- Research
- Open Access

*G*-*β*-*ψ* contractive-type mappings and related fixed point theorems

- Maryam A Alghamdi
^{1}Email author and - Erdal Karapınar
^{2}

**2013**:70

https://doi.org/10.1186/1029-242X-2013-70

© Alghamdi and Karapınar; licensee Springer 2013

**Received:**13 December 2012**Accepted:**9 February 2013**Published:**27 February 2013

## Abstract

In this paper, we introduce the notion of generalized *G*-*β*-*ψ* contractive mappings which is inspired by the concept of *α*-*ψ* contractive mappings. We showed the existence and uniqueness of a fixed point for such mappings in the setting of complete *G*-metric spaces. The main results of this paper extend, generalize and improve some well-known results on the topic in the literature. We state some examples to illustrate our results. We consider also some applications to show the validity of our results.

## Keywords

- Fixed Point Theorem
- Contractive Mapping
- Nondecreasing Mapping
- Fixed Point Theory
- Unique Fixed Point

## 1 Introduction and preliminaries

In nonlinear functional analysis, the importance of fixed point theory has been increasing rapidly as an interesting research field. One of the most important reasons for this development is the potential of application of fixed point theory not only in various branches of applied and pure mathematics, but also in many other disciplines such as chemistry, biology, physics, economics, computer science, engineering *etc*. We also emphasize the crucial role of celebrated results of Banach [1], known as a Banach contraction mapping principle or a Banach fixed point theorem, in the growth of this theory. In 1922, Banach proved that every contraction in a complete metric space has a unique fixed point. After this remarkable paper, a number of authors have extended/generalized/improved the Banach contraction mapping principle in various ways in different abstract spaces (see, *e.g.*, [2–22]). One of the interesting and recent results in this direction was given by Samet *et al.* [23]. They defined the notion of *α*-*ψ* contractive mappings and proved that including the Banach fixed point theorems, some well-known fixed point results turn into corollaries of their results. Another interesting result was given in 2004 by Mustafa and Sims [24] by introducing the notion of a *G*-metric space as a generalization of the concept of a metric space. The authors characterized the Banach fixed point theorem in the context of a *G*-metric space. After this result, many authors have paid attention to this space and proved the existence and uniqueness of a fixed point in the context of a *G*-metric space (see, *e.g.*, [11, 17–20, 24–48]). In this paper, we combine these two notions by introducing a *G*-*β*-*ψ* contractive mapping which is a characterization *α*-*ψ* contractive mappings in the context of *G*-metric spaces. Our main results generalize, extend and improve the existence results on the topic in the literature.

- (i)
*ψ*is nondecreasing; - (ii)there exist ${k}_{0}\in \mathbb{N}$ and $a\in (0,1)$ and a convergent series of nonnegative terms ${\sum}_{k=1}^{\mathrm{\infty}}{v}_{k}$ such that${\psi}^{k+1}(t)\le a{\psi}^{k}(t)+{v}_{k}$

for $k\ge {k}_{0}$ and any $t\in {\mathbb{R}}^{+}$, where ${\mathbb{R}}^{+}=[0,\mathrm{\infty})$.

These functions are known in the literature as Bianchini-Grandolfi gauge functions in some sources (see, *e.g.*, [21, 22, 49]) and as $(c)$-comparison functions in some other sources (see, *e.g.*, [50]).

**Lemma 1** (See [50])

*If*$\psi \in \mathrm{\Psi}$,

*then the following hold*:

- (i)
${({\psi}^{n}(t))}_{n\in \mathbb{N}}$

*converges to*0*as*$n\to \mathrm{\infty}$*for all*$t\in {\mathbb{R}}^{+}$; - (ii)
$\psi (t)<t$

*for any*$t\in {\mathbb{R}}^{+}$; - (iii)
*ψ**is continuous at*0; - (iv)
*the series*${\sum}_{k=1}^{\mathrm{\infty}}{\psi}^{k}(t)$*converges for any*$t\in {\mathbb{R}}^{+}$.

Very recently, Karapınar and Samet [32] introduced the following concepts.

**Definition 2**Let $(X,d)$ be a metric space and $T:X\to X$ be a given mapping. We say that

*T*is a generalized

*α*-

*ψ*contractive mapping if there exist two functions $\alpha :X\times X\to [0,\mathrm{\infty})$ and $\psi \in \mathrm{\Psi}$ such that

Clearly, since *ψ* is nondecreasing, every *α*-*ψ* contractive mapping, presented in [23], is a generalized *α*-*ψ* contractive mapping.

**Definition 3**Let $T:X\to X$ and $\alpha :X\times X\to [0,\mathrm{\infty})$. We say that

*T*is

*α*-admissible if for all $x,y\in X$, we have

Various examples of such mappings are presented in [23]. The main results in [32] are the following fixed point theorems.

**Theorem 4**

*Let*$(X,d)$

*be a complete metric space and*$T:X\to X$

*be a generalized*

*α*-

*ψ*

*contractive mapping*.

*Suppose that*

- (i)
*T**is**α*-*admissible*; - (ii)
*there exists*${x}_{0}\in X$*such that*$\alpha ({x}_{0},T{x}_{0})\ge 1$; - (iii)
*T**is continuous*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

**Theorem 5**

*Let*$(X,d)$

*be a complete metric space and*$T:X\to X$

*be a generalized*

*α*-

*ψ*

*contractive mapping*.

