013
  • Published:

Abstract

Let n = 3 k + 2 for some k N . We investigate the generalized Hyers-Ulam stability of n-homomorphisms and n-derivations on fuzzy ternary Banach algebras related to the generalized Cauchy-Jensen additive functional equation.

MSC:39B52, 46S40, 26E50.

Keywords

  • Hyers-Ulam-Rassias stability
  • fixed point theorem
  • fuzzy ternary Banach algebra

1 Introduction

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to a true solution of (ξ). We say that a functional equation (ξ) is superstable if every approximately solution of (ξ) is an exact solution of it (see [1]).

Speaking of the stability of a functional equation, we follow the question raised in 1940 by Ulam: When is it true that the solution of an equation differing slightly from a given one, must of necessity be close to the solution of the given equation? This problem was solved in the next year for the Cauchy functional equation on Banach spaces by Hyers [2]. Let f : E E be a mapping between Banach spaces such that
f ( x + y ) f ( x ) f ( y ) δ
for all x , y E and for some δ > 0 . Then there exists a unique additive mapping T : E E such that
f ( x ) T ( x ) δ

for all x E . Moreover, if f ( t x ) is continuous in t for each fixed x E , then T is linear. It gave rise to the Hyers-Ulam type stability of functional equations. Hyers’ theorem was generalized by Rassias [3] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1 (Th.M. Rassias)

Let f : E E be a mapping from a normed vector space E into a Banach space E subject to the inequality f ( x + y ) f ( x ) f ( y ) ϵ ( x p + y p ) for all x , y E , where ϵ and p are constants with ϵ > 0 and 0 p < 1 . Then the limit L ( x ) = lim n f ( 2 n x ) 2 n exists for all x E and L : E E is the unique additive mapping which satisfies
f ( x ) L ( x ) 2 ϵ 2 2 p x p

for all x E . Also, if for each x E , the function f ( t x ) is continuous in t R , then L is linear.

Găvruta [4] generalized the Rassias result. Beginning around the year 1980, the stability problems of several functional equations and approximate homomorphisms have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see [545]).

Some mathematicians have defined fuzzy norms on a vector space from various points of view (see [46] and [47]). Bag and Samanta [48], following Cheng and Mordeson [49], gave an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek type [50]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [51].

In this paper, we consider a mapping f : X Y satisfying the following functional equation, which is introduced by Azadi Kenary [52]:
1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n f ( j = 1 m x i j m + l = 1 n m x k l ) = ( n m + 1 ) n ( n m ) i = 1 n f ( x i )
(1.1)

for all x 1 , , x n X , where m , n N are fixed integers with n 2 , 1 m n . Especially, we observe that in the case m = 1 , equation (1.1) yields the Cauchy additive equation f ( l = 1 n x k l ) = l = 1 n f ( x i ) . We observe that in the case m = n , equation (1.1) yields the Jensen additive equation f ( j = 1 n x j n ) = 1 n l = 1 n f ( x i ) . Therefore, equation (1.1) is a generalized form of the Cauchy-Jensen additive equation, and thus every solution of equation (1.1) may be analogously called general ( m , n ) -Cauchy-Jensen additive. For the case m = 2 , the authors have established new theorems about the Ulam-Hyers-Rassias stability in quasi β-normed spaces [53]. Let X and Y be linear spaces. For each m with 1 m n , a mapping f : X Y satisfies equation (1.1) for all n 2 if and only if f ( x ) f ( 0 ) = A ( x ) is Cauchy additive, where f ( 0 ) = 0 if m < n . In particular, we have f ( ( n m + 1 ) x ) = ( n m + 1 ) f ( x ) and f ( m x ) = m f ( x ) for all x X .

