Skip to main content

Nearly n-homomorphisms and n-derivations in fuzzy ternary Banach algebras

Abstract

Let n=3k+2 for some kN. We investigate the generalized Hyers-Ulam stability of n-homomorphisms and n-derivations on fuzzy ternary Banach algebras related to the generalized Cauchy-Jensen additive functional equation.

MSC:39B52, 46S40, 26E50.

1 Introduction

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to a true solution of (ξ). We say that a functional equation (ξ) is superstable if every approximately solution of (ξ) is an exact solution of it (see [1]).

Speaking of the stability of a functional equation, we follow the question raised in 1940 by Ulam: When is it true that the solution of an equation differing slightly from a given one, must of necessity be close to the solution of the given equation? This problem was solved in the next year for the Cauchy functional equation on Banach spaces by Hyers [2]. Let f:E E be a mapping between Banach spaces such that

f ( x + y ) f ( x ) f ( y ) δ

for all x,yE and for some δ>0. Then there exists a unique additive mapping T:E E such that

f ( x ) T ( x ) δ

for all xE. Moreover, if f(tx) is continuous in t for each fixed xE, then T is linear. It gave rise to the Hyers-Ulam type stability of functional equations. Hyers’ theorem was generalized by Rassias [3] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1 (Th.M. Rassias)

Let f:E E be a mapping from a normed vector space E into a Banach space E subject to the inequality f(x+y)f(x)f(y)ϵ( x p + y p ) for all x,yE, where ϵ and p are constants with ϵ>0 and 0p<1. Then the limit L(x)= lim n f ( 2 n x ) 2 n exists for all xE and L:E E is the unique additive mapping which satisfies

f ( x ) L ( x ) 2 ϵ 2 2 p x p

for all xE. Also, if for each xE, the function f(tx) is continuous in tR, then L is linear.

Găvruta [4] generalized the Rassias result. Beginning around the year 1980, the stability problems of several functional equations and approximate homomorphisms have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see [545]).

Some mathematicians have defined fuzzy norms on a vector space from various points of view (see [46] and [47]). Bag and Samanta [48], following Cheng and Mordeson [49], gave an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek type [50]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [51].

In this paper, we consider a mapping f:XY satisfying the following functional equation, which is introduced by Azadi Kenary [52]:

1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n f ( j = 1 m x i j m + l = 1 n m x k l ) = ( n m + 1 ) n ( n m ) i = 1 n f( x i )
(1.1)

for all x 1 ,, x n X, where m,nN are fixed integers with n2, 1mn. Especially, we observe that in the case m=1, equation (1.1) yields the Cauchy additive equation f( l = 1 n x k l )= l = 1 n f( x i ). We observe that in the case m=n, equation (1.1) yields the Jensen additive equation f( j = 1 n x j n )= 1 n l = 1 n f( x i ). Therefore, equation (1.1) is a generalized form of the Cauchy-Jensen additive equation, and thus every solution of equation (1.1) may be analogously called general (m,n)-Cauchy-Jensen additive. For the case m=2, the authors have established new theorems about the Ulam-Hyers-Rassias stability in quasi β-normed spaces [53]. Let X and Y be linear spaces. For each m with 1mn, a mapping f:XY satisfies equation (1.1) for all n2 if and only if f(x)f(0)=A(x) is Cauchy additive, where f(0)=0 if m<n. In particular, we have f((nm+1)x)=(nm+1)f(x) and f(mx)=mf(x) for all xX.

Definition 1.1 Let X be a real vector space. A function N:X×R[0,1] is called a fuzzy norm on X if for all x,yX and all s,tR,

(N1) N(x,t)=0 for t0;

(N2) x=0 if and only if N(x,t)=1 for all t>0;

(N3) N(cx,t)=N(x, t | c | ) if c0;

(N4) N(x+y,c+t)min{N(x,s),N(y,t)};

(N5) N(x,) is a non-decreasing function of and lim t N(x,t)=1;

(N6) for x0, N(x,) is continuous on .