*Suppose that*

- (i)
*T**is**α*-*admissible*; - (ii)
*there exists*${x}_{0}\in X$*such that*$\alpha ({x}_{0},T{x}_{0})\ge 1$; - (iii)
*if*$\{{x}_{n}\}$*is a sequence in**X**such that*$\alpha ({x}_{n},{x}_{n+1})\ge 1$*for all**n**and*${x}_{n}\to x\in X$*as*$n\to \mathrm{\infty}$,*then*$\alpha ({x}_{n},x)\ge 1$*for all**n*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

**Theorem 6** *Adding to the hypotheses of Theorem* 4 (*resp*. *Theorem* 5) *the condition*: *For all* $x,y\in Fix(T)$, *there exists* $z\in X$ *such that* $\alpha (x,z)\ge 1$ *and* $\alpha (y,z)\ge 1$, *we obtain the uniqueness of the fixed point of* *T*.

Mustafa and Sims [24] introduced the concept of *G*-metric spaces as follows.

**Definition 7** [24]

Let *X* be a nonempty set and $G:X\times X\times X\to {\mathbb{R}}^{+}$ be a function satisfying the following properties:

(G1) $G(x,y,z)=0$ if $x=y=z$;

(G2) $0<G(x,x,y)$ for all $x,y\in X$ with $x\ne y$;

(G3) $G(x,x,y)\le G(x,y,z)$ for all $x,y,z\in X$ with $y\ne z$;

(G4) $G(x,y,z)=G(x,z,y)=G(y,z,x)=\cdots $ (symmetry in all three variables);

(G5) $G(x,y,z)\le G(x,a,a)+G(a,y,z)$ for all $x,y,z,a\in X$ (rectangle inequality).

Then the function *G* is called a generalized metric or, more specifically, a *G*-metric on *X*, and the pair $(X,G)$ is called a *G*-metric space.

*G*-metric on

*X*defines a metric ${d}_{G}$ on

*X*by

**Example 8**Let $(X,d)$ be a metric space. The function $G:X\times X\times X\to {\mathbb{R}}^{+}$, defined as

for all $x,y,z\in X$, is a *G*-metric on *X*.

**Definition 9** [24]

*G*-metric space, and let $\{{x}_{n}\}$ be a sequence of points of

*X*. We say that $\{{x}_{n}\}$ is

*G*-convergent to $x\in X$ if

that is, for any $\epsilon >0$, there exists $N\in \mathbb{N}$ such that $G(x,{x}_{n},{x}_{m})<\epsilon $ for all $n,m\ge N$. We call *x* the limit of the sequence and write ${x}_{n}\to x$ or ${lim}_{n\to \mathrm{\infty}}{x}_{n}=x$.

**Proposition 10** [24]

*Let*$(X,G)$

*be a*

*G*-

*metric space*.

*The following are equivalent*:

- (1)
$\{{x}_{n}\}$

*is**G*-*convergent to**x*; - (2)
$G({x}_{n},{x}_{n},x)\to 0$

*as*$n\to \mathrm{\infty}$; - (3)
$G({x}_{n},x,x)\to 0$

*as*$n\to \mathrm{\infty}$; - (4)
$G({x}_{n},{x}_{m},x)\to 0$

*as*$n,m\to \mathrm{\infty}$.

**Definition 11** [24]

Let $(X,G)$ be a *G*-metric space. A sequence $\{{x}_{n}\}$ is called a *G*-Cauchy sequence if for any $\epsilon >0$, there is $N\in \mathbb{N}$ such that $G({x}_{n},{x}_{m},{x}_{l})<\epsilon $ for all $n,m,l\ge N$, that is, $G({x}_{n},{x}_{m},{x}_{l})\to 0$ as $n,m,l\to \mathrm{\infty}$.

**Proposition 12** [24]

*Let*$(X,G)$

*be a*

*G*-

*metric space*.

*Then the following are equivalent*:

- (1)
*the sequence*$\{{x}_{n}\}$*is**G*-*Cauchy*; - (2)
*for any*$\epsilon >0$,*there exists*$N\in \mathbb{N}$*such that*$G({x}_{n},{x}_{m},{x}_{m})<\epsilon $*for all*$n,m\ge N$.

**Definition 13** [24]

A *G*-metric space $(X,G)$ is called *G*-complete if every *G*-Cauchy sequence is *G*-convergent in $(X,G)$.

**Lemma 14** [24]

*Let*$(X,G)$

*be a*

*G*-

*metric space*.

*Then*,

*for any*$x,y,z,a\in X$,

*it follows that*

- (i)
*if*$G(x,y,z)=0$,*then*$x=y=z$; - (ii)
$G(x,y,z)\le G(x,x,y)+G(x,x,z)$;

- (iii)
$G(x,y,y)\le 2G(y,x,x)$;

- (iv)
$G(x,y,z)\le G(x,a,z)+G(a,y,z)$;

- (v)
$G(x,y,z)\le \frac{2}{3}[G(x,y,a)+G(x,a,z)+G(a,y,z)]$;

- (vi)
$G(x,y,z)\le G(x,a,a)+G(y,a,a)+G(z,a,a)$.

**Definition 15** (See [24])

Let $(X,G)$ be a *G*-metric space. A mapping $T:X\to X$ is said to be *G*-continuous if $\{T({x}_{n})\}$ is *G*-convergent to $T(x)$, where $\{{x}_{n}\}$ is any *G*-convergent sequence converging to *x*.

In [36], Mustafa characterized the well-known Banach contraction principle mapping in the context of *G*-metric spaces in the following way.

**Theorem 16** (See [36])

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and*$T:X\to X$

*be a mapping satisfying the following condition for all*$x,y,z\in X$:

*where* $k\in [0,1)$. *Then* *T* *has a unique fixed point*.

