Skip to main content

On asymptotically double lacunary statistical equivalent sequences in ideal context

Abstract

An ideal is a family of subsets of positive integers N×N which is closed under taking finite unions and subsets of its elements. In this paper, we present some definitions which are a natural combination of the definition of asymptotic equivalence, statistical convergence, lacunary statistical convergence, double sequences and an ideal. In addition, we also present asymptotically -equivalent double sequences and study some properties of this concept.

MSC:40A35, 40G15.

1 Introduction

Pobyvancts [1] introduced the concept of asymptotically regular matrices which preserve the asymptotic equivalence of two nonnegative numbers sequences. Marouf [2] presented definitions for asymptotically equivalent and asymptotic regular matrices. Patterson [3] extended these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices. Patterson and Savaş [4] introduced the concept of an asymptotically lacunary statistical equivalent sequences of real numbers.

The idea of statistical convergence was formerly given under the name ‘almost convergence’ by Zygmund in the first edition of his celebrated monograph published in Warsaw in 1935 [5]. The concept was formally introduced by Steinhaus [6] and Fast [7], and later, it was introduced by Schoenberg [8] and also independently by Buck [9]. A lot of developments have been made in this area after the works of S̆alát [10] and Fridy [11]. Over the years and under different names, statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory and number theory. Fridy and Orhan [12] introduced the concept of lacunary statistical convergence. Mursaleen and Mohiuddine [13] introduced the concept of lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. Savaş and Patterson [14, 15] introduced the concept of lacunary statistical convergence for double sequences. Recently Mohiuddine et al. [16] introduced statistical convergence of double sequences in locally solid Riesz spaces. For details related to lacunary statistical convergence, we refer to [12, 1724].

Kostyrko et al. [25] introduced the notion of I-convergence with the help of an admissible ideal, I denotes the ideal of subsets of , which is a generalization of statistical convergence. Quite recently, Das et al. [26] unified these two approaches to introduce new concepts of I-statistical convergence, I-lacunary statistical convergence and investigated some of their consequences. The notion of lacunary ideal convergence of real sequences was introduced in [27, 28]. Hazarika [29, 30] introduced the lacunary ideal convergent sequences of fuzzy real numbers and studied some basic properties of this notion. Kumar and Sharma [31] studied asymptotically generalized statistical equivalent sequences using ideals. Recently Savas [32] and Savas and Gumus [33] studied ideal asymptotically lacunary statistical equivalent single sequences. For more applications of ideals, we refer to [3447].

In this paper, we define asymptotically lacunary statistical equivalent double sequences using an ideal and establish some basic results regarding this notion.

2 Definitions and preliminaries

In this section, we recall some definitions and notations, which form the base for the present study.

A family of sets IP(N) (power sets of ) is called an ideal if and only if for each A,BI, we have ABI, and for each AI and each BA, we have BI. A non-empty family of sets FP(N) is a filter on if and only if ϕF, for each A,BF, we have ABF and each AF and each BA, we have BF. An ideal I is called non-trivial ideal if Iϕ and NI. Clearly, IP(N) is a non-trivial ideal if and only if F=F(I)={NA:AI} is a filter on . A non-trivial ideal IP(N) is called admissible if and only if {{x}:xN}I. A non-trivial ideal I is maximal if there cannot exists any non-trivial ideal JI containing I as a subset. Further details on ideals of P(N) can be found in Kostyrko et al. [25]. Recall that a sequence x=( x k ) of points in is said to be I-convergent to a real number if {kN:| x k |ε}I for every ε>0 [25]. In this case, we write Ilim x k =.

By a lacunary sequence θ=( k r ), where k 0 =0, we mean an increasing sequence of non-negative integers with h r := k r k r 1 as r. The intervals determined by θ will be denoted by J r :=( k r 1 , k r ], and the ratio k r k r 1 will be defined by q r (see [48]).

The notion of statistical convergence depends on the density (asymptotic or natural) of subsets of . A subset of is said to have natural density δ(E) if

δ(E)= lim n 1 n | { k n : k E } |  exists.

Definition 2.1 A real or complex number sequence x=( x k ) is said to be statistically convergent to L if for every ε>0,

lim n 1 n | { k n : | x k L | ε } |=0.

In this case, we write Slimx=L or x k L(S), and S denotes the set of all statistically convergent sequences.

Definition 2.2 [12]

A sequence x=( x k ) is said to be lacunary statistically convergent to the number L if for every ε>0,

lim r 1 h r | { k J r : | x k L | ε } |=0.

Let S θ denote the set of all lacunary statistically convergent sequences. If θ=( 2 r ), then S θ is the same as S.

Definition 2.3 [26]

Let IP(N) be a non-trivial ideal. A sequence ( x k ) is I-statistically convergent to L if for each ε>0 and δ>0,

{ n N : 1 n | { k n : | x k L | ε } | δ } I.

In this case, we write I(S)lim x k =L.