Example 1.1 Let (X,) be a normed linear space and α,β>0. Then

N(x,t)= { α t α t + β x , t > 0 , x X , 0 , t 0 , x X ,

is a fuzzy norm on X.

Definition 1.2 Let (X,N) be a fuzzy normed vector space. A sequence { x n } in X is said to be convergent or converge if there exists an xX such that lim t N( x n x,t)=1 for all t>0. In this case, x is called the limit of the sequence { x n } in X, and we denote it by N- lim t x n =x.

Definition 1.3 Let (X,N) be a fuzzy normed vector space. A sequence { x n } in X is called Cauchy if for each ϵ>0 and each t>0, there exists an n 0 N such that for all n n 0 and all p>0, we have N( x n + p x n ,t)>1ϵ.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f:XY between fuzzy normed vector spaces X and Y is continuous at a point xX if for each sequence { x n } converging to x 0 X, the sequence {f( x n )} converges to f( x 0 ). If f:XY is continuous at each xX, then f:XY is said to be continuous on X (see [51]).

Definition 1.4 Let X be a ternary algebra and (X,N) be a fuzzy normed space.

  1. (1)

    The fuzzy normed space (X,N) is called a fuzzy ternary normed algebra if

    N ( [ x y z ] , s t u ) N(x,s)N(y,t)N(z,u)

for all x,y,zX and all positive real numbers s, t and u.

  1. (2)

    A complete ternary fuzzy normed algebra is called a ternary fuzzy Banach algebra.

Example 1.2 Let (X,) be a ternary normed (Banach) algebra. Let

N(x,t)= { t t + x , t > 0 , x X , 0 , t 0 , x X .

Then N(x,t) is a fuzzy norm on X and (X,N) is a ternary fuzzy normed (Banach) algebra.

From now on, we suppose that kN is a fixed positive integer and m =3k+2. Also, we assume that n3 is a fixed positive integer.

Definition 1.5 Let (X,N) and (Y, N ) be two ternary fuzzy normed algebras. Then

  1. (1)

    a -linear mapping H:(X,N)(Y, N ) is called an m -homomorphism if

    H ( [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] x m 1 x m ] ) = [ [ [ [ H ( x 1 ) H ( x 2 ) H ( x 3 ) ] H ( x 4 ) H ( x 5 ) ] ] ( x m 1 ) H ( x m ) ]

for all x 1 , x 2 ,, x m X;

  1. (2)

    a -linear mapping D:(X,N)(X,N) is called an m -derivation if

    D ( [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] x m 1 x m ] ) = [ [ [ [ D ( x 1 ) x 2 x 3 ] x 4 x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 D ( x 2 ) x 3 ] x 4 x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 x 2 D ( x 3 ) ] x 4 x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 x 2 x 3 ] D ( x 4 ) x 5 ] ] x m 1 x m ] + [ [ [ [ x 1 x 2 x 3 ] x 4 D ( x 5 ) ] x 6 ] x m 1 x m ] + + [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] D ( x m 1 ) x m ] + [ [ [ [ x 1 x 2 x 3 ] x 4 x 5 ] ] x m 1 D ( x m ) ]

for all x 1 , x 2 ,, x m X.

We apply the following theorem on weighted spaces.

Theorem 1.2 Let (X,d) be a complete generalized metric space and J:XX be a strictly contractive mapping with a Lipschitz constant L<1. Then, for all xX, either d( J n x, J n + 1 x)= for all nonnegative integers n or there exists a positive integer n 0 such that

  1. (1)

    d( J n x, J n + 1 x)< for all n 0 n 0 ;

  2. (2)

    the sequence { J n x} converges to a fixed point y of J;

  3. (3)

    y is the unique fixed point of J in the set Y={yX:d( J n 0 x,y)<};

  4. (4)

    d(y, y ) 1 1 L d(y,Jy) for all yY.