**Theorem 17** (See [36])

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and*$T:X\to X$

*be a mapping satisfying the following condition for all*$x,y\in X$:

*where* $k\in [0,1)$. *Then* *T* *has a unique fixed point*.

**Remark 18** The condition (1) implies the condition (2). The converse is true only if $k\in [0,\frac{1}{2})$. For details, see [36].

*G*-metric

*G*on

*X*generates a topology ${\tau}_{G}$ on

*X*whose base is a family of open

*G*-balls $\{{B}_{G}(x,\epsilon ):x\in X,\epsilon >0\}$, where ${B}_{G}(x,\epsilon )=\{y\in X:G(x,y,y)<\epsilon \}$ for all $x\in X$ and $\epsilon >0$. Moreover,

**Proposition 19** *Let* $(X,G)$ *be a* *G*-*metric space and* *A* *be a nonempty subset of* *X*. *Then* *A* *is* *G*-*closed if for any* *G*-*convergent sequence* $\{{x}_{n}\}$ *in* *A* *with limit* *x*, *one has* $x\in A$.

## 2 Main results

We introduce the concept of generalized *α*-*ψ* contractive mappings as follows.

**Definition 20**Let $(X,G)$ be a

*G*-metric space and $T:X\to X$ be a given mapping. We say that

*T*is a generalized

*G*-

*β*-

*ψ*contractive mapping of type I if there exist two functions $\beta :X\times X\times X\to [0,\mathrm{\infty})$ and $\psi \in \mathrm{\Psi}$ such that for all $x,y,z\in X$, we have

**Definition 21**Let $(X,G)$ be a

*G*-metric space and $T:X\to X$ be a given mapping. We say that

*T*is a generalized

*G*-

*β*-

*ψ*contractive mapping of type II if there exist two functions $\beta :X\times X\times X\to [0,\mathrm{\infty})$ and $\psi \in \mathrm{\Psi}$ such that for all $x,y\in X$, we have

**Remark 22** Clearly, any contractive mapping, that is, a mapping satisfying (1), is a generalized *G*-*β*-*ψ* contractive mapping of type I with $\beta (x,y,z)=1$ for all $x,y,z\in X$ and $\psi (t)=kt$, $k\in (0,1)$. Analogously, a mapping satisfying (2) is a generalized *G*-*β*-*ψ* contractive mapping of type II with $\beta (x,y,y)=1$ for all $x,y\in X$ and $\psi (t)=kt$, where $k\in (0,1)$.

**Definition 23**Let $T:X\to X$ and $\beta :X\times X\times X\to [0,\mathrm{\infty})$. We say that

*T*is

*β*-admissible if for all $x,y,z\in X$, we have

**Example 24**Let $X=[0,\mathrm{\infty})$ and $T:X\to X$. Define $\beta (x,y,z):X\times X\times X\to [0,\mathrm{\infty})$ by $Tx=ln(1+x)$ and

Then *T* is *β*-admissible.

Our first result is the following.

**Theorem 25** *Let* $(X,G)$ *be a complete* *G*-*metric space*. *Suppose that* $T:X\to X$ *is a generalized* *G*-*β*-*ψ* *contractive mapping of type I and satisfies the following conditions*:

(i)_{
a
} *T* *is* *β*-*admissible*;

(ii)_{
a
} *there exists* ${x}_{0}\in X$ *such that* $\beta ({x}_{0},T{x}_{0},T{x}_{0})\ge 1$;

(iii)_{
b
} *T* *is* *G*-*continuous*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

*Proof*Let ${x}_{0}\in X$ be such that $\beta ({x}_{0},T{x}_{0},T{x}_{0})\ge 1$ (such a point exists from the condition (ii)

_{ a }). Define the sequence $\{{x}_{n}\}$ in

*X*by ${x}_{n+1}=T{x}_{n}$ for all $n\ge 0$. If ${x}_{{n}_{0}}={x}_{{n}_{0}+1}$ for some ${n}_{0}$, then $u={x}_{{n}_{0}}$ is a fixed point of

*T*. So, we can assume that ${x}_{n}\ne {x}_{n+1}$ for all

*n*. Since

*T*is

*β*-admissible, we have

We consider the following two cases:

*n*, then

which is a contradiction.

*ψ*is nondecreasing, by induction, we get

By Proposition 12, this implies that $\{{x}_{n}\}$ is a *G*-Cauchy sequence in the *G*-metric space $(X,G)$. Since $(X,G)$ is complete, there exists $u\in X$ such that $\{{x}_{n}\}$ is *G*-convergent to *u*. Since *T* is *G*-continuous, it follows that $\{T{x}_{n}\}$ is *G*-convergent to *Tu*. By the uniqueness of the limit, we get $u=Tu$, that is, *u* is a fixed point of *T*. □

**Definition 26** (See [51])

*G*-metric space and $T:X\to X$ be a given mapping. We say that

*T*is a

*G*-

*β*-

*ψ*contractive mapping of type I if there exist two functions $\beta :X\times X\times X\to [0,\mathrm{\infty})$ and $\psi \in \mathrm{\Psi}$ such that for all $x,y,z\in X$, we have

by following the lines of the proof of Theorem 25.