Definition 1.1 Let X be a real vector space. A function N : X × R [ 0 , 1 ] is called a fuzzy norm on X if for all x , y X and all s , t R ,

(N1) N ( x , t ) = 0 for t 0 ;

(N2) x = 0 if and only if N ( x , t ) = 1 for all t > 0 ;

(N3) N ( c x , t ) = N ( x , t | c | ) if c 0 ;

(N4) N ( x + y , c + t ) min { N ( x , s ) , N ( y , t ) } ;

(N5) N ( x , ) is a non-decreasing function of and lim t N ( x , t ) = 1 ;

(N6) for x 0 , N ( x , ) is continuous on .

Example 1.1 Let ( X , ) be a normed linear space and α , β > 0 . Then
N ( x , t ) = { α t α t + β x , t > 0 , x X , 0 , t 0 , x X ,

is a fuzzy norm on X.

Definition 1.2 Let ( X , N ) be a fuzzy normed vector space. A sequence { x n } in X is said to be convergent or converge if there exists an x X such that lim t N ( x n x , t ) = 1 for all t > 0 . In this case, x is called the limit of the sequence { x n } in X, and we denote it by N - lim t x n = x .

Definition 1.3 Let ( X , N ) be a fuzzy normed vector space. A sequence { x n } in X is called Cauchy if for each ϵ > 0 and each t > 0 , there exists an n 0 N such that for all n n 0 and all p > 0 , we have N ( x n + p x n , t ) > 1 ϵ .

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X Y between fuzzy normed vector spaces X and Y is continuous at a point x X if for each sequence { x n } converging to x 0 X , the sequence { f ( x n ) } converges to f ( x 0 ) . If f : X Y is continuous at each x X , then f : X Y is said to be continuous on X (see [51]).

Definition 1.4 Let X be a ternary algebra and ( X , N ) be a fuzzy normed space.
  1. (1)
    The fuzzy normed space ( X , N ) is called a fuzzy ternary normed algebra if
    N ( [ x y z ] , s t u ) N ( x , s ) N ( y , t ) N ( z , u )
     
for all x , y , z X and all positive real numbers s, t and u.
  1. (2)

    A complete ternary fuzzy normed algebra is called a ternary fuzzy Banach algebra.

     
Example 1.2 Let ( X , ) be a ternary normed (Banach) algebra. Let
N ( x , t ) = { t t + x , t > 0 , x X , 0 , t 0 , x X .

Then N ( x , t ) is a fuzzy norm on X and ( X , N ) is a ternary fuzzy normed (Banach) algebra.

From now on, we suppose that k N is a fixed positive integer and m = 3 k + 2 . Also, we assume that n 3 is a fixed positive integer.

Definition 1.5 Let ( X , N ) and ( Y , N ) be two ternary fuzzy normed algebras. Then
  1. (1)
    a -linear mapping H : ( X , N ) ( Y , N ) is called an m -homomorphism if
    H ( [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] x m 1 x m ] ) = [ [ [ [ H ( x 1 ) H ( x 2 ) H ( x 3 ) ] H ( x 4 ) H ( x 5 ) ] ] ( x m 1 ) H ( x m ) ]
     
for all x 1 , x 2 , , x m X ;
  1. (2)
    a -linear mapping D : ( X , N ) ( X , N ) is called an m -derivation if
    D ( [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] x m 1 x m ] ) = [ [ [ [ D ( x 1 ) x 2 x 3 ] x 4 x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 D ( x 2 ) x 3 ] x 4 x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 x 2 D ( x 3 ) ] x 4 x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 x 2 x 3 ] D ( x 4 ) x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 x 2 x 3 ] x 4 D ( x 5 ) ] x 6 ] x m 1 x m ] + + [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] D ( x m 1 ) x m ] + [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] x m 1 D ( x m ) ]
     

for all x 1 , x 2 , , x m X .

We apply the following theorem on weighted spaces.

