Open Access

GNM ordered variational inequality system with ordered Lipschitz continuous mappings in an ordered Banach space

Journal of Inequalities and Applications20132013:514

https://doi.org/10.1186/1029-242X-2013-514

Received: 25 February 2013

Accepted: 27 August 2013

Published: 8 November 2013

Abstract

The main purpose of this paper is to introduce and study a new class of generalized nonlinear mixed ordered variational inequalities systems with ordered Lipschitz continuous mappings in ordered Banach spaces. Then, applying the matrix analysis and the vector-valued mapping fixed point analysis method, an existence theorem of solutions for this kind of the system is established. Furthermore, based on the existence theorem and the new ordered B-restricted-accretive mappings, a general algorithm for solving the systems is introduced and applied to the approximation solvability of the systems on hand. The obtained results seem to be general in nature.

MSC:49J40, 47H06.

Keywords

general nonlinear mixed ordered variational inequality system ordered Lipschitz continuous mappings B-restricted-accretive mappings iterative algorithm convergence ordered Banach space

1 Introduction

Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relation ≤ defined by the cone P. Let F i j , g , f : X × X X be single-valued nonlinear ordered compression mappings, and let F i j be a Lipschitz continuous mapping ( i , j = 1 , 2 ), and for any x , y X ,
range ( f ) dom ( F 11 ( , y ) ) range ( g ) dom ( F 22 ( x , ) ) ,

we consider the following problem:

For u , v X , find x , y X such that
{ u F 11 ( f ( x ) , y ) + F 12 ( y , x ) , v F 21 ( x , y ) F 22 ( x , g ( y ) ) ,
(1.1)

which is called a generalized nonlinear mixed ordered variational inequality system (GNM ordered variational inequality system) with ordered Lipschitz continuous mappings in an ordered Banach space. Obviously, system (1.1) belongs to a new class of generalized nonlinear mixed ordered variational inequality systems with the calculation.

For a suitable choice of the mappings u, v, f, g, F i j ( i , j = 1 , 2 ) and the space X, a number of known classes of ordered variational inequalities, which have been studied by the authors as special cases of system (1.1) in the Banach space (see [1, 2]).

Remark 1.1 Some special cases of system (1.1):
  1. (1)
    Let F 12 ( , ) = F 21 ( , ) = F 22 ( , ) = 0 be zero operators, u = v = θ and F 11 ( f ( x ) , y ) = A ( x ) for any y X , then system (1.1) becomes the following problem: Find x X such that
    θ A ( f ( x ) ) ,
    (1.2)

    which is called a generalized nonlinear ordered variational inequality (a generalized nonlinear ordered equation, as changed ≥ to =) in an ordered Banach space (see [1]).

     
  2. (2)
    Let F 11 ( , ) = F 12 ( , ) = 0 be zero operators, F 21 ( f ( x ) , y ) = A ( x ) , u = v = θ and F 22 ( x , g ( y ) ) = F ( x , g ( x ) ) for any y = x , then system (1.1) becomes the following problem: Find x X such that
    θ A ( x ) F ( x ; g ( x ) ) ,
    (1.3)

    which is called a new class of general nonlinear ordered variational inequality (a general nonlinear ordered equation, as changed ≥ to =) in an ordered Banach space (see [2]).

     
  3. (3)
    Let F 21 ( , ) = F 22 ( , ) = 0 be zero operators and u = v = θ , then system (1.1) becomes the following problem: Find x , y X such that
    θ F 11 ( f ( x ) , y ) + F 12 ( y , x ) ,
    (1.4)

    which is studied by many authors in a Banach space (see [3]et al.).

     

In recent years, though we have succeeded in the area of studies of variational inequality (inclusion) systems, yet, the studies of ordered variational inequality (inclusion) systems are beginning in very recent research works on an ordered Banach space (see [1, 2, 49]). From 1999 till present, some new and interesting problems for systems of variational inequalities (inclusions) have been introduced and studied in this field (see [132]).

Very recently, the approximation solution for general nonlinear ordered variational inequalities and ordered equations [1, 2] and a nonlinear ordered inclusion problem [8, 9] have been studied by Li in an ordered Banach space. For details, we refer the reader to [132] and the references therein.

2 Preliminaries

We need to recall the following concepts and results for solving system (1.1).

Definition 2.1 [21]

Let X be a real ordered Banach space with a norm , a normal cone P and a partial ordered relation ≤ defined by the cone P, for x , y X , if x y (or y x ) holds, then x and y are said to be a comparison between each other (denoted by x y for x y and y x ).