**Corollary 27** *Let* $(X,G)$ *be a complete* *G*-*metric space*. *Suppose that* $T:X\to X$ *is a* *G*-*β*-*ψ* *contractive mapping of type I and satisfies the following conditions*:

(i)_{
a
} *T* *is* *β*-*admissible*;

(ii)_{
a
} *there exists* ${x}_{0}\in X$ *such that* $\beta ({x}_{0},T{x}_{0},T{x}_{0})\ge 1$;

(iii)_{
b
} *T* *is* *G*-*continuous*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

**Example 28**Let $X=[0,\mathrm{\infty})$ be endowed with the

*G*-metric

Then *T* is a *G*-*β*-*ψ* contractive mapping of type I with $\psi (t)=\frac{1}{9}t$ for all $t\in [0,\mathrm{\infty})$. Take $x,y,z\in X$ such that $\beta (x,y,z)\ge 1$. By the definition of *T*, this implies that $x=y=z=0$. Then we have $\beta (Tx,Ty,Tz)=\beta (0,0,0)=1$, and so *T* is *β*-admissible. All the conditions of Corollary 27 are satisfied. Here, 0 is the fixed point of *T*. Notice also that the Banach contraction mapping principle is not applicable. Indeed, $d(x,y)=|x-y|$ for all $x,y\in X$. Then we have $x\ne y$ $d(Tx,Ty)=3|x-y|>k|x-y|$ for all $k\in [0,1)$.

It is clear that Theorem 16 is not applicable.

The following result can be easily concluded from Theorem 25.

**Corollary 29** *Let* $(X,G)$ *be a complete* *G*-*metric space*. *Suppose that* $T:X\to X$ *is a generalized* *G*-*β*-*ψ* *contractive mapping of type II and satisfies the following conditions*:

(i)_{
a
} *T* *is* *β*-*admissible*;

(ii)_{
a
} *there exists* ${x}_{0}\in X$ *such that* $\beta ({x}_{0},T{x}_{0},T{x}_{0})\ge 1$;

(iii)_{
b
} *T* *is* *G*-*continuous*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

The next theorem does not require the continuity of *T*.

**Theorem 30** *Let* $(X,G)$ *be a complete* *G*-*metric space*. *Suppose that* $T:X\to X$ *is a generalized* *G*-*β*-*ψ* *contractive mapping of type I such that* *ψ* *is continuous and satisfies the following conditions*:

(i)_{
b
} *T* *is* *β*-*admissible*;

(ii)_{
b
} *there exists* ${x}_{0}\in X$ *such that* $\beta ({x}_{0},T{x}_{0},T{x}_{0})\ge 1$;

(iii)_{
b
} *if* $\{{x}_{n}\}$ *is a sequence in* *X* *such that* $\beta ({x}_{n},{x}_{n+1},{x}_{n+1})\ge 1$ *for all* *n* *and* $\{{x}_{n}\}$ *is a* *G*-*convergent to* $x\in X$, *then* $\beta ({x}_{n},x,x)\ge 1$ *for all* *n*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

*Proof*Following the proof of Theorem 25, we know that the sequence $\{{x}_{n}\}$ defined by ${x}_{n+1}=T{x}_{n}$ for all $n\ge 0$, is a

*G*-Cauchy sequence in the complete

*G*-metric space $(X,G)$, that is,

*G*-convergent to $u\in X$. From (5) and (iii)

_{ b }, we have

which is a contradiction. Thus, we obtain $G(u,Tu,Tu)=0$, that is, by Lemma 14, $u=Tu$. □

The following corollary can be easily derived from Theorem 30.

**Corollary 31** *Let* $(X,G)$ *be a complete* *G*-*metric space*. *Suppose that* $T:X\to X$ *is a generalized* *G*-*β*-*ψ* *contractive mapping of type II such that* *ψ* *is continuous and satisfies the following conditions*:

(i)_{
b
} *T* *is* *β*-*admissible*;

(ii)_{
b
} *there exists* ${x}_{0}\in X$ *such that* $\beta ({x}_{0},T{x}_{0},T{x}_{0})\ge 1$;

(iii)_{
b
} *if* $\{{x}_{n}\}$ *is a sequence in* *X* *such that* $\beta ({x}_{n},{x}_{n+1},{x}_{n+1})\ge 1$ *for all* *n* *and* $\{{x}_{n}\}$ *is a* *G*-*convergent to* $x\in X$, *then* $\beta ({x}_{n},x,x)\ge 1$ *for all* *n*.

*Then there exists* $u\in X$ *such that* $Tu=u$.

With the following example, we will show that the hypotheses in Theorems 25 and 30 do not guarantee uniqueness.

**Example 32**Let $X=\{(1,0),(0,1)\}\subset {\mathbb{R}}^{2}$ be endowed with the following

*G*-metric:

*T*is a generalized

*G*-

*β*-

*ψ*contractive mapping. On the other hand, for all $(x,y),(u,v),(z,w)\in X$, we have

Hence *T* is *β*-admissible. Moreover, for all $(x,y)\in X$, we have $\beta ((x,y),T(x,y),T(x,y))\ge 1$. So, the assumptions of Theorem 25 are satisfied. Note that the assumptions of Theorem 30 are also satisfied, indeed, if $\{({x}_{n},{y}_{n})\}$ is a sequence in *X* that converges to some point $(x,y)\in X$ with $\beta (({x}_{n},{y}_{n}),({x}_{n+1},{y}_{n+1}),({x}_{n+1},{y}_{n+1}))\ge 1$ for all *n*, then from the definition of *β*, we have $({x}_{n},{y}_{n})=(x,y)$ for all *n*, which implies that $\beta (({x}_{n},{y}_{n}),(x,y),(x,y))=1$ for all *n*. However, in this case, *T* has two fixed points in *X*.

Let *X* be a set and *T* be a self-mapping on *X*. The set of all fixed points of *T* will be denoted by $Fix(T)$.