Throughout this paper, we suppose that X is a ternary fuzzy normed algebra and Y is a ternary fuzzy Banach algebra. For convenience, we use the following abbreviations for a given mapping f:XY:

Δ f ( x 1 , , x n , y 1 , y 2 , , y m ) = 1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n f ( j = 1 m μ x i j m + l = 1 n m μ x k l ) ( n m + 1 ) ( n m ) i = 1 n μ f ( x i ) n + f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ f ( y 1 ) f ( y 2 ) f ( y 3 ) ] f ( y 4 ) f ( y 5 ) ] ] f ( y m 1 ) f ( y m ) ] ,

and

D f ( x 1 , , x n , y 1 , y 2 , , y m ) = 1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n f ( j = 1 m μ x i j m + l = 1 n m μ x k l ) ( n m + 1 ) ( n m ) i = 1 n μ f ( x i ) n + f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ f ( y 1 ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 f ( y 2 ) y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 f ( y 3 ) ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] f ( y 4 ) y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 f ( y 5 ) ] y 6 ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] f ( y m 1 ) y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 f ( y m ) ] .

There are several recent works on stability of functional equations on Banach algebras (see [1028]). We investigate the stability of n-homomorphisms and n-derivations on fuzzy ternary Banach algebras.

2 Main results

In this section, by using the idea of Park et al. [39], we prove the generalized Hyers-Ulam-Rassias stability of 5-homomorphisms and 5-derivations related to the functional equation (1.1) on fuzzy ternary Banach algebras (see also [54]). We start our main results by the stability of 5-homomorphisms.

Theorem 2.1 Let φ: X n + m [0,) be a mapping such that there exists an L< 1 ( n m + 1 ) n 2 with

φ ( x 1 n m + 1 , , x n + m n m + 1 ) L φ ( x 1 , x 2 , , x n + m ) n m + 1
(2.1)

for all x 1 ,, x n + m X. Let f:XY with f(0)=0 be a mapping satisfying

N ( Δ f ( x 1 , , x n + m ) , t ) t t + φ ( x 1 , , x n , 0 , 0 , , 0 )
(2.2)

for all μ T 1 , x 1 ,, x n + m X and all t>0. Then there exists a unique m -homomorphism H:XY such that

N ( f ( x ) H ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + L φ ( x , , x , 0 , 0 , , 0 )
(2.3)

for all xX and all t>0.

Proof Letting μ=1 and putting x n + 1 = x n + 2 == x n + m =0, x 1 = x 2 == x n =x in (2.2), we obtain

N ( ( n m ) f ( ( n m + 1 ) x ) ( n m ) ( n m + 1 ) f ( x ) , t ) t t + φ ( x , , x , 0 , 0 , , 0 )
(2.4)

for all xX and t>0. Set S:={h:XY;h(0)=0} and define d:S×S[0,] by

d(f,g)=inf { μ R + : N ( g ( x ) h ( x ) , μ t ) t t + φ ( x , , x , 0 , 0 , , 0 ) , x X , t > 0 } ,

where inf=+. By using the same technique as in the proof of Theorem 3.2 of [54], we can show that (S,d) is a complete generalized metric space. We define J:SS by

Jg(x):=(nm+1)g ( x n m + 1 )

for all xX. It is easy to see that d(Jg,Jh)Ld(g,h) for all g,hS. This implies that

d(f,Jf) L ( n m + 1 ) ( n m ) .

By Banach’s fixed point approach, J has a unique fixed point H:XY in S 0 :={hS:d(h,f)<} satisfying

H ( x n m + 1 ) = H ( x ) n m + 1
(2.5)

for all xX. This implies that H is a unique mapping such that (2.5) and that there exists μ(0,) satisfying N(f(x)H(x),μt) t t + φ ( x , , x , 0 , 0 , , 0 ) for all xX and t>0. Moreover, we have d( J p f,H)0 as p. This implies the equality

N- lim p f ( x ( n m + 1 ) p ) ( n m + 1 ) p =H(x)
(2.6)

for all xX.