Lemma 2.2 [1]

Let X be a real ordered Banach space with a norm , a normal cone P and a partial ordered relationdefined by the cone P, for arbitrary x , y X , lub { x , y } and glb { x , y } express the least upper bound of the set { x , y } and the greatest lower bound of the set { x , y } on the partial ordered relation ≤, respectively. Suppose that lub { x , y } and glb { x , y } exist, some binary operators can be defined as follows:
  1. (1)

    x y = lub { x , y } ;

     
  2. (2)

    x y = glb { x , y } ;

     
  3. (3)

    x y = ( x y ) ( y x ) .

     
, , and are called OR, AND, and XOR operations, respectively. For arbitrary x , y , w X , the following relations hold:
  1. (1)

    x y = y x ;

     
  2. (2)

    x x = θ ;

     
  3. (3)

    θ x θ ;

     
  4. (4)

    let λ be real, then ( λ x ) ( λ y ) = | λ | ( x y ) ;

     
  5. (5)
    if x, y, and w can be compared with each other, then
    ( x y ) x w + w y ;
     
  6. (6)
    let ( x + y ) ( u + v ) exist, and if x u , v and y u , v , then
    ( x + y ) ( u + v ) ( x u + y v ) ( x v + y u ) ;
     
  7. (7)
    if x, y, z, w can be compared with each other, then
    ( x y ) ( z w ) ( ( x z ) ( y w ) ) ( ( x w ) ( y z ) ) ;
     
  8. (8)

    α x β x = | α β | x = ( α β ) x , if x θ .

     

Lemma 2.3 [5]

If x y , then lub { x , y } , and glb { x , y } exist, x y y x , and θ ( x y ) ( y x ) .

Lemma 2.4 [5]

If for any natural number n, x y n , and y n y ( n ), then x y .

Lemma 2.5 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P. A : X X is comparative, then for x , y X , if x y [1], then
  1. (1)

    x y x y x + y ,

     
  2. (2)

    x y = x y N x y ,

     
  3. (3)

    lim x x 0 A ( x ) A ( x 0 ) = 0 if and only if lim x x 0 A ( x ) A ( x 0 ) = θ .

     

Proof Result (1) is obvious; (2) follows from (1), Definition 2.2 in [1], Lemma 2.7 in [2]; (3) follows from (1) and (2). This completes the proof. □

Definition 2.6 Let X be a real ordered Banach space, and let F : X × X X be a mapping. The operator F : X × X X is said to be an ordered Lipschitz continuous with constants ( μ , ν ) if x y , u v , then F ( u , x ) F ( v , y ) , and there exist constants μ , ν > 0 such that
F ( u , x ) F ( v , y ) μ ( u v ) + ν ( x y ) .

Definition 2.7 [2]

Let X be a real ordered Banach space, let B : X X be a mapping, and let I be an identity mapping on X. A mapping A : X X is said to be a B-restricted-accretive mapping if A, B and A B : x X A ( x ) B ( x ) X all are comparisons, and they are comparisons with each other, and there exist two constants 0 < α 1 , α 2 1 such that for arbitrary x , y X ,
( A ( x ) B ( x ) + I ( x ) ) ( A ( y ) B ( y ) + I ( y ) ) α 1 ( ( A ( x ) B ( x ) ) ( A ( y ) B ( y ) ) ) + α 2 ( x y )

holds, where I is an identity mapping on X.

Definition 2.8 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relation ≤ defined by the cone P. If X × X is a product Banach space with the normal and an ordered relation ≤, and the following conditions are satisfied:
  1. (1)

    ( x , y ) = max { x , y } for any ( x , y ) X × X ;

     
  2. (2)

    ( x 1 , y 1 ) ( x 2 , y 2 ) if and only if x 1 x 2 , y 1 y 2 , and ( x 1 , y 1 ) ( x 2 , y 2 ) if and only if x 1 x 2 , y 1 y 2 in X;

     
  3. (3)
    ( x 1 , y 1 ) ( x 2 , y 2 ) = ( x 1 x 2 , y 1 y 2 ) , ( x 1 , y 1 ) ( x 2 , y 2 ) = ( x 1 x 2 , y 1 y 2 ) , ( x 1 , y 1 ) ( x 2 , y 2 ) = ( x 1 x 2 , y 1 y 2 ) .
     

Then X × X is called an ordered product Banach space.