**Theorem 33**

*Adding the following condition to the hypotheses of Theorem*25 (

*resp*.

*Theorem*30,

*Corollary*29,

*Corollary*31),

*we obtain the uniqueness of the fixed point of*

*T*.

- (iv)
*For*$x\in Fix(T)$, $\beta (x,z,z)\ge 1$*for all*$z\in X$.

*Proof*Let $u,v\in Fix(T)$ be two fixed points of

*T*. By (iv), we derive

*u*and

*v*are fixed points of

*T*. Consequently, we have

which is a contradiction. Therefore, $u=v$, *i.e.*, the fixed point of *T* is unique. □

**Corollary 34**

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and let*$T:X\to X$

*be a given mapping*.

*Suppose that there exists a continuous function*$\psi \in \mathrm{\Psi}$

*such that*

*for all* $x,y,z\in X$. *Then* *T* *has a unique fixed point*.

**Corollary 35**

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and let*$T:X\to X$

*be a given mapping*.

*Suppose that there exists a function*$\psi \in \mathrm{\Psi}$

*such that*

*for all* $x,y,z\in X$. *Then* *T* *has a unique fixed point*.

**Corollary 36**

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and let*$T:X\to X$

*be a given mapping*.

*Suppose that there exists*$\lambda \in [0,1)$

*such that*

*for all* $x,y,z\in X$. *Then* *T* *has a unique fixed point*.

**Corollary 37**

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and let*$T:X\to X$

*be a given mapping*.

*Suppose that there exist nonnegative real numbers*

*a*,

*b*,

*c*,

*d*

*and*

*e*

*with*$a+b+c+d+e<1$

*such that*

*for all* $x,y,z\in X$. *Then* *T* *has a unique fixed point*.

**Corollary 38** (See [40])

*Let*$(X,G)$

*be a complete*

*G*-

*metric space and let*$T:X\to X$

*be a given mapping*.

*Suppose that there exists*$\lambda \in [0,1)$

*such that*

*for all* $x,y,z\in X$. *Then* *T* *has a unique fixed point*.

## 3 Consequences

### 3.1 Fixed point theorems on metric spaces endowed with a partial order

**Definition 39**Let $(X,\u2aaf)$ be a partially ordered set and $T:X\to X$ be a given mapping. We say that

*T*is nondecreasing with respect to ⪯ if

**Definition 40**Let $(X,\u2aaf)$ be a partially ordered set. A sequence $\{{x}_{n}\}\subset X$ is said to be nondecreasing with respect to ⪯ if

**Definition 41** Let $(X,\u2aaf)$ be a partially ordered set and *G* be a *G*-metric on *X*. We say that $(X,\u2aaf,G)$ is *G*-regular if for every nondecreasing sequence $\{{x}_{n}\}\subset X$ such that ${x}_{n}\to x\in X$ as $n\to \mathrm{\infty}$, ${x}_{n}\u2aafx$ for all *n*.

**Theorem 42**

*Let*$(X,\u2aaf)$

*be a partially ordered set and*

*G*

*be a*

*G*-

*metric on*

*X*

*such that*$(X,G)$

*is a complete*

*G*-

*metric space*.

*Let*$T:X\to X$

*be a nondecreasing mapping with respect to*⪯.

*Suppose that there exists a function*$\psi \in \mathrm{\Psi}$

*such that*

*for all*$x,y\in X$

*with*$x\u2aafy$.

*Suppose also that the following conditions hold*:

- (i)
*there exists*${x}_{0}\in X$*such that*${x}_{0}\u2aafT{x}_{0}$; - (ii)
*T**is**G*-*continuous or*$(X,\u2aaf,G)$*is**G*-*regular and**ψ**is continuous*.

*Then there exists* $u\in X$ *such that* $Tu=u$. *Moreover*, *if for* $x\in Fix(T)$, $x\u2aafz$ *for all* $z\in X$, *one has the uniqueness of the fixed point*.

*Proof*Define the mapping $\beta :X\times X\times X\to [0,\mathrm{\infty})$ by

*T*is a generalized

*G*-

*β*-

*ψ*contractive mapping of type II. From the condition (i), we have

*β*and since

*T*is a nondecreasing mapping with respect to ⪯, we have

Thus *T* is *β*-admissible. Moreover, if *T* is *G*-continuous, by Theorem 25, *T* has a fixed point.

Now, suppose that $(X,\u2aaf,G)$ is *G*-regular. Let $\{{x}_{n}\}$ be a sequence in *X* such that $\beta ({x}_{n},{x}_{n+1},{x}_{n+1})\ge 1$ for all *n* and ${x}_{n}$ is *G*-convergent to $x\in X$. By Definition 41, ${x}_{n}\u2aafx$ for all *n*, which gives us $\beta ({x}_{n},x,x)\ge 1$ for all *k*. Thus, all the hypotheses of Theorem 30 are satisfied and there exists $u\in X$ such that $Tu=u$. To prove the uniqueness, since $u\in Fix(T)$, we have, $u\u2aafz$ for all $z\in X$. By the definition of *β*, we get that $\beta (u,z,z)\ge 1$ for all $z\in X$. Therefore, the hypothesis (iv) of Theorem 33 is satisfied and we deduce the uniqueness of the fixed point. □

**Corollary 43**

*Let*$(X,\u2aaf)$

*be a partially ordered set and*

*G*

*be a*

*G*-

*metric on*

*X*

*such that*$(X,G)$

*is a complete*

*G*-

*metric space*.

*Let*$T:X\to X$

*be a nondecreasing mapping with respect to*⪯.