It follows from (2.2) and (2.6) that

1 i 1 < < i m n 1 k l ( i j , j { 1 , , m } ) n H ( j = 1 m μ x i j m + l = 1 n m μ x k l ) = ( n m + 1 ) n ( n m ) i = 1 n μH( x i )

for all μ T 1 , x 1 ,, x n X. This means that H:XY is additive. By using the same technique as in the proof of Theorem 2.1 of [55], we can show that H is -linear. By (2.2), we have

N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p [ [ [ [ f ( y 1 ( n m + 1 ) p ) f ( y 2 ( n m + 1 ) p ) f ( y 3 ( n m + 1 ) p ) ] × f ( y 4 ( n m + 1 ) p ) f ( y 5 ( n m + 1 ) p ) ] ] f ( y m 1 ( n m + 1 ) p ) f ( y m ( n m + 1 ) p ) ] , t ( n m + 1 ) ( n 1 ) p ) t t + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p )

for all y 1 , y 2 ,, y m X and all t>0. Then

N ( H ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ H ( y 1 ) H ( y 2 ) H ( y 3 ) ] H ( y 4 ) H ( y 5 ) ] ] H ( y m 1 ) H ( y m ) ] , t ) = lim p N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p [ [ [ [ f ( y 1 ( n m + 1 ) p ) f ( y 2 ( n m + 1 ) p ) f ( y 3 ( n m + 1 ) p ) ] × f ( y 4 ( n m + 1 ) p ) f ( y 5 ( n m + 1 ) p ) ] ] × f ( y m 1 ( n m + 1 ) p ) f ( y m ( n m + 1 ) p ) ] , t ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + L p φ ( 0 , 0 , , 0 , y 1 , y 2 , , y m ) ( n m + 1 ) p = 1

for all y 1 , y 2 ,, y m X and all t>0. Hence

N ( H ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ H ( y 1 ) H ( y 2 ) H ( y 3 ) ] H ( y 4 ) H ( y 5 ) ] ] H ( y m 1 ) H ( y m ) ] , t ) = 1

for all y 1 , y 2 ,, y m X and all t>0. Hence

H ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ H ( y 1 ) H ( y 2 ) H ( y 3 ) ] H ( y 4 ) H ( y 5 ) ] ] H ( y m 1 ) H ( y m ) ]

for all y 1 , y 2 ,, y m X. This means that H is an m -homomorphism. This completes the proof. □

Theorem 2.2 Let φ: X n + m [0,) be a mapping such that there exists an L<1 with

φ( x 1 ,, x n + m )(nm+1)Lφ ( x 1 n m + 1 , , x n + m n m + 1 )

for all x 1 , x 2 ,, x n + m X. Let f:XY be a mapping with f(0)=0 satisfying (2.2). Then the limit H(x):=N- lim p f ( ( n m + 1 ) p x ) ( n m + 1 ) p exists for all xX and defines an m -homomorphism H:XY such that

N ( f ( x ) H ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + φ ( x , x , , x , 0 , 0 , , 0 )
(2.7)

for all xX and all t>0.

Proof Let (S,d) be the metric space defined as in the proof of Theorem 2.1. Consider the mapping T:SS by Tg(x):= g ( ( n m + 1 ) x ) n m + 1 for all xX. One can show that d(g,h)=ϵ implies that d(Tg,Th)Lϵ for all positive real numbers ϵ. This means that T is a contraction on (S,d). The mapping

H(x):=N- lim p f ( ( n m + 1 ) p x ) ( n m + 1 ) p

is the unique fixed point of T in S. H has the following property:

(nm+1)H(x)=H ( ( n m + 1 ) x )
(2.8)

for all xX. This implies that H is a unique mapping satisfying (2.8) such that there exists μ(0,) satisfying N(f(x)H(x),μt) t t + φ ( x , x , , x , 0 , 0 , , 0 ) for all xX and t>0.