Definition 2.4 [26]

Let IP(N) be a non-trivial ideal. A sequence ( x k ) is said to be I-lacunary statistically convergent to L if for each ε>0 and δ>0,

{ r N : 1 h r | { k J r : | x k L | ε } | δ } I.

In this case, we write I( S θ )lim x k =L. If θ=( 2 r ), then I( S θ ) is the same as I(S).

Definition 2.5 [2]

Two nonnegative sequences x=( x k ) and y=( y k ) are said to be asymptotically equivalent if

lim k x k y k =1,

denoted by xy.

Definition 2.6 [3]

Two nonnegative sequences x=( x k ) and y=( y k ) are said to be asymptotically statistical equivalent of multiple L provided that for every ε>0,

lim n 1 n | { k n : | x k y k L | ε } |=0,

denoted by x S L y and simply asymptotically statistical equivalent if L=1.

Patterson and Savas [4] defined the asymptotically lacunary statistical equivalent sequences as follows.

Definition 2.7 Two nonnegative sequences x=( x k ) and y=( y k ) are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every ε>0,

lim r 1 h r | { k J r : | x k y k L | ε } |=0

denoted by x S θ L y and simply asymptotically lacunary statistical equivalent if L=1. If we take θ=( 2 r ), then we get Definition 2.6.

By the convergence of a double sequence, we mean the convergence in Pringsheim’s sense [49]. A double sequence x=( x k , l ) has a Pringsheim limit L (denoted by Plimx=L) provided that given an ε>0, there exists an nN such that | x k , l L|<ε, whenever k,l>n. We describe such an x=( x k , l ) more briefly as `P-convergent’. We denote the space of all P-convergent sequences by c 2 . The double sequence x=( x k , l ) is bounded if there exists a positive number M such that | x k , l |<M for all k and l. We denote all bounded double sequences by l 2 .

Let KN×N and K(m,n) denote the number of (i,j) in K such that im and jn (see [50]). Then the lower natural density of K is defined by δ ̲ 2 (K)=lim inf m , n K ( m , n ) m n . In case the sequence ( K ( m , n ) m n ) has a limit in Pringsheim’s sense, then we say that K has a double natural density and is defined by P lim m , n K ( m , n ) m n = δ 2 (K).

For example, let K={( i 2 , j 2 ):i,jN}. Then

δ 2 (K)=P lim m , n K ( m , n ) m n P lim m , n m n m n =0,

i.e., the set K has double natural density zero, while the set {(i,3j):i,jN} has double natural density 1 3 .

Definition 2.8 [50]

A real double sequence x=( x k , l ) is said to be P-statistically convergent to provided that for each ε>0,

P lim m n 1 m n | { ( k , l ) : k < m  and  l < n , | x k , l | ε } |=0.

We denote the set of all statistical convergent double sequences by S.

The double sequence θ ¯ = θ r , s ={( k r , l s )} is called double lacunary sequence if there exist two increasing sequences of integers such that (see [15])

k o =0, h r = k r k r 1 as r

and

l o =0, h s ¯ = l s l s 1 as s.

Notations: k r , s = k r l s , h r , s = h r h s ¯ and θ r , s is determined by

J r , s = { ( k , l ) : k r 1 < k k r  and  l s 1 < l l s } , q r = k r k r 1 , q s ¯ = l s l s 1 and q r , s = q r q s ¯ .

Definition 2.9 A double sequence ( x k , l ) is said to be double lacunary convergent to L if

P lim r , s 1 h r , s ( k , l ) J r , s x k , l =L.

In this case, we write θ ¯ lim k , l x k , l =L. We denote N θ ¯ the set of all double lacunary convergent sequences.

Definition 2.10 [51]

Let IP(N×N) be a non-trivial ideal. A double sequence ( x k , l ) is said to be -convergent to L if for each ε>0,

{ ( k , l ) N × N : | x k , l L | ε } I.

In this case, we write Ilim x k , l =L.

Throughout the paper, we denote as admissible ideal of subsets of N×N, unless otherwise stated.

3 Asymptotically lacunary statistical equivalent double sequences using ideals

In this section, we define asymptotically -equivalent, asymptotically -statistical equivalent, asymptotically -lacunary statistical equivalent and asymptotically lacunary -equivalent double sequences and obtain some analogous results from these new definitions point of views.

Definition 3.1 Let IP(N×N) be a non-trivial ideal. A double sequence ( x k , l ) is said to be -statistically convergent to L if for each ε>0 and δ>0,

{ ( m , n ) N × N : 1 m n | { k m ; l n : | x k , l L | ε } | δ } I.

In this case, we write I(S)lim x k , l =L.

Definition 3.2 Let IP(N×N) be a non-trivial ideal. A double sequence ( x k , l ) is said to be -lacunary statistically convergent to L if for each ε>0 and δ>0,

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l L | ε } | δ } I.