Theorem 1.2 Let (X,d) be a complete generalized metric space and J : X X be a strictly contractive mapping with a Lipschitz constant L < 1 . Then, for all x X , either d ( J n x , J n + 1 x ) = for all nonnegative integers n or there exists a positive integer n 0 such that
  1. (1)

    d ( J n x , J n + 1 x ) < for all n 0 n 0 ;

     
  2. (2)

    the sequence { J n x } converges to a fixed point y of J;

     
  3. (3)

    y is the unique fixed point of J in the set Y = { y X : d ( J n 0 x , y ) < } ;

     
  4. (4)

    d ( y , y ) 1 1 L d ( y , J y ) for all y Y .

     
Throughout this paper, we suppose that X is a ternary fuzzy normed algebra and Y is a ternary fuzzy Banach algebra. For convenience, we use the following abbreviations for a given mapping f : X Y :
Δ f ( x 1 , , x n , y 1 , y 2 , , y m ) = 1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n f ( j = 1 m μ x i j m + l = 1 n m μ x k l ) ( n m + 1 ) ( n m ) i = 1 n μ f ( x i ) n + f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ f ( y 1 ) f ( y 2 ) f ( y 3 ) ] f ( y 4 ) f ( y 5 ) ] ] f ( y m 1 ) f ( y m ) ] ,
and
D f ( x 1 , , x n , y 1 , y 2 , , y m ) = 1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n f ( j = 1 m μ x i j m + l = 1 n m μ x k l ) ( n m + 1 ) ( n m ) i = 1 n μ f ( x i ) n + f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ f ( y 1 ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 f ( y 2 ) y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 f ( y 3 ) ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] f ( y 4 ) y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 f ( y 5 ) ] y 6 ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] f ( y m 1 ) y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 f ( y m ) ] .

There are several recent works on stability of functional equations on Banach algebras (see [1028]). We investigate the stability of n-homomorphisms and n-derivations on fuzzy ternary Banach algebras.

2 Main results

In this section, by using the idea of Park et al. [39], we prove the generalized Hyers-Ulam-Rassias stability of 5-homomorphisms and 5-derivations related to the functional equation (1.1) on fuzzy ternary Banach algebras (see also [54]). We start our main results by the stability of 5-homomorphisms.

Theorem 2.1 Let φ : X n + m [ 0 , ) be a mapping such that there exists an L < 1 ( n m + 1 ) n 2 with
φ ( x 1 n m + 1 , , x n + m n m + 1 ) L φ ( x 1 , x 2 , , x n + m ) n m + 1
(2.1)
for all x 1 , , x n + m X . Let f : X Y with f ( 0 ) = 0 be a mapping satisfying
N ( Δ f ( x 1 , , x n + m ) , t ) t t + φ ( x 1 , , x n , 0 , 0 , , 0 )
(2.2)
for all μ T 1 , x 1 , , x n + m X and all t > 0 . Then there exists a unique m -homomorphism H : X Y such that
N ( f ( x ) H ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + L φ ( x , , x , 0 , 0 , , 0 )
(2.3)

for all x X and all t > 0 .

Proof Letting μ = 1 and putting x n + 1 = x n + 2 = = x n + m = 0 , x 1 = x 2 = = x n = x in (2.2), we obtain
N ( ( n m ) f ( ( n m + 1 ) x ) ( n m ) ( n m + 1 ) f ( x ) , t ) t t + φ ( x , , x , 0 , 0 , , 0 )
(2.4)
for all x X and t > 0 . Set S : = { h : X Y ; h ( 0 ) = 0 } and define d : S × S [ 0 , ] by
d ( f , g ) = inf { μ R + : N ( g ( x ) h ( x ) , μ t ) t t + φ ( x , , x , 0 , 0 , , 0 ) , x X , t > 0 } ,
where inf = + . By using the same technique as in the proof of Theorem 3.2 of [54], we can show that ( S , d ) is a complete generalized metric space. We define J : S S by
J g ( x ) : = ( n m + 1 ) g ( x n m + 1 )
for all x X . It is easy to see that d ( J g , J h ) L d ( g , h ) for all g , h S . This implies that
d ( f , J f ) L ( n m + 1 ) ( n m ) .
By Banach’s fixed point approach, J has a unique fixed point H : X Y in S 0 : = { h S : d ( h , f ) < } satisfying
H ( x n m + 1 ) = H ( x ) n m + 1
(2.5)
for all x X . This implies that H is a unique mapping such that (2.5) and that there exists μ ( 0 , ) satisfying N ( f ( x ) H ( x ) , μ t ) t t + φ ( x , , x , 0 , 0 , , 0 ) for all x X and t > 0 . Moreover, we have d ( J p f , H ) 0 as p . This implies the equality
N - lim p f ( x ( n m + 1 ) p ) ( n m + 1 ) p = H ( x )
(2.6)