The rest of the proof is similar to the proof of Theorem 2.1. □

Now, we investigate the Hyers-Ulam-Rassias stability of m -derivations in ternary fuzzy Banach algebras.

Theorem 2.3 Let φ: X n + m [0,) be a mapping such that there exists an L< 1 ( n m + 1 ) n 2 with (2.1) Let f:XY with f(0)=0 be a mapping satisfying

N ( D f ( x 1 , , x n + m ) , t ) t t + φ ( x 1 , , x n , 0 , 0 , , 0 ) ,
(2.9)

for all μ T 1 , x 1 ,, x n + m X and all t>0. Then there exists a unique m -derivation D:XY such that

N ( f ( x ) D ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + L φ ( x , , x , 0 , 0 , , 0 ) .
(2.10)

for all xX and all t>0.

Proof By the same reasoning as that in the proof of Theorem 2.1, the mapping D:XX defined by

D(x):=N- lim p f ( x ( n m + 1 ) p ) ( n m + 1 ) p (xX),

is a unique -linear mapping which satisfies (2.10). We show that D is an m -derivation. By (2.9),

N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p ( [ [ [ [ f ( y 1 ( n m + 1 ) p ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 f ( y 2 ( n m + 1 ) p ) y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 y 2 f ( y 3 ( n m + 1 ) p ) ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ y 1 y 2 y 3 ] f ( y 4 ( n m + 1 ) p ) y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 f ( y 5 ( n m + 1 ) p ) ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] f ( y m 1 ( n m + 1 ) p ) y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 f ( y m ( n m + 1 ) p ) ] ( n m + 1 ) ( n 1 ) p , t ( n m + 1 ) ( n 1 ) p ) t t + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p )
(2.11)

for all a,b,cX and all t>0. Then we have

N ( D ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ D ( y 1 ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 D ( y 2 ) y 3 ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 D ( y 3 ) ] y 4 y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] D ( y 4 ) y 5 ] ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 D ( y 5 ) ] y 6 ] y m 1 y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] D ( y m 1 ) y m ] [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 D ( y m ) ] , t ) = lim p N ( f ( [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p ) ( n m + 1 ) ( n 1 ) p 1 ( n m + 1 ) ( n 1 ) p ( [ [ [ [ f ( y 1 ( n m + 1 ) p ) y 2 y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 f ( y 2 ( n m + 1 ) p ) y 3 ] y 4 y 5 ] ] y m 1 y m ] + [ [ [ [ y 1 y 2 f ( y 3 ( n m + 1 ) p ) ] y 4 y 5 ] ] y m 1 y m ] ) [ [ [ [ y 1 y 2 y 3 ] f ( y 4 ( n m + 1 ) p ) y 5 ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 f ( y 5 ( n m + 1 ) p ) ] ] y m 1 y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] f ( y m 1 ( n m + 1 ) p ) y m ] ( n m + 1 ) ( n 1 ) p [ [ [ [ y 1 y 2 y 3 ] y 4 y 5 ] ] y m 1 f ( y m ( n m + 1 ) p ) ] ( n m + 1 ) ( n 1 ) p , t ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + φ ( 0 , 0 , , 0 , y 1 ( n m + 1 ) p , y 2 ( n m + 1 ) p , , y m ( n m + 1 ) p ) lim p t ( n m + 1 ) ( n 1 ) p t ( n m + 1 ) ( n 1 ) p + L p φ ( 0 , 0 , , 0 , y 1 , y 2 , , y m ) ( n m + 1 ) p = 1

for all y 1 , y 2 ,, y m X and all t>0. It follows that D is an m -derivation. □

Theorem 2.4 Let φ: X n + m [0,) be a mapping such that there exists an L<1 with

φ( x 1 ,, x n + m )(nm+1)Lφ ( x 1 n m + 1 , , x n + m n m + 1 )

for all x 1 , x 2 ,, x n + m X. Let f:XY be a mapping with f(0)=0 satisfying (2.9). Then the limit D(x):=N- lim p f ( ( n m + 1 ) p x ) ( n m + 1 ) p exists for all xX and defines an m -derivation D:XY such that

N ( f ( x ) D ( x ) , t ) ( n m + 1 ) ( n m ) ( 1 L ) t ( n m + 1 ) ( n m ) ( 1 L ) t + φ ( x , x , , x , 0 , 0 , , 0 )
(2.12)

for all xX and all t>0.