In this case, we write I( S θ ¯ )lim x k , l =L.

Definition 3.3 Two nonnegative double sequences x=( x k , l ) and y=( y k , l ) are said to be P-asymptotically equivalent if

P lim k , l x k , l y k , l =1,

denoted by x P y.

Definition 3.4 Two nonnegative double sequences x=( x k , l ) and y=( y k , l ) are said to be asymptotically statistical equivalent of multiple L provided that for every ε>0

P lim m , n 1 m n | { k m , l n : | x k , l y k , l L | ε } |=0,

denoted by x S L y and simply asymptotically statistical equivalent if L=1.

Definition 3.5 Two nonnegative double sequences x=( x k , l ) and y=( y k , l ) are said to be asymptotically lacunary statistical equivalent of multiple L provided that for every ε>0,

P lim r , s 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } |=0

denoted by x S θ ¯ L y and simply asymptotically lacunary statistical equivalent if L=1. If we take θ ¯ =( 2 r , 2 s ), then we get Definition 3.4.

Definition 3.6 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be asymptotically -equivalent of multiple L provided that for every ε>0,

{ ( k , l ) N × N : | x k , l y k , l L | ε } I,

denoted by ( x k , l ) I L ( y k , l ) and simply asymptotically -equivalent if L=1.

Lemma 3.1 Let IP(N×N) be an admissible ideal. Let ( x k , l ), ( y k , l ) be two double sequences and ( x k , l ),( y k , l ) 2 with I lim k , l x k , l =0=I lim k , l y k , l such that ( x k , l ) I L ( y k , l ). Then there exists a sequence ( z k , l ) 2 with I lim k , l z k , l =0 such that ( x k , l ) I L ( z k , l ) I L ( y k , l ).

Definition 3.7 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be asymptotically -statistically equivalent of multiple L provided that for every ε>0 and for every δ>0,

{ ( m , n ) N × N : 1 m n | { k m , l n : | x k , l y k , l L | ε } | δ } I,

denoted by ( x k , l ) I ( S ) L ( y k , l ) and simply asymptotically -statistical equivalent if L=1.

Definition 3.8 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be Cesaro asymptotically -equivalent (or I( σ 1 )-equivalent) of multiple L provided that for every δ>0,

{ ( m , n ) N × N : | 1 m n k , l = 1 m , n x k , l y k , l L | δ } I

denoted by ( x k , l ) I ( σ 1 ) L ( y k , l ) and simply asymptotically I( σ 1 )-equivalent if L=1.

Definition 3.9 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be strongly Cesaro asymptotically -equivalent (or I(| σ 1 |)-equivalent) of multiple L provided that for every δ>0,

{ ( m , n ) N × N : 1 m n k , l = 1 m , n | x k , l y k , l L | δ } I

denoted by ( x k , l ) I ( | σ 1 | ) L ( y k , l ) and simply strongly Cesaro asymptotically I(| σ 1 |)-equivalent if L=1.

Definition 3.10 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be strongly asymptotically lacunary equivalent of multiple L provided that

P lim r , s 1 h r , s ( k , l ) J r , s | x k , l y k , l L|=0

denoted by ( x k , l ) [ N θ ¯ ] L ( y k , l ) and simply strongly asymptotically lacunary equivalent if L=1.

Definition 3.11 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be asymptotically -lacunary equivalent (or I( N θ ¯ )-equivalent) of multiple L provided that for every δ>0,

{ ( r , s ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l L | δ } I

denoted by ( x k , l ) I ( N θ ¯ ) L ( y k , l ) and simply asymptotically I( N θ ¯ )-equivalent if L=1.

Definition 3.12 Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be asymptotically -lacunary statistically equivalent (or I( S θ ¯ )-equivalent) of multiple L provided that for every ε>0, for every δ>0,

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | δ } I

denoted by ( x k , l ) I ( S θ ¯ ) L ( y k , l ) and simply asymptotically I( S θ ¯ )-equivalent if L=1.

Theorem 3.1 Let IP(N×N) be a non-trivial ideal. Let θ ¯ ={( k r , l s )} be a double lacunary sequence. If ( x k , l ),( y k , l ) 2 and ( x k , l ) I ( S ) L ( y k , l ). Then ( x k , l ) I ( σ 1 ) L ( y k , l ).

Proof (a) Suppose that ( x k , l ),( y k , l ) 2 and ( x k , l ) I ( S ) L ( y k , l ). Then we can assume that

| x k , l y k , l L|Mfor almost all k,l.

Let ε>0. Then we have

| 1 m n k , l = 1 m , n ( x k , l y k , l L ) | 1 m n k , l = 1 m , n | x k , l y k , l L | 1 m n k , l ; | x k , l y k , l L | ε | x k , l y k , l L | + 1 m n k , l ; | x k , l y k , l L | < ε | x k , l y k , l L | M 1 m n | { k m ; l n : | x k , l y k , l L | ε } | + 1 m n m n ε .