for all x X .

It follows from (2.2) and (2.6) that
1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n H ( j = 1 m μ x i j m + l = 1 n m μ x k l ) = ( n m + 1 ) n ( n m ) i = 1 n μ H ( x i )
for all μ T 1 , x 1 , , x n X . This means that H : X Y is additive. By using the same technique as in the proof of Theorem 2.1 of [55], we can show that H is -linear. By (2.2), we have
N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p [ [ [ [ f ( y 1 ( n m + 1 ) p ) f ( y 2 ( n m + 1 ) p ) f ( y 3 ( n m + 1 ) p ) ] × f ( y 4 ( n m + 1 ) p ) f ( y 5 ( n m + 1 ) p ) ] ] f ( y m 1 ( n m + 1 ) p ) f ( y m ( n m + 1 ) p ) ] , t ( n m + 1 ) ( n 1 ) p ) t t + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p )
for all y 1 , y 2 , , y m X and all t > 0 . Then
N ( H ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ H ( y 1 ) H ( y 2 ) H ( y 3 ) ] H ( y 4 ) H ( y 5 ) ] ] H ( y m 1 ) H ( y m ) ] , t ) = lim p N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p [ [ [ [ f ( y 1 ( n m + 1 ) p ) f ( y 2 ( n m + 1 ) p ) f ( y 3 ( n m + 1 ) p ) ] × f ( y 4 ( n m + 1 ) p ) f ( y 5 ( n m + 1 ) p ) ] ] × f ( y m 1 ( n m + 1 ) p ) f ( y m ( n m + 1 ) p ) ] , t ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + L p φ ( 0 , 0 , , 0 , y 1 , y 2 , , y m ) ( n m + 1 ) p = 1
for all y 1 , y 2 , , y m X and all t > 0 . Hence
N ( H ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ H ( y 1 ) H ( y 2 ) H ( y 3 ) ] H ( y 4 ) H ( y 5 ) ] ] H ( y m 1 ) H ( y m ) ] , t ) = 1
for all y 1 , y 2 , , y m X and all t > 0 . Hence
H ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ H ( y 1 ) H ( y 2 ) H ( y 3 ) ] H ( y 4 ) H ( y 5 ) ] ] H ( y m 1 ) H ( y m ) ]

for all y 1 , y 2 , , y m X . This means that H is an m -homomorphism. This completes the proof. □

Theorem 2.2 Let φ : X n + m [ 0 , ) be a mapping such that there exists an L < 1 with
φ ( x 1 , , x n + m ) ( n m + 1 ) L φ ( x 1 n m + 1 , , x n + m n m + 1 )
for all x 1 , x 2 , , x n + m X . Let f : X Y be a mapping with f ( 0 ) = 0 satisfying (2.2). Then the limit H ( x ) : = N - lim p f ( ( n m + 1 ) p x ) ( n m + 1 ) p exists for all x X and defines an m -homomorphism H : X Y such that
N ( f ( x ) H ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + φ ( x , x , , x , 0 , 0 , , 0 )
(2.7)

for all x X and all t > 0 .