*Suppose that there exists a function*$\psi \in \mathrm{\Psi}$

*such that*

*for all*$x,y\in X$

*with*$x\u2aafy$.

*Suppose also that the following conditions hold*:

- (i)
*there exists*${x}_{0}\in X$*such that*${x}_{0}\u2aafT{x}_{0}$; - (ii)
*T**is**G*-*continuous or*$(X,\u2aaf,G)$*is**G*-*regular*.

*Then there exists* $u\in X$ *such that* $Tu=u$. *Moreover*, *if for* $x\in Fix(T)$, $x\u2aafz$ *for all* $z\in X$, *one has the uniqueness of the fixed point*.

**Corollary 44**

*Let*$(X,\u2aaf)$

*be a partially ordered set and*

*G*

*be a*

*G*-

*metric on*

*X*

*such that*$(X,G)$

*is a complete*

*G*-

*metric space*.

*Let*$T:X\to X$

*be a nondecreasing mapping with respect to*⪯.

*Suppose that there exists*$\lambda \in [0,1)$

*such that*

*for all*$x,y\in X$

*with*$x\u2aafy$.

*Suppose also that the following conditions hold*:

- (i)
*there exists*${x}_{0}\in X$*such that*${x}_{0}\u2aafT{x}_{0}$; - (ii)
*T**is**G*-*continuous or*$(X,\u2aaf,G)$*is**G*-*regular*.

*Then there exists* $u\in X$ *such that* $Tu=u$. *Moreover*, *if for* $x\in Fix(T)$, $x\u2aafz$ *for all* $z\in X$, *one has the uniqueness of the fixed point*.

**Corollary 45**

*Let*$(X,\u2aaf)$

*be a partially ordered set and*

*G*

*be a*

*G*-

*metric on*

*X*

*such that*$(X,G)$

*is a complete*

*G*-

*metric space*.

*Let*$T:X\to X$

*be a nondecreasing mapping with respect to*⪯.

*Suppose that there exist nonnegative real numbers*

*a*,

*b*,

*c*

*and*

*d*

*with*$a+b+c+d<1$

*such that*

*for all*$x,y\in X$

*with*$x\u2aafy$.

*Suppose also that the following conditions hold*:

- (i)
*there exists*${x}_{0}\in X$*such that*${x}_{0}\u2aafT{x}_{0}$; - (ii)
*T**is**G*-*continuous or*$(X,\u2aaf,G)$*is**G*-*regular*.

*Then there exists* $u\in X$ *such that* $Tu=u$. *Moreover*, *if for* $x\in Fix(T)$, $x\u2aafz$ *for all* $z\in X$, *one has the uniqueness of the fixed point*.

**Corollary 46**

*Let*$(X,\u2aaf)$

*be a partially ordered set and*

*G*

*be a*

*G*-

*metric on*

*X*

*such that*$(X,G)$

*is a complete*

*G*-

*metric space*.

*Let*$T:X\to X$

*be a nondecreasing mapping with respect to*⪯.

*Suppose that there exists a constant*$\lambda \in [0,1)$

*such that*

*for all*$x,y\in X$

*with*$x\u2aafy$.

*Suppose also that the following conditions hold*:

- (i)
*there exists*${x}_{0}\in X$*such that*${x}_{0}\u2aafT{x}_{0}$; - (ii)
*T**is**G*-*continuous or*$(X,\u2aaf,G)$*is**G*-*regular*.

*Then there exists* $u\in X$ *such that* $Tu=u$. *Moreover*, *if for* $x\in Fix(T)$, $x\u2aafz$ *for all* $z\in X$, *one has the uniqueness of the fixed point*.

### 3.2 Cyclic contraction

Now, we will prove our results for cyclic contractive mappings in a *G*-metric space.

*Let*

*A*,

*B*

*be a nonempty*

*G*-

*closed subset of a complete*

*G*-

*metric space*$(X,G)$.

*Suppose also that*$Y=A\cup B$

*and*$T:Y\to Y$

*is a given self*-

*mapping satisfying*

*If there exists a continuous function*$\psi \in \mathrm{\Psi}$

*such that*

*then* *T* *has a unique fixed point* $u\in A\cap B$, *that is*, $Tu=u$.

*Proof*Notice that $(Y,G)$ is a complete

*G*-metric space since

*A*,

*B*is a closed subset of a complete

*G*-metric space $(X,G)$. We define $\beta :X\times X\times X\to [0,\mathrm{\infty})$ in the following way:

*β*and the assumption (12), we have

Hence, *T* is a generalized *G*-*β*-*ψ* contractive mapping.

Let $(x,y)\in Y\times Y$ be such that $\beta (x,y,y)\ge 1$. If $(x,y)\in A\times B$ then by the assumption (11), $(Tx,Ty)\in B\times A$, which yields that $\beta (Tx,Ty,Ty)\ge 1$. If $(x,y)\in B\times A$, we get again $\beta (Tx,Ty,Ty)\ge 1$ by analogy. Thus, in any case, we have $\beta (Tx,Ty,Ty)\ge 1$, that is, *T* is *β*-admissible. Notice also that for any $z\in A$, we have $(z,Tz)\in A\times B$, which yields $\beta (z,Tz,Tz)\ge 1$.

*X*such that $\beta ({x}_{n},{x}_{n+1},{x}_{n+1})\ge 1$ for all

*n*and ${x}_{n}\to u\in X$ as $n\to \mathrm{\infty}$. Regarding the definition of

*β*, we derive that

By assumption, *A*, *B* and hence $(A\times B)\cup (B\times A)$ is a *G*-closed set. Hence, we get that $(u,u)\in (A\times B)\cup (B\times A)$, which implies that $u\in A\cap B$. We conclude, by the definition of *β*, that $\beta ({x}_{n},u,u)\ge 1$ for all *n*.