References

  1. Rassias TM: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 2000, 62: 23–130. 10.1023/A:1006499223572

    Article  MathSciNet  Google Scholar 

  2. Hyers DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27: 222–224. 10.1073/pnas.27.4.222

    Article  MathSciNet  Google Scholar 

  3. Rassias TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1

    Article  Google Scholar 

  4. Gǎvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184: 431–436. 10.1006/jmaa.1994.1211

    Article  MathSciNet  Google Scholar 

  5. Bourgin DG: Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 1951, 57: 223–237. 10.1090/S0002-9904-1951-09511-7

    Article  MathSciNet  Google Scholar 

  6. Cădariu L, Radu V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 2003., 4(1): Article ID 4

  7. Cădariu L, Radu V: Fixed points and the stability of quadratic functional equations. An. Univ. Timiş., Ser. Mat.-Inform. 2003, 41: 25–48.

    Google Scholar 

  8. Cădariu L, Radu V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 2004, 346: 43–52.

    Google Scholar 

  9. Czerwik S: The stability of the quadratic functional equation. In Stability of Mappings of Hyers-Ulam Type. Edited by: Rassias TM, Tabor J. Hadronic Press, Palm Harbor; 1994:81–91.

    Google Scholar 

  10. Eshaghi Gordji M, Rassias JM, Ghobadipour N: Generalized Hyers-Ulam stability of generalized (N,K)-derivations. Abstr. Appl. Anal. 2009., 2009: Article ID 437931

    Google Scholar 

  11. Eshaghi Gordji M, Ghaemi MB, Kaboli Gharetapeh S, Shams S, Ebadian A:On the stability of J -derivations. J. Geom. Phys. 2010, 60(3):454–459. 10.1016/j.geomphys.2009.11.004

    Article  MathSciNet  Google Scholar 

  12. Bavand Savadkouhi M, Gordji ME, Rassias JM, Ghobadipour N: Approximate ternary Jordan derivations on Banach ternary algebras. J. Math. Phys. 2009., 50: Article ID 042303

    Google Scholar 

  13. Ebadian A, Ghobadipour N, Gordji ME:A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C -ternary algebras. J. Math. Phys. 2010., 51: Article ID 103508. doi:10.1063/1.3496391

    Google Scholar 

  14. Eshaghi Gordji M: Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach algebras. Abstr. Appl. Anal. 2010., 2010: Article ID 393247. doi:10.1155/2010/393247

    Google Scholar 

  15. Eshaghi Gordji M, Alizadeh Z: Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras. Abstr. Appl. Anal. 2011., 2011: Article ID 123656

    Google Scholar 

  16. Eshaghi Gordji M, Bavand Savadkouhi M: On approximate cubic homomorphisms. Adv. Differ. Equ. 2009., 2009: Article ID 618463. doi:10.1155/2009/618463

    Google Scholar 

  17. Eshaghi Gordji M, Bavand Savadkouhi M, Bidkham M, Park C, Lee J-R: Nearly partial derivations on Banach ternary algebras. J. Math. Stat. 2010, 6(4):454–461. 10.3844/jmssp.2010.454.461

    Article  Google Scholar 

  18. Eshaghi Gordji M, Ghobadipour N: Generalized Ulam-Hyers stabilities of quartic derivations on Banach algebras. Proyecciones 2010, 29(3):209–224.