Consequently, if δ>ε>0, δ and ε are independent, put δ 1 =δε>0, we have

{ ( m , n ) N × N : | 1 m n k , l = 1 m , n ( x k , l y k , l L ) | δ } { ( m , n ) N × N : 1 m n | { k m ; l n : | x k , l y k , l L | ε } | δ 1 M } I .

This shows that ( x k , l ) I ( σ 1 ) L ( y k , l ). □

Corollary 3.1 Let IP(N×N) be a non-trivial ideal. If ( x k , l ),( y k , l ) 2 and ( x k , l ) I ( S ) L ( y k , l ). Then ( x k , l ) I ( | σ 1 | ) L ( y k , l ).

Theorem 3.2 Let IP(N×N) be a non-trivial ideal. Let θ ¯ ={( k r , l s )} be a double lacunary sequence. Then

  1. (a)

    ( x k , l ) I ( N θ ¯ ) L ( y k , l )( x k , l ) I ( S θ ¯ ) L ( y k , l ).

  2. (b)

    I ( N θ ¯ ) L is a proper subset of I ( S θ ¯ ) L .

  3. (c)

    Let ( x k , l ),( y k , l ) 2 and ( x k , l ) I ( S θ ¯ ) L ( y k , l ), then ( x k , l ) I ( N θ ¯ ) L ( y k , l ).

  4. (d)

    I ( S θ ¯ ) L 2 =I ( N θ ¯ ) L 2 .

Proof (a) Let ε>0 and ( x k , l ) I ( N θ ¯ ) L ( y k , l ). Then we can write

( k , l ) J r , s | x k , l y k , l L | ( k , l ) J r , s | x k , l y k , l L | ε | x k , l y k , l L | ( k , l ) J r , s | x k , l y k , l L | ε | { ( k , l ) J r , s : | x k , l y k , l L | ε } | 1 ε h r , s ( k , l ) J r , s | x k , l y k , l L | 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | .

Thus, for any δ>0,

1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } |δ

implies that

1 h r , s ( k , l ) J r , s | x k , l y k , l L|εδ.

Therefore, we have

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | δ } { ( r , s ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l L | ε δ } .

Since ( x k , l ) I ( N θ ¯ ) L ( y k , l ), so that

{ ( r , s ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l L | ε δ } I,

which implies that

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | δ } I.

This shows that ( x k , l ) I ( S θ ¯ ) L ( y k , l ).

(b) Suppose that I ( N θ ¯ ) L I ( S θ ¯ ) L . Let ( x k , l ) and ( y k , l ) be two sequences defined as follows:

x k , l ={ k l , if  k r 1 < k k r 1 + [ h r ] , l s 1 < l l s 1 + [ h s ] , r , s = 1 , 2 , 3 , ; 0 , otherwise,

and

y k , l =1for all k,lN.

It is clear that ( x k , l ) 2 , and for ε>0,

1 h r , s | { ( k , l ) J r , s : | x k , l y k , l 1 | ε } | [ h r , s ] h r , s and [ h r , s ] h r , s 0as r,s.
(3.1)

This implies that

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l 1 | ε } | δ } { ( r , s ) N × N : [ h r , s ] h r , s δ } .

By virtue of last part of (3.1), the set on the right side is a finite set, and so it belongs to . Consequently, we have

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l 1 | ε } | δ } I.

Therefore, ( x k , l ) I ( S θ ¯ ) 1 ( y k , l ).

On the other hand, we shall show that ( x k , l ) I ( N θ ¯ ) 1 ( y k , l ) is not satisfied. Suppose that ( x k , l ) I ( N θ ¯ ) 1 ( y k , l ). Then for every δ>0, we have

{ ( r , l ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l 1 | δ } I.
(3.2)

Now,

lim r , s 1 h r , s ( k , l ) J r , s | x k , l y k , l 1|= 1 h r , s ( [ h r , s ] ( [ h r , s ] 1 ) 2 ) 1 2 as r,s.

It follows for the particular choice δ= 1 4 that

{ ( r , s ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l 1 | 1 4 } = { ( r , s ) N × N : ( [ h r , s ] ( [ h r , s ] 1 ) h r , s ) 1 2 } = { ( m , n ) , ( m + 1 , n + 1 ) , ( m + 2 , n + 2 ) , }

for some m,nN which belongs to as is admissible. This contradicts (3.2) for the choice δ= 1 4 . Therefore, ( x k , l ) I ( N θ ¯ ) 1 ( y k , l ).

(c) Suppose that ( x k , l ) I ( S θ ¯ ) L ( y k , l ) and ( x k , l ),( y k , l ) 2 . We assume that | x k , l y k , l L|M and for all k,lN. Given ε>0, we get

1 h r , s ( k , l ) J r , s | x k , l y k , l L | = 1 h r , s ( k , l ) J r , s | x k , l y k , l L | ε | x k , l y k , l L | + 1 h r , s ( k , l ) J r , s | x k , l y k , l L | < ε | x k , l y k , l L | M h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | + ε .