Definition 2.9 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relation ≤ defined by the cone P. Let X × X be an ordered product Banach space. For a vector-valued mapping G = ( G 1 , G 2 ) ( or  ( G 1 , G 2 ) T ) : X × X X × X in X × X , if there exists a point ( x , y ) X × X such that
G ( x , y ) = ( G 1 , G 2 ) ( x , y ) = ( x , y ) ,

then ( x , y ) is called a fixed point of vector-valued mapping G in ordered product Banach space.

The following results are obvious.

Lemma 2.10 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P. Let X × X be an ordered product Banach space. For sequences { x n } and { y n } in X, in X × X ,
( x n , y n ) ( x , y ) if and only if x n x and y n y as  n .
(2.1)
Lemma 2.11 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P. Let X × X be an ordered product Banach space. Let G = ( G 1 , G 2 ) ( or  ( G 1 , G 2 ) T ) : X × X X × X be a vector-valued mapping in X × X if for any ( x i , y i ) X × X ( i = 1 , 2 ) , ( x 1 , y 1 ) ( x 2 , y 2 ) , and there exist a constance 1 > δ > 0 such that
( G 1 , G 2 ) ( x 1 , y 1 ) ( G 1 , G 2 ) ( x 2 , y 2 ) δ ( x 1 , y 1 ) ( x 2 , y 2 ) ,
(2.2)

then ( G 1 , G 2 ) has a fixed point in X × X .

Proof This directly follows from Lemma 2.2, Lemma 2.5(2) and the contraction mapping principle. □

3 Approximation solution for GNM system (1.1)

In this section, we will change from the solution of system (1.1) to finding a fixed point for a vector-valued mapping, and by using the vector-valued mapping fixed point analysis method, show the convergence of the approximation sequences of the solution for system (1.1) in an ordered product Banach space.

Lemma 3.1 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P, and let X × X be an ordered product Banach space. If g , f , B i : X X are ordered compressions, F i j : X × X X is order ( μ i j , ν i j ) -Lipschitz continuous, and let g, f, B 1 , B 2 and F i j be comparison mappings with each other (where i , j = 1 , 2 ). Then system (1.1) has a solution ( x , y ) if and only if there exist two ordered compressions B 1 and B 2 such that the vector-valued mapping G = ( G 1 ( x , y ) , G 2 ( x , y ) ) : X × X X × X ,
G 1 ( x , y ) = ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) and G 2 ( x , y ) = ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ,
(3.1)

has the fixed point ( x , y ) in an ordered Banach space X × X .

Proof Let ( x , y ) be a fixed point of the vector-valued mapping (3.1), then, obviously, ( x , y ) is a solution of system (1.1).

On the other hand, choosing
B 1 ( x ) = { θ , if  θ F 11 ( f ( x ) , y ) + F 12 ( y , x ) u , ζ 1 x , otherwise
and
B 2 ( y ) = { θ , if  θ F 21 ( x , y ) F 22 ( x , g ( y ) ) v , ζ 2 y , otherwise ,
where 1 > ζ 1 , ζ 2 > 0 , if ( x , y ) is a solution of system (1.1), then by using [1, 2],
( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) = x , ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) = y

hold. Therefore, ( x , y ) is a fixed point of the vector-valued mapping (3.1), where the mappings B 1 and B 2 are ordered compressions [2]. This completes the proof. □

Theorem 3.2 Let X be a real ordered Banach space with a norm , a zero θ, a normal cone P, a normal constance N of P and a partial ordered relationdefined by the cone P, and let X × X be an ordered product Banach space. Let g and f be ordered compressions with respect to γ g and γ f , respectively; let B i : X X be an ordered compression mapping with ζ i , let F i j : X × X X be an ordered ( μ i j , ν i j ) -Lipschitz continuous ( i , j = 1 , 2 ), and let g, f, B 1 , B 2 and F i j ( i , j = 1 , 2 ) be comparison mappings with each other. If F 11 + F 12 u is a B 1 -restricted-accretive mapping with ( α 1 , α 2 ) , and F 21 F 22 v is a B 2 -restricted-accretive mapping with ( β 1 , β 2 ) , and
N max { α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } < 1
(3.2)

holds, then for the general nonlinear mixed ordered variational inequality system (1.1), there exists a solution ( x , y ) .