Now, all hypotheses of Theorem 30 are satisfied and we conclude that *T* has a fixed point. Next, we show the uniqueness of a fixed point *u* of *T*. Since $u\in Fix(T)$ and $u\in A\cap B$, we get $\beta (u,a,a)\ge 1$ for all $a\in Y$. Thus, the condition (iv) of Theorem 33 is satisfied. □

## Declarations

### Acknowledgements

The research of the first author was partially supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia.

## Authors’ Affiliations

## References

- Banach S:
**Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales.***Fundam. Math.*1922,**3:**133–181.Google Scholar - Abbas M, Sintunavarat W, Kumam P:
**Coupled fixed point of generalized contractive mappings on partially ordered**G**-metric spaces.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 31Google Scholar - Agarwal RP, Alghamdi MA, Shahzad N:
**Fixed point theory for cyclic generalized contractions in partial metric spaces.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 40Google Scholar - Aydi H, Vetro C, Sintunavarat W, Kumam P:
**Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 124Google Scholar - Ćirić L, Lakshmikantham V:
**Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces.***Nonlinear Anal.*2009,**70:**4341–4349. 10.1016/j.na.2008.09.020MathSciNetView ArticleGoogle Scholar - Gnana-Bhaskar T, Lakshmikantham V:
**Fixed point theorems in partially ordered metric spaces and applications.***Nonlinear Anal.*2006,**65:**1379–1393. 10.1016/j.na.2005.10.017MathSciNetView ArticleGoogle Scholar - Guo D, Lakshmikantham V:
**Coupled fixed points of nonlinear operators with applications.***Nonlinear Anal., Theory Methods Appl.*1987,**11:**623–632. 10.1016/0362-546X(87)90077-0MathSciNetView ArticleGoogle Scholar - Karapınar E:
**Fixed point theory for cyclic weak**ϕ**-contraction.***Appl. Math. Lett.*2011,**24**(6):822–825. 10.1016/j.aml.2010.12.016MathSciNetView ArticleGoogle Scholar - Karapınar E, Sadaranagni K:
**Fixed point theory for cyclic (**ϕ**-**ψ**)-contractions.***Fixed Point Theory Appl.*2011.,**2011:**Article ID 69Google Scholar - Karapınar E:
**Coupled fixed point theorems for nonlinear contractions in cone metric spaces.***Comput. Math. Appl.*2010,**59:**3656–3668. 10.1016/j.camwa.2010.03.062MathSciNetView ArticleGoogle Scholar - Nashine HK, Sintunavarat W, Kumam P:
**Cyclic generalized contractions and fixed point results with applications to an integral equation.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 217Google Scholar - Kirk WA, Srinivasan PS, Veeramani P:
**Fixed points for mappings satisfying cyclical contractive conditions.***Fixed Point Theory Appl.*2003,**4**(1):79–89.MathSciNetGoogle Scholar - Pacurar M, Rus IA:
**Fixed point theory for cyclic**φ**-contractions.***Nonlinear Anal.*2010,**72:**1181–1187. 10.1016/j.na.2009.08.002MathSciNetView ArticleGoogle Scholar - Petric MA:
**Some results concerning cyclical contractive mappings.***Gen. Math.*2010,**18**(4):213–226.MathSciNetGoogle Scholar - Petruşel A, Rus IA:
**Fixed point theorems in ordered**L**-spaces.***Proc. Am. Math. Soc.*2006,**134:**411–418.MathSciNetView ArticleGoogle Scholar - Rus IA:
**Cyclic representations and fixed points.***Ann. “Tiberiu Popoviciu” Sem. Funct. Equ. Approx. Convexity*2005,**3:**171–178.Google Scholar - Sintunavarat W, Kumam P:
**Coupled coincidence and coupled common fixed point theorems in partially ordered metric spaces.***Thai J. Math.*2012,**10**(3):551–563.MathSciNetGoogle Scholar - Sintunavarat W, Cho YJ, Kumam P:
**Coupled fixed-point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 128Google Scholar - Sintunavarat W, Kim JK, Kumam P:
**Fixed point theorems for a generalized almost**$(\varphi ,\phi )$**-contraction with respect to**S**in ordered metric spaces.***J. Inequal. Appl.*2012.,**2012:**Article ID 263Google Scholar - Sintunavarat W, Kumam P:
**Common fixed point theorem for cyclic generalized multi-valued contraction mappings.***Appl. Math. Lett.*2012,**25**(11):1849–1855. 10.1016/j.aml.2012.02.045MathSciNetView ArticleGoogle Scholar - Bianchini RM, Grandolfi M:
**Transformazioni di tipo contracttivo generalizzato in uno spazio metrico.***Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat.*1968,**45:**212–216.MathSciNetGoogle Scholar - Proinov PD:
**New general convergence theory for iterative processes and its applications to Newton Kantorovich type theorems.***J. Complex.*2010,**26:**3–42. 10.1016/j.jco.2009.05.001MathSciNetView ArticleGoogle Scholar - Samet B, Vetro C, Vetro P:
**Fixed point theorem for**$\alpha -\psi $**contractive type mappings.***Nonlinear Anal.*2012,**75:**2154–2165. 10.1016/j.na.2011.10.014MathSciNetView ArticleGoogle Scholar - Mustafa Z, Sims B:
**A new approach to generalized metric spaces.***J. Nonlinear Convex Anal.