If we put

A(ε)= { ( r , s ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l L | ε }

and

B( ε 1 )= { ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | ε 1 M } ,

where ε 1 =δε>0, (δ and ε are independent), then we have A(ε)B( ε 1 ), and so A(ε)I. This shows that ( x k , l ) I ( N θ ¯ ) L ( y k , l ).

(d) It follows from (a), (b) and (c). □

Theorem 3.3 Let IP(N×N) be an admissible ideal. Suppose that for given δ>0 and every ε>0 such that

{ ( m , n ) N × N : 1 m n | { 0 k m 1 ; 0 l n 1 : | x k , l y k , l L | ε } | < δ } F,

then ( x k , l ) I ( S ) L ( y k , l ).

Proof Let δ>0 be given. For every ε>0, choose m 1 , n 1 such that

1 m n | { 0 k m 1 ; 0 l n 1 : | x k , l y k , l L | ε } | < δ 2 , for all  m m 1 , n n 1 .
(3.3)

It is sufficient to show that there exists m 2 , n 2 such that for m m 2 , n n 2 ,

1 m n | { 0 k m 1 ; 0 l n 1 : | x k , l y k , l L | ε } |< δ 2 .
(3.4)

Let m 0 =max{ m 1 , m 2 }; n 0 =max{ n 1 , n 2 }. The relation (3.3) will be true for m> m 0 , n> n 0 . If s 0 , t 0 chosen fixed, then we get

| { 0 k s 0 1 ; 0 l t 0 1 : | x k , l y k , l L | ε } |=M.

Now, for m> s 0 , n> t 0 , we have

1 m n | { 0 k m 1 ; 0 l n 1 : | x k , l y k , l L | ε } | 1 m n | { 0 k s 0 1 ; 0 l t 0 1 : | x k , l y k , l L | ε } | + 1 m n | { s 0 k m 1 ; t 0 l n 1 : | x k , l y k , l L | ε } | M m n + 1 m n | { s 0 k m 1 ; t 0 l n 1 : | x k , l y k , l L | ε } | M m n + δ 2 .

Thus, for sufficiently large n,

1 m n | { s 0 k m 1 ; t 0 l n 1 : | x k , l y k , l L | ε } | M m n + δ 2 <δ.

This established the result. □

Theorem 3.4 Let IP(N×N) be a non-trivial ideal. Let θ ¯ =( k r , l s ) be a double lacunary sequence with lim inf r , s q r , s >1. Then ( x k , l ) I ( S ) L ( y k , l )( x k , l ) I ( S θ ¯ ) L ( y k , l ).

Proof Suppose that lim inf r , s q r , s >1, then there exists an α>0 such that q r , s 1+α for sufficiently large r, s. Then we have

h r , s k r l s α 1 + α .

If ( x k , l ) I ( S L ) ( y k , l ), then for every ε>0 and for sufficiently large r, s, we have

1 k r l s | { k k r ; l l s : | x k , l y k , l L | ε } | 1 k r l s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | α 1 + α 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | .

Therefore, for any δ>0, we have

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | δ } { ( r , s ) N × N : 1 k r l s | { k k r ; l l s : | x k , l y k , l L | ε } | α δ 1 + α } I .

This completes the proof. □

Theorem 3.5 Let I= I fin ={AN×N:A is a finite set} be a non-trivial ideal, and let θ ¯ =( k r , l s ) be a double lacunary sequence with lim sup r , s q r , s <. Then ( x k , l ) I ( S θ ¯ ) L ( y k , l )( x k , l ) I ( S ) L ( y k , l ).

Proof If lim sup r , s q r , s <. Then there exists a K>0 such that q r , s <K for all r,s1. Let ( x k , l ) I ( S θ ¯ ) L ( y k , l ). Then there exists B>0 and ε>0, we put

M r , s = 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } |.

Since ( x k , l ) I ( S θ ¯ ) L ( y k , l ). Then for every ε>0 and δ>0, we have

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | ε } | δ } = { ( r , s ) N × N : M r , s h r , s δ } I ,

and, therefore, it is a finite set. We choose integers r 0 , s 0 N such that

M r , s h r , s <δfor all r> r 0 ,s> s 0 .
(3.5)

Let M=max{ M r , s :1r r 0 ,1s s 0 } and m, n be two integers with satisfying k r 1 <m k r , l s 1 <n l s , then we have

1 m n | { k m ; l n : | x k , l y k , l L | ε } | 1 k r 1 l s 1 | { k k r ; l l s : | x k , l y k , l L | ε } | = 1 k r 1 l s 1 { M 1 , 1 + M 2 , 2 + + M r 0 , s 0 + M r r 0 + 1 , s 0 + 1 + + M r , s } M k r 1 l s 1 r 0 s 0 + 1 k r 1 l s 1 { h r 0 + 1 , s 0 + 1 ( M r 0 + 1 , s 0 + 1 h r 0 + 1 , s 0 + 1 ) + + h r , s M r , s k r , s } M k r 1 l s 1 r 0 s 0 + 1 k r 1 l s 1 ( sup r > r 0 , s > s 0 M r , s h r , s ) { h r 0 + 1 , s 0 + 1 + + h r , s } M k r 1 l s 1 r 0 s 0 + δ ( k r l s k r 0 l s 0 k r 1 l s 1 ) M k r 1 l s 1 r 0 s 0 + δ q r , s M k r 1 l s 1 r 0 s 0 + δ K .