    Article  MathSciNet  Google Scholar 

  19. Eshaghi Gordji M, Ghobadipour N:Stability of (α,β,γ)-derivations on Lie C -algebras. Int. J. Geom. Methods Mod. Phys. 2010, 7(7):1093–1102. 10.1142/S0219887810004737

    Article  MathSciNet  Google Scholar 

  20. Eshaghi Gordji M, Karimi T, Kaboli Gharetapeh S: Approximately n -Jordan homomorphisms on Banach algebras. J. Inequal. Appl. 2009., 2009: Article ID 870843

    Google Scholar 

  21. Eshaghi Gordji M, Moslehian MS: A trick for investigation of approximate derivations. Math. Commun. 2010, 15(1):99–105.

    MathSciNet  Google Scholar 

  22. Eshaghi Gordji M, Savadkouhi MB: Approximation of generalized homomorphisms in quasi-Banach algebras. An. Univ. “Ovidius” Constanţa, Ser. Mat. 2009, 17(2):203–214.

    MathSciNet  Google Scholar 

  23. Farokhzad R, Hosseinioun SAR: Perturbations of Jordan higher derivations in Banach ternary algebras: an alternative fixed point approach. Int. J. Nonlinear Anal. Appl. 2010, 1(1):42–53.

    Google Scholar 

  24. Park C, Eshaghi Gordji M: Comment on “Approximate ternary Jordan derivations on Banach ternary algebras” [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)]. J. Math. Phys. 2010., 51: Article ID 044102. doi:10.1063/1.3299295

    Google Scholar 

  25. Eshaghi Gordji M, Najati A:Approximately J -homomorphisms: a fixed point approach. J. Geom. Phys. 2010, 60(5):809–814. 10.1016/j.geomphys.2010.01.012

    Article  MathSciNet  Google Scholar 

  26. Gǎvruta P, Gǎvruta L: A new method for the generalized Hyers-Ulam-Rassias stability. Int. J. Nonlinear Anal. Appl. 2010, 1(2):11–18.

    Google Scholar 

  27. Jun K, Lee Y: On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality. Math. Inequal. Appl. 2001, 4: 93–118.

    MathSciNet  Google Scholar 

  28. Khodaei H, Rassias TM: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 2010, 1(1):22–41.

    Google Scholar 

  29. Kim GH: On the stability of quadratic mapping in normed spaces. Int. J. Math. Math. Sci. 2001, 25: 217–229. 10.1155/S0161171201004707

    Article  MathSciNet  Google Scholar 

  30. Kim H-M, Rassias JM: Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 2007, 336: 277–296. 10.1016/j.jmaa.2007.02.075

    Article  MathSciNet  Google Scholar 

  31. Cholewa PW: Remarks on the stability of functional equations. Aequ. Math. 1984, 27: 76–86. 10.1007/BF02192660

    Article  MathSciNet  Google Scholar 

  32. Czerwik S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 1992, 62: 239–248.

    Article  MathSciNet  Google Scholar 

  33. Radu V: The fixed point alternative and stability of functional equations. Fixed Point Theory 2003, IV(1):91–96.

    MathSciNet  Google Scholar 

  34. Rassias JM: Solution of a problem of Ulam. J. Approx. Theory 1989, 57: 268–273. 10.1016/0021-9045(89)90041-5

    Article  MathSciNet  Google Scholar 

  35. Rassias TM: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 2000, 246: 352–378. 10.1006/jmaa.2000.6788

    Article  MathSciNet  Google Scholar 

  36. Saadati R, Vaezpour M, Cho YJ: A note to paper “On the stability of cubic mappings and quartic mappings in random normed spaces”. J. Inequal. Appl. 2009., 2009: Article ID 214530. doi:10.1155/2009/214530

    Google Scholar 

  37. Saadati R, Zohdi MM, Vaezpour SM: Nonlinear L-random stability of an ACQ functional equation. J. Inequal. Appl. 2011., 2011: Article ID 194394. doi:10.1155/2011/194394

    Google Scholar 

  38. Azadi Kenary H, Rezaei H, Ghaffaripour A, Talebzadeh S, Park C, Lee JR: Fuzzy Hyers-Ulam stability of an additive functional equation. J. Inequal. Appl. 2011., 2011: Article ID 140