Proof Let ( S , d ) be the metric space defined as in the proof of Theorem 2.1. Consider the mapping T : S S by T g ( x ) : = g ( ( n m + 1 ) x ) n m + 1 for all x X . One can show that d ( g , h ) = ϵ implies that d ( T g , T h ) L ϵ for all positive real numbers ϵ. This means that T is a contraction on ( S , d ) . The mapping
H ( x ) : = N - lim p f ( ( n m + 1 ) p x ) ( n m + 1 ) p
is the unique fixed point of T in S. H has the following property:
( n m + 1 ) H ( x ) = H ( ( n m + 1 ) x )
(2.8)

for all x X . This implies that H is a unique mapping satisfying (2.8) such that there exists μ ( 0 , ) satisfying N ( f ( x ) H ( x ) , μ t ) t t + φ ( x , x , , x , 0 , 0 , , 0 ) for all x X and t > 0 .

The rest of the proof is similar to the proof of Theorem 2.1. □

Now, we investigate the Hyers-Ulam-Rassias stability of m -derivations in ternary fuzzy Banach algebras.

Theorem 2.3 Let φ : X n + m [ 0 , ) be a mapping such that there exists an L < 1 ( n m + 1 ) n 2 with (2.1) Let f : X Y with f ( 0 ) = 0 be a mapping satisfying
N ( D f ( x 1 , , x n + m ) , t ) t t + φ ( x 1 , , x n , 0 , 0 , , 0 ) ,
(2.9)
for all μ T 1 , x 1 , , x n + m X and all t > 0 . Then there exists a unique m -derivation D : X Y such that
N ( f ( x ) D ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + L φ ( x , , x , 0 , 0 , , 0 ) .
(2.10)

for all x X and all t > 0 .

Proof By the same reasoning as that in the proof of Theorem 2.1, the mapping D : X X defined by
D ( x ) : = N - lim p f ( x ( n m + 1 ) p ) ( n m + 1 ) p ( x X ) ,
is a unique -linear mapping which satisfies (2.10). We show that D is an m -derivation. By (2.9),
N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p ( [ [ [ [ f ( y 1 ( n m + 1 ) p ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 f ( y 2 ( n m + 1 ) p ) y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 y 2 f ( y 3 ( n m + 1 ) p ) ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ y 1 y 2 y 3 ] f ( y 4 ( n m + 1 ) p ) y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 f ( y 5 ( n m + 1 ) p ) ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] f ( y m 1 ( n m + 1 ) p ) y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 f ( y m ( n m + 1 ) p ) ] ( n m + 1 ) ( n 1 ) p , t ( n m + 1 ) ( n 1 ) p ) t t + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p )
(2.11)
for all a , b , c X and all t > 0 . Then we have
N ( D ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ D ( y 1 ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 D ( y 2 ) y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 D ( y 3 ) ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] D ( y 4 ) y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 D ( y 5 ) ] y 6 ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] D ( y m 1 ) y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 D ( y m ) ] , t ) = lim p N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p ( [ [ [ [ f ( y 1 ( n m + 1 ) p ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 f ( y 2 ( n m + 1 ) p ) y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 y 2 f ( y 3 ( n m + 1 ) p ) ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ y 1 y 2 y 3 ] f ( y 4 ( n m + 1 ) p ) y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 f ( y 5 ( n m + 1 ) p ) ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] f ( y m 1 ( n m + 1 ) p ) y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 f ( y m ( n m + 1 ) p ) ] ( n m + 1 ) ( n 1 ) p , t ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + L p φ ( 0 , 0 , , 0 , y 1 , y 2 , , y m ) ( n m + 1 ) p = 1

for all y 1 , y 2 , , y m X and all t > 0 . It follows that D is an m -derivation. □

Theorem 2.4 Let φ : X n + m [ 0 , ) be a mapping such that there exists an L < 1 with
φ ( x 1 , , x n + m ) ( n m + 1 ) L φ ( x 1 n m + 1 , , x n + m n m + 1 )
for all x 1 , x 2 , , x n + m X . Let f : X Y be a mapping with f ( 0 ) = 0 satisfying (2.9). Then the limit D ( x ) : = N - lim p f ( ( n m + 1 ) p x ) ( n m + 1 ) p exists for all x X and defines an m -derivation D : X Y such that
N ( f ( x ) D ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + φ ( x , x , , x , 0 , 0 , , 0 )
(2.12)

for all x X and all t > 0 .