This completes the proof of the theorem. □

Definition 3.13 Let p(0,). Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be strongly asymptotically lacunary p-equivalent of multiple L if

P lim r , s 1 h r , s ( k , l ) J r , s | x k , l y k , l L | p =0

denoted by ( x k , l ) [ N θ ¯ ] p L ( y k , l ) and simply strongly asymptotically lacunary p-equivalent if L=1.

Definition 3.14 Let p(0,). Two non-negative double sequences ( x k , l ) and ( y k , l ) are said to be asymptotically lacunary p-statistically equivalent of multiple L if for every ε>0,

P lim r , s 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | p ε } |=0

denoted by ( x k , l ) S θ ¯ p L ( y k , l ) and simply asymptotically lacunary p-statistical equivalent if L=1.

Theorem 3.6 Let θ ¯ =( k r , l s ) be a double lacunary sequence. Then

  1. (a)

    ( x k , l ) [ N θ ¯ ] p L ( y k , l )( x k , l ) S θ ¯ p L ( y k , l ).

  2. (b)

    [ N θ ¯ ] p L is a proper subset of S θ ¯ p L .

  3. (c)

    Let ( x k , l ),( y k , l ) 2 and ( x k m l ) S θ ¯ p L ( y k , l ), then ( x k , l ) [ N θ ¯ ] p L ( y k , l ).

  4. (d)

    S θ ¯ p L 2 = [ N θ ¯ ] p L 2 .

The proof of the above theorem is similar to Theorem 3.2 for I= I fin .

Definition 3.15 Let p(0,). We say that two non-negative double sequences ( x k , l ) and ( y k , l ) are strongly asymptotically -lacunary p-equivalent of multiple L if for every ε>0,

{ ( r , s ) N × N : 1 h r , s ( k , l ) J r , s | x k , l y k , l L | p ε } I

denoted by ( x k , l ) I ( N θ ¯ ) p L ( y k , l ) and simply strongly asymptotically -lacunary p-equivalent if L=1.

Definition 3.16 Let p(0,). We say that two non-negative double sequences ( x k , l ) and ( y k , l ) are asymptotically -lacunary p-statistically equivalent of multiple L if for every ε>0, for every δ>0

{ ( r , s ) N × N : 1 h r , s | { ( k , l ) J r , s : | x k , l y k , l L | p ε } | δ } I

denoted by ( x k , l ) I ( S θ ¯ p ) L ( y k , l ) and simply asymptotically -lacunary p-statistical equivalent if L=1.

Theorem 3.7 Let IP(N×N) be a non-trivial ideal, and let θ ¯ =( k r , l s ) be a double lacunary sequence. Then

  1. (a)

    ( x k , l ) I ( N θ ¯ p ) L ( y k , l )( x k , l ) I ( S θ ¯ p ) L ( y k , l ).

  2. (b)

    I ( N θ ¯ p ) L is a proper subset of I ( S θ ¯ p ) L .

  3. (c)

    Let ( x k , l ),( y k , l ) 2 and ( x k , l ) I ( S θ ¯ p ) L ( y k , l ), then ( x k ) I ( N θ p ) L ( y k ).

  4. (d)

    I ( S θ ¯ p ) L 2 =I ( N θ ¯ p ) L 2 .

Proof The proof of the theorem follows from the proofs of the Theorems 3.2 and 3.6. □

For I= I fin ={AN×N:A is finite}, this theorem reduces to Theorem 3.6.

References

  1. Pobyvancts IP: Asymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Cesaro and Abel. Mat. Fiz. 1980, 28: 83–87.

    Google Scholar 

  2. Marouf MS: Asymptotic equivalence and summability. Int. J. Math. Math. Sci. 1993, 16(4):755–762. 10.1155/S0161171293000948

    Article  MATH  MathSciNet  Google Scholar 

  3. Patterson RF: On asymptotically statistically equivalent sequences. Demonstr. Math. 2003, 36(1):149–153.

    MATH  Google Scholar 

  4. Patterson RF, Savaş E: On asymptotically lacunary statistically equivalent sequences. Thai J. Math. 2006, 4: 267–272.

    MATH  MathSciNet  Google Scholar 

  5. Zygmund A: Trigonometric Series. Cambridge University Press, Cambridge; 1979.

    Google Scholar 

  6. Steinhaus H: Sur la convergence ordinate et la convergence asymptotique. Colloq. Math. 1951, 2: 73–84.

    MathSciNet  Google Scholar 

  7. Fast H: Sur la convergence statistique. Colloq. Math. 1951, 2: 241–244.

    MATH  MathSciNet  Google Scholar 

  8. Schoenberg IJ: The integrability of certain functions and related summability methods. Am. Math. Monthly 1959, 66: 361–375. 10.2307/2308747