    Google Scholar 

  39. Park C, Lee JR, Rassias TM, Saadati R: Fuzzy -homomorphisms and fuzzy -derivations in induced fuzzy C -algebras. Math. Comput. Model. 2011, 54(9–10):2027–2039. 10.1016/j.mcm.2011.05.012

    Article  MathSciNet  Google Scholar 

  40. Cho YJ, Park C, Saadati R: Functional inequalities in non-Archimedean Banach spaces. Appl. Math. Lett. 2010, 23(10):1238–1242. 10.1016/j.aml.2010.06.005

    Article  MathSciNet  Google Scholar 

  41. Saadati R, Cho YJ, Vahidi J: The stability of the quartic functional equation in various spaces. Comput. Math. Appl. 2010, 60(7):1994–2002. 10.1016/j.camwa.2010.07.034

    Article  MathSciNet  Google Scholar 

  42. Saadati R, Park C: Non-Archimedean L-fuzzy normed spaces and stability of functional equations. Comput. Math. Appl. 2010, 60(8):2488–2496. 10.1016/j.camwa.2010.08.055

    Article  MathSciNet  Google Scholar 

  43. Saadati R, Vaezpour SM, Park C: The stability of the cubic functional equation in various spaces. Math. Commun. 2011, 16(1):131–145.

    MathSciNet  Google Scholar 

  44. Agarwal RP, Cho YJ, Park C, Saadati R: Approximate homomorphisms and derivation in multi-Banach algebras. Comment. Math. 2011, 51(1):23–38.

    MathSciNet  Google Scholar 

  45. Rassias TM: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 2000, 251: 264–284. 10.1006/jmaa.2000.7046

    Article  MathSciNet  Google Scholar 

  46. Katsaras AK: Fuzzy topological vector spaces. Fuzzy Sets Syst. 1984, 12: 143–154. 10.1016/0165-0114(84)90034-4

    Article  MathSciNet  Google Scholar 

  47. Felbin C: Finite-dimensional fuzzy normed linear space. Fuzzy Sets Syst. 1992, 48: 239–248. 10.1016/0165-0114(92)90338-5

    Article  MathSciNet  Google Scholar 

  48. Bag T, Samanta SK: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 2003, 11: 687–705.

    MathSciNet  Google Scholar 

  49. Cheng SC, Mordeson JN: Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 1994, 86: 429–436.

    MathSciNet  Google Scholar 

  50. Karmosil I, Michalek J: Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11: 326–334.

    Google Scholar 

  51. Bag T, Samanta SK: Fuzzy bounded linear operators. Fuzzy Sets Syst. 2005, 151: 513–547. 10.1016/j.fss.2004.05.004

    Article  MathSciNet  Google Scholar 

  52. Azadi Kenary H: Non-Archimedean stability of Cauchy-Jensen type functional equation. J. Nonlinear Anal. Appl. 2011, 1(2):1–10.

    MathSciNet  Google Scholar 

  53. Rassias JM, Kim H: Generalized Hyers-Ulam stability for general additive functional equations in quasi β -normed spaces. J. Math. Anal. Appl. 2009, 356: 302–309. 10.1016/j.jmaa.2009.03.005

    Article  MathSciNet  Google Scholar 

  54. Eshaghi Gordji, M, Moradlou, F: Approximate Jordan derivations on Hilbert C -modules. Fixed Point Theory (to appear)

  55. Eshaghi Gordji, M: Nearly involutions on Banach algebras; A fixed point approach. Fixed Point Theory (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Eshaghi Gordji.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Hassani, F., Ebadian, A., Eshaghi Gordji, M. et al. Nearly n-homomorphisms and n-derivations in fuzzy ternary Banach algebras. J Inequal Appl 2013, 71 (2013). https://doi.org/10.1186/1029-242X-2013-71

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-71

Keywords

  • Hyers-Ulam-Rassias stability
  • fixed point theorem
  • fuzzy ternary Banach algebra