Declarations

Authors’ Affiliations

(1)
Department of Mathematics, Payame Noor University, Tehran, Iran
(2)
Department of Mathematics, Semnan University, Semnan, Iran
(3)
Department of Mathematics, College of Sciences, Yasouj University, Yasouj, 75914-353, Iran

References

  1. Rassias TM: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 2000, 62: 23–130. 10.1023/A:1006499223572MathSciNetView ArticleGoogle Scholar
  2. Hyers DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27: 222–224. 10.1073/pnas.27.4.222MathSciNetView ArticleGoogle Scholar
  3. Rassias TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1View ArticleGoogle Scholar
  4. Gǎvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184: 431–436. 10.1006/jmaa.1994.1211MathSciNetView ArticleGoogle Scholar
  5. Bourgin DG: Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 1951, 57: 223–237. 10.1090/S0002-9904-1951-09511-7MathSciNetView ArticleGoogle Scholar
  6. Cădariu L, Radu V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003., 4(1): Article ID 4Google Scholar
  7. Cădariu L, Radu V: Fixed points and the stability of quadratic functional equations. An. Univ. Timiş., Ser. Mat.-Inform. 2003, 41: 25–48.Google Scholar
  8. Cădariu L, Radu V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 2004, 346: 43–52.Google Scholar
  9. Czerwik S: The stability of the quadratic functional equation. In Stability of Mappings of Hyers-Ulam Type. Edited by: Rassias TM, Tabor J. Hadronic Press, Palm Harbor; 1994:81–91.Google Scholar
  10. Eshaghi Gordji M, Rassias JM, Ghobadipour N: Generalized Hyers-Ulam stability of generalized (N,K)-derivations. Abstr. Appl. Anal. 2009., 2009: Article ID 437931Google Scholar
  11. Eshaghi Gordji M, Ghaemi MB, Kaboli Gharetapeh S, Shams S, Ebadian A:On the stability of J -derivations. J. Geom. Phys. 2010, 60(3):454–459. 10.1016/j.geomphys.2009.11.004MathSciNetView ArticleGoogle Scholar
  12. Bavand Savadkouhi M, Gordji ME, Rassias JM, Ghobadipour N: Approximate ternary Jordan derivations on Banach ternary algebras. J. Math. Phys. 2009., 50: Article ID 042303Google Scholar
  13. Ebadian A, Ghobadipour N, Gordji ME:A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C -ternary algebras. J. Math. Phys. 2010., 51: Article ID 103508. doi:10.1063/1.3496391Google Scholar
  14. Eshaghi Gordji M: Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach algebras. Abstr. Appl. Anal. 2010., 2010: Article ID 393247. doi:10.1155/2010/393247Google Scholar
  15. Eshaghi Gordji M, Alizadeh Z: Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras. Abstr. Appl. Anal. 2011., 2011: Article ID 123656Google Scholar
  16. Eshaghi Gordji M, Bavand Savadkouhi M: On approximate cubic homomorphisms. Adv. Differ. Equ. 2009., 2009: Article ID 618463. doi:10.1155/2009/618463Google Scholar
  17. Eshaghi Gordji M, Bavand Savadkouhi M, Bidkham M, Park C, Lee J-R: Nearly partial derivations on Banach ternary algebras. J. Math. Stat. 2010, 6(4):454–461. 10.3844/jmssp.2010.454.461View ArticleGoogle Scholar
  18. Eshaghi Gordji M, Ghobadipour N: Generalized Ulam-Hyers stabilities of quartic derivations on Banach algebras. Proyecciones 2010, 29(3):209–224.MathSciNetView ArticleGoogle Scholar