    Article  MATH  MathSciNet  Google Scholar 

  9. Buck RC: Generalized asymptotic density. Am. J. Math. 1953, 75: 335–346. 10.2307/2372456

    Article  MATH  MathSciNet  Google Scholar 

  10. S̆alát T: On statistical convergence of real numbers. Math. Slovaca 1980, 30: 139–150.

    MathSciNet  Google Scholar 

  11. Fridy JA: On statistical convergence. Analysis 1985, 5: 301–313.

    Article  MATH  MathSciNet  Google Scholar 

  12. Fridy JA, Orhan C: Lacunary statistical convergence. Pac. J. Math. 1993, 160(1):43–51. 10.2140/pjm.1993.160.43

    Article  MATH  MathSciNet  Google Scholar 

  13. Mursaleen M, Mohiuddine SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 2009, 233(2):142–149. 10.1016/j.cam.2009.07.005

    Article  MATH  MathSciNet  Google Scholar 

  14. Savaş E, Patterson RF: Lacunary statistical convergence of double sequences. Math. Commun. 2005, 10: 55–61.

    MATH  MathSciNet  Google Scholar 

  15. Savaş E, Patterson RF: Lacunary statistical convergence of multiple sequences. Appl. Math. Lett. 2006, 19: 527–534. 10.1016/j.aml.2005.06.018

    Article  MATH  MathSciNet  Google Scholar 

  16. Mohiuddine SA, Alotaibi A, Mursaleen M: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 719729

    Google Scholar 

  17. Çakalli H: Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 1995, 26(2):113–119.

    MATH  MathSciNet  Google Scholar 

  18. Çakan C, Altay B, Çoşkun H: Double lacunary density and lacunary statistical convergence of double sequences. Studia Sci. Math. Hung. 2010, 47(1):35–45.

    MATH  Google Scholar 

  19. Fridy JA, Orhan C: Lacunary statistical summability. J. Math. Anal. Appl. 1993, 173: 497–504. 10.1006/jmaa.1993.1082

    Article  MATH  MathSciNet  Google Scholar 

  20. Hazarika B, Savaş E: Lacunary statistical convergence of double sequences and some inclusion results in n -normed spaces. Acta Math. Vietnam. 2013. 10.1007/s40306-013-0028-x

    Google Scholar 

  21. Li J: Lacunary statistical convergence and inclusion properties between lacunary methods. Int. J. Math. Math. Sci. 2000, 23(3):175–180. 10.1155/S0161171200001964

    Article  MATH  MathSciNet  Google Scholar 

  22. Mohiuddine SA, Savas E: Lacunary statistical convergent double sequences in probabilistic normed spaces. Ann. Univ. Ferrara 2012, 58: 331–339. 10.1007/s11565-012-0157-5

    Article  MATH  MathSciNet  Google Scholar 

  23. Mohiuddine SA, Aiyub M: Lacunary statistical convergence in random 2-normed spaces. Appl. Math. Inform. Sci. 2012, 6(3):581–585.

    MathSciNet  Google Scholar 

  24. Savas, E: Double lacunary statistically convergent sequences in topological groups. J. Franklin Inst. (in press). doi:10.1016/j.jfranklin.2012.06.003. 10.1016/j.jfranklin.2012.06.003

  25. Kostyrko P, S̆alát T, Wilczyński W: I -convergence. Real Anal. Exch. 2000–2001, 26(2):669–686.

    MATH  Google Scholar 

  26. Das P, Savas E, Ghosal S: On generalization of certain summability methods using ideal. Appl. Math. Lett. 2011, 24: 1509–1514. 10.1016/j.aml.2011.03.036

    Article  MATH  MathSciNet  Google Scholar 

  27. Choudhary B: Lacunary I -convergent sequences. Real Analysis Exchange Summer Symposium 2009, 56–57.

    Google Scholar 

  28. Tripathy BC, Hazarika B, Choudhary B: Lacunary I -convergent sequences. Kyungpook Math. J. 2012, 52(4):473–482. 10.5666/KMJ.2012.52.4.473

    Article  MATH  MathSciNet  Google Scholar 

  29. Hazarika B: Lacunary I -convergent sequence of fuzzy real numbers. Pac. J. Sci. Technol. 2009, 10(2):203–206.

    MathSciNet  Google Scholar 

  30. Hazarika B: Fuzzy real valued lacunary I -convergent sequences. Appl. Math. Lett. 2012, 25(3):466–470. 10.1016/j.aml.2011.09.037