*2006,**7**(2):289–297.MathSciNetGoogle Scholar - Aydi H, Damjanović B, Samet B, Shatanawi W:
**Coupled fixed point theorems for nonlinear contractions in partially ordered**G**-metric spaces.***Math. Comput. Model.*2011,**54:**2443–2450. 10.1016/j.mcm.2011.05.059MathSciNetView ArticleGoogle Scholar - Choudhury BS, Maity P:
**Coupled fixed point results in generalized metric spaces.***Math. Comput. Model.*2011,**54:**73–79. 10.1016/j.mcm.2011.01.036MathSciNetView ArticleGoogle Scholar - Aydi H, Karapınar E, Shatanawi W:
**Tripled fixed point results in generalized metric spaces.***J. Appl. Math.*2012.,**2012:**Article ID 314279Google Scholar - Aydi H, Karapınar E, Mustafa Z:
**On Common Fixed Points in**G**-Metric Spaces Using (E.A) Property.***Comput. Math. Appl.*2012,**64**(6):1944–1956. 10.1016/j.camwa.2012.03.051MathSciNetView ArticleGoogle Scholar - Aydi H, Karapınar E, Shatanawi W:
**Tripled common fixed point results for generalized contractions in ordered generalized metric spaces.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 101Google Scholar - Aydi, H: Generalized cyclic contractions in G-metric spaces. J. Nonlinear Sci. Appl. (in press)Google Scholar
- Karapınar E, Kaymakcalan B, Tas K:
**On coupled fixed point theorems on partially ordered**G**-metric spaces.***J. Inequal. Appl.*2012.,**2012:**Article ID 200Google Scholar - Karapınar E, Samet B:
**Generalized**$(\alpha -\psi )$**contractive type mappings and related fixed point theorems with applications.***Abstr. Appl. Anal.*2012.,**2012:**Article ID 793486Google Scholar - Karapınar E, Erhan IM, Ulus AY:
**Cyclic contractions on**G**-metric spaces.***Abstr. Appl. Anal.*2012.,**2012:**Article ID 182947Google Scholar - Ding HS, Karapınar E:
**A note on some coupled fixed point theorems on**G**-metric space.***J. Inequal. Appl.*2012.,**2012:**Article ID 170Google Scholar - Gul U, Karapınar E:
**On almost contraction in partially ordered metric spaces viz implicit relation.***J. Inequal. Appl.*2012.,**2012:**Article ID 217Google Scholar - Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory. Ph.D. Thesis, The University of Newcastle, Australia (2005)Google Scholar
- Mustafa Z, Aydi H, Karapınar E:
**On common fixed points in image-metric spaces using (E.A) property.***Comput. Math. Appl.*2012. doi:10.1016/j.camwa.2012.03.051Google Scholar - Mustafa Z, Obiedat H, Awawdeh F:
**Some fixed point theorem for mapping on complete**G**-metric spaces.***Fixed Point Theory Appl.*2008.,**2008:**Article ID 189870Google Scholar - Mustafa Z, Khandaqji M, Shatanawi W:
**Fixed point results on complete**G**-metric spaces.***Studia Sci. Math. Hung.*2011,**48:**304–319.MathSciNetGoogle Scholar - Mustafa Z, Sims B:
**Fixed point theorems for contractive mappings in complete**G**-metric spaces.***Fixed Point Theory Appl.*2009.,**2009:**Article ID 917175Google Scholar - Mustafa Z, Shatanawi W, Bataineh M:
**Existence of fixed point results in**G**-metric spaces.***Int. J. Math. Math. Sci.*2009.,**2009:**Article ID 283028Google Scholar - Shatanawi W:
**Fixed point theory for contractive mappings satisfying Φ-maps in**G**-metric spaces.***Fixed Point Theory Appl.*2010.,**2010:**Article ID 181650Google Scholar - Shatanawi W:
**Some fixed point theorems in ordered**G**-metric spaces and applications.***Abstr. Appl. Anal.*2011.,**2011:**Article ID 126205Google Scholar - Shatanawi W:
**Coupled fixed point theorems in generalized metric spaces.***Hacet. J. Math. Stat.*2011,**40**(3):441–447.MathSciNetGoogle Scholar - Shatanawi W, Abbas M, Nazir T:
**Common coupled coincidence and coupled fixed point results in two generalized metric spaces.***Fixed Point Theory Appl.*2011.,**2011:**Article ID 80Google Scholar - Sintunavarat W, Cho YJ, Kumam P:
**Common fixed point theorems for**c**-distance in ordered cone metric spaces.***Comput. Math. Appl.*2011,**62:**1969–1978. 10.1016/j.camwa.2011.06.040MathSciNetView ArticleGoogle Scholar - Tahat N, Aydi H, Karapınar E, Shatanawi W:
**Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in**G**-metric spaces.***Fixed Point Theory Appl.*2012.,**2012:**Article ID 48Google Scholar - Agarwal RP, Karapınar E:
**Remarks on some coupled fixed point theorems in**G**-metric spaces.***Fixed Point Theory Appl.*2013.,**2013:**Article ID 2Google Scholar - Proinov PD:
**A generalization of the Banach contraction principle with high order of convergence of successive approximations.***Nonlinear Anal., Theory Methods Appl.*2007,**67:**2361–2369. 10.1016/j.na.2006.09.008MathSciNetView ArticleGoogle Scholar - Berinde V:
*Iterative Approximation of Fixed Points*. Editura Efemeride, Baia Mare; 2002.Google Scholar - Alghamdi, MA, Karapınar, E: G-β-ψ contractive type mappings and related fixed point theorems. PreprintGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.