  19. Eshaghi Gordji M, Ghobadipour N:Stability of ( α , β , γ ) -derivations on Lie C -algebras. Int. J. Geom. Methods Mod. Phys. 2010, 7(7):1093–1102. 10.1142/S0219887810004737MathSciNetView ArticleGoogle Scholar
  20. Eshaghi Gordji M, Karimi T, Kaboli Gharetapeh S: Approximately n -Jordan homomorphisms on Banach algebras. J. Inequal. Appl. 2009., 2009: Article ID 870843Google Scholar
  21. Eshaghi Gordji M, Moslehian MS: A trick for investigation of approximate derivations. Math. Commun. 2010, 15(1):99–105.MathSciNetGoogle Scholar
  22. Eshaghi Gordji M, Savadkouhi MB: Approximation of generalized homomorphisms in quasi-Banach algebras. An. Univ. “Ovidius” Constanţa, Ser. Mat. 2009, 17(2):203–214.MathSciNetGoogle Scholar
  23. Farokhzad R, Hosseinioun SAR: Perturbations of Jordan higher derivations in Banach ternary algebras: an alternative fixed point approach. Int. J. Nonlinear Anal. Appl. 2010, 1(1):42–53.Google Scholar
  24. Park C, Eshaghi Gordji M: Comment on “Approximate ternary Jordan derivations on Banach ternary algebras” [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)]. J. Math. Phys. 2010., 51: Article ID 044102. doi:10.1063/1.3299295Google Scholar
  25. Eshaghi Gordji M, Najati A:Approximately J -homomorphisms: a fixed point approach. J. Geom. Phys. 2010, 60(5):809–814. 10.1016/j.geomphys.2010.01.012MathSciNetView ArticleGoogle Scholar
  26. Gǎvruta P, Gǎvruta L: A new method for the generalized Hyers-Ulam-Rassias stability. Int. J. Nonlinear Anal. Appl. 2010, 1(2):11–18.Google Scholar
  27. Jun K, Lee Y: On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality. Math. Inequal. Appl. 2001, 4: 93–118.MathSciNetGoogle Scholar
  28. Khodaei H, Rassias TM: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 2010, 1(1):22–41.Google Scholar
  29. Kim GH: On the stability of quadratic mapping in normed spaces. Int. J. Math. Math. Sci. 2001, 25: 217–229. 10.1155/S0161171201004707MathSciNetView ArticleGoogle Scholar
  30. Kim H-M, Rassias JM: Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 2007, 336: 277–296. 10.1016/j.jmaa.2007.02.075MathSciNetView ArticleGoogle Scholar
  31. Cholewa PW: Remarks on the stability of functional equations. Aequ. Math. 1984, 27: 76–86. 10.1007/BF02192660MathSciNetView ArticleGoogle Scholar
  32. Czerwik S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 1992, 62: 239–248.MathSciNetView ArticleGoogle Scholar
  33. Radu V: The fixed point alternative and stability of functional equations. Fixed Point Theory 2003, IV(1):91–96.MathSciNetGoogle Scholar
  34. Rassias JM: Solution of a problem of Ulam. J. Approx. Theory 1989, 57: 268–273. 10.1016/0021-9045(89)90041-5MathSciNetView ArticleGoogle Scholar
  35. Rassias TM: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 2000, 246: 352–378. 10.1006/jmaa.2000.6788MathSciNetView ArticleGoogle Scholar
  36. Saadati R, Vaezpour M, Cho YJ: A note to paper “On the stability of cubic mappings and quartic mappings in random normed spaces”. J. Inequal. Appl. 2009., 2009: Article ID 214530. doi:10.1155/2009/214530Google Scholar