    Article  MATH  MathSciNet  Google Scholar 

  31. Kumar V, Sharma A: Asymptotically lacunary equivalent sequences defined by ideals and modulus function. Math. Sci. 2012., 6: Article ID 23 10.1186/2251-7456-6-23

    Google Scholar 

  32. Savas E: On -asymptotically lacunary statistical equivalent sequences. Adv. Differ. Equ. 2013., 2013: Article ID 111 10:1186/1687-1847-2013-111

    Google Scholar 

  33. Savas E, Gumus H: A generalization on -asymptotically lacunary statistical equivalent sequences. J. Inequal. Appl. 2013., 2013: Article ID 436

    Google Scholar 

  34. Çakalli H, Hazarika B: Ideal quasi-Cauchy sequences. J. Inequal. Appl. 2012., 2012: Article ID 234 10.1186/1029-242X-2012-234

    Google Scholar 

  35. Dutta AJ, Tripathy BC: On I -acceleration convergence of sequences of fuzzy real numbers. Math. Model. Anal. 2012, 17(4):549–557. 10.3846/13926292.2012.706656

    Article  MATH  MathSciNet  Google Scholar 

  36. Esi A, Hazarika B: Lacunary summable sequence spaces of fuzzy numbers defined by ideal convergence and an Orlicz function. Afr. Math. 2012. 10.1007/s13370-012-0117-3

    Google Scholar 

  37. Hazarika B: On ideal convergence in topological groups. Sci. Magna 2011, 7(4):80–86.

    MathSciNet  Google Scholar 

  38. Hazarika B: Lacunary difference ideal convergent sequence spaces of fuzzy numbers. J. Intell. Fuzzy Syst. 2013, 25(1):157–166. 10.3233/IFS-2012-0622

    MATH  MathSciNet  Google Scholar 

  39. Lahiri BK, Das P: I and I -convergence in topological spaces. Math. Bohem. 2005, 130(2):153–160.

    MATH  MathSciNet  Google Scholar 

  40. Mohiuddine SA, Alotaibi A, Alsulami SM: Ideal convergence of double sequences in random 2-normed spaces. Adv. Differ. Equ. 2012., 2012: Article ID 149

    Google Scholar 

  41. S̆alát T, Tripathy BC, Ziman M: On some properties of I -convergence. Tatra Mt. Math. Publ. 2004, 28: 279–286.

    MathSciNet  Google Scholar 

  42. S̆alát T, Tripathy BC, Ziman M: On I -convergence field. Indian J. Pure Appl. Math. 2005, 17: 45–54.

    Google Scholar 

  43. Tripathy BC, Hazarika B: Paranorm I -convergent sequence spaces. Math. Slovaca 2009, 59(4):485–494. 10.2478/s12175-009-0141-4

    Article  MATH  MathSciNet  Google Scholar 

  44. Tripathy BC, Hazarika B: I -monotonic and I -convergent sequences. Kyungpook Math. J. 2011, 51: 233–239. 10.5666/KMJ.2011.51.2.233

    Article  MATH  MathSciNet  Google Scholar 

  45. Tripathy BC, Hazarika B: I -convergent sequence spaces associated with multiplier sequences. Math. Inequal. Appl. 2008, 11(3):543–548.

    MATH  MathSciNet  Google Scholar 

  46. Tripathy BC, Sen M, Nath S: I -convergence in probabilistic n -normed space. Soft Comput. 2012, 16: 1021–1027. 10.1007/s00500-011-0799-8

    Article  MATH  Google Scholar 

  47. Tripathy BC, Mahanta S: On I -acceleration convergence of sequences. J. Franklin Inst. 2010, 347: 1031–1037.

    Article  MathSciNet  Google Scholar 

  48. Freedman AR, Sember JJ, Raphael M: Some Cesàro-type summability spaces. Proc. Lond. Math. Soc. 1978, 37(3):508–520.

    Article  MATH  MathSciNet  Google Scholar 

  49. Pringsheim A: Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann. 1900, 53: 289–321. 10.1007/BF01448977

    Article  MATH  MathSciNet  Google Scholar 

  50. Mursaleen M, Edely OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 2003, 288: 223–231. 10.1016/j.jmaa.2003.08.004

    Article  MATH  MathSciNet  Google Scholar 

  51. Tripathy BK, Tripathy BC: On I -convergent double sequences. Soochow J. Math. 2005, 31(4):549–560.

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank all three reviewers for their useful comments that led to the improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipan Hazarika.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BH drafted the manuscript. VK checked and organized the manuscript to be its final form. BH also makes the revision as the corresponding author.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Hazarika, B., Kumar, V. On asymptotically double lacunary statistical equivalent sequences in ideal context. J Inequal Appl 2013, 543 (2013). https://doi.org/10.1186/1029-242X-2013-543

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-543

Keywords