  37. Saadati R, Zohdi MM, Vaezpour SM: Nonlinear L-random stability of an ACQ functional equation. J. Inequal. Appl. 2011., 2011: Article ID 194394. doi:10.1155/2011/194394Google Scholar
  38. Azadi Kenary H, Rezaei H, Ghaffaripour A, Talebzadeh S, Park C, Lee JR: Fuzzy Hyers-Ulam stability of an additive functional equation. J. Inequal. Appl. 2011., 2011: Article ID 140Google Scholar
  39. Park C, Lee JR, Rassias TM, Saadati R: Fuzzy -homomorphisms and fuzzy -derivations in induced fuzzy C -algebras. Math. Comput. Model. 2011, 54(9–10):2027–2039. 10.1016/j.mcm.2011.05.012MathSciNetView ArticleGoogle Scholar
  40. Cho YJ, Park C, Saadati R: Functional inequalities in non-Archimedean Banach spaces. Appl. Math. Lett. 2010, 23(10):1238–1242. 10.1016/j.aml.2010.06.005MathSciNetView ArticleGoogle Scholar
  41. Saadati R, Cho YJ, Vahidi J: The stability of the quartic functional equation in various spaces. Comput. Math. Appl. 2010, 60(7):1994–2002. 10.1016/j.camwa.2010.07.034MathSciNetView ArticleGoogle Scholar
  42. Saadati R, Park C: Non-Archimedean L-fuzzy normed spaces and stability of functional equations. Comput. Math. Appl. 2010, 60(8):2488–2496. 10.1016/j.camwa.2010.08.055MathSciNetView ArticleGoogle Scholar
  43. Saadati R, Vaezpour SM, Park C: The stability of the cubic functional equation in various spaces. Math. Commun. 2011, 16(1):131–145.MathSciNetGoogle Scholar
  44. Agarwal RP, Cho YJ, Park C, Saadati R: Approximate homomorphisms and derivation in multi-Banach algebras. Comment. Math. 2011, 51(1):23–38.MathSciNetGoogle Scholar
  45. Rassias TM: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 2000, 251: 264–284. 10.1006/jmaa.2000.7046MathSciNetView ArticleGoogle Scholar
  46. Katsaras AK: Fuzzy topological vector spaces. Fuzzy Sets Syst. 1984, 12: 143–154. 10.1016/0165-0114(84)90034-4MathSciNetView ArticleGoogle Scholar
  47. Felbin C: Finite-dimensional fuzzy normed linear space. Fuzzy Sets Syst. 1992, 48: 239–248. 10.1016/0165-0114(92)90338-5MathSciNetView ArticleGoogle Scholar
  48. Bag T, Samanta SK: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 2003, 11: 687–705.MathSciNetGoogle Scholar
  49. Cheng SC, Mordeson JN: Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 1994, 86: 429–436.MathSciNetGoogle Scholar
  50. Karmosil I, Michalek J: Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11: 326–334.Google Scholar
  51. Bag T, Samanta SK: Fuzzy bounded linear operators. Fuzzy Sets Syst. 2005, 151: 513–547. 10.1016/j.fss.2004.05.004MathSciNetView ArticleGoogle Scholar
  52. Azadi Kenary H: Non-Archimedean stability of Cauchy-Jensen type functional equation. J. Nonlinear Anal. Appl. 2011, 1(2):1–10.MathSciNetGoogle Scholar
  53. Rassias JM, Kim H: Generalized Hyers-Ulam stability for general additive functional equations in quasi β -normed spaces. J. Math. Anal. Appl. 2009, 356: 302–309. 10.1016/j.jmaa.2009.03.005MathSciNetView ArticleGoogle Scholar
  54. Eshaghi Gordji, M, Moradlou, F: Approximate Jordan derivations on Hilbert C -modules. Fixed Point Theory (to appear)Google Scholar
  55. Eshaghi Gordji, M: Nearly involutions on Banach algebras; A fixed point approach. Fixed Point Theory (to appear)Google Scholar

Copyright

Advertisement