Proof Let X be a real ordered Banach space, and let X × X be an ordered product Banach space. Setting
G 1 ( x , y ) = ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) , G 2 ( x , y ) = ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) .
(3.3)
Since F 11 + F 12 u is a B 1 -restricted-accretive mapping with ( α 11 , α 12 ) , F 21 F 22 v is a B 2 -restricted-accretive mapping with ( β 11 , β 12 ) , and F 11 and F 12 are ordered ( μ 11 , ν 11 ) -Lipschitz continuous and ( μ 12 , ν 12 ) -Lipschitz continuous, respectively, then for any given x i , y j X and x i y j ( i , j = 1 , 2 ), by Lemma 2.2(6), (7), Definition 2.7 and [1, 2], we can obtain the following inequalities:
θ G 1 ( x 1 , y 1 ) G 1 ( x 2 , y 2 ) = ( ( F 11 ( f ( x 1 ) , y 1 ) + F 12 ( y 1 , x 1 ) u ) B 1 ( x 1 ) + I ( x 1 ) ) ( ( F 11 ( f ( x 2 ) , y 2 ) + F 12 ( y 2 , x 2 ) u ) B 1 ( x 2 ) + I ( x 2 ) ) α 1 ( ( ( F 11 ( f ( x 1 ) , y 1 ) + F 12 ( y 1 , x 1 ) u ) B 1 ( x 1 ) ) ( ( F 11 ( f ( x 2 ) , y 2 ) + F 12 ( y 2 , x 2 ) ) u ) B 1 ( x 2 ) ) + α 2 ( x 1 x 2 ) α 11 ( ( ( F 11 ( f ( x 1 ) , y 1 ) + F 12 ( y 1 , x 1 ) u ) ( F 11 ( f ( x 2 ) , y 2 ) + F 12 ( y 2 , x 2 ) ) u ) ( B 1 ( x 1 ) B 1 ( x 2 ) ) ) + α 2 ( x 1 x 2 ) α 1 ( ( ( F 11 ( f ( x 1 ) , y 1 ) F 11 ( f ( x 2 ) , y 2 ) ) + ( ( F 12 ( y 1 , x 1 ) u ) ( F 12 ( y 2 , x 2 ) u ) ) ζ 1 ( x 1 x 2 ) ) ) + α 2 ( x 1 x 2 ) α 1 ( ( ( F 11 ( f ( x 1 ) , y 1 ) F 11 ( f ( x 2 ) , y 2 ) ) + ( F 12 ( y 1 , x 1 ) F 12 ( y 2 , x 2 ) ) ) ζ 1 ( x 1 x 2 ) ) + α 2 ( x 1 x 2 ) ( α 1 ( μ 11 γ f ( x 1 x 2 ) + ν 11 ( y 1 y 2 ) ) + α 1 ( μ 12 ( y 1 y 2 ) + ν 12 ( x 1 x 2 ) ) ) ζ 1 ( x 1 x 2 ) + α 2 ( x 1 x 2 ) ( α 1 ( ( μ 11 γ f + ν 12 ) + ζ 1 ) + α 2 ) ( x 1 x 2 ) + α 1 ( ν 11 + μ 12 ) ( y 1 y 2 )
(3.4)
and
θ G 2 ( x 1 , y 1 ) G 2 ( x 2 , y 2 ) = ( ( F 21 ( x 1 , y 1 ) F 22 ( x 1 , g ( y 1 ) ) v ) B 2 ( y 1 ) + I ( y 1 ) ) ( ( F 21 ( x 2 , y 2 ) F 22 ( x 2 , g ( y 2 ) ) v ) B 2 ( y 2 ) + I ( y 2 ) ) β 1 ( ( ( ( F 21 ( x 1 , y 1 ) F 21 ( x 2 , y 2 ) ) v ) B 2 ( y 1 ) ) ( ( F 22 ( x 1 , g ( y 1 ) ) F 22 ( x 2 , g ( y 2 ) ) ) v ) B 2 ( y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( ( F 21 ( x 1 , y 1 ) F 21 ( x 2 , y 2 ) ) ) ( F 22 ( x 1 , g ( y 1 ) ) F 22 ( x 2 , g ( y 2 ) ) ) ) ( B 2 ( y 1 ) B 2 ( y 2 ) ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( ( F 21 ( x 1 , y 1 ) F 21 ( x 2 , y 2 ) ) ) ( F 22 ( x 1 , g ( y 1 ) ) F 22 ( x 2 , g ( y 2 ) ) ) ) ζ 2 ( y 1 y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( μ 21 ( x 1 x 2 ) + ν 21 ( y 1 y 2 ) ) ( μ 22 ( x 1 x 2 ) + ν 22 γ g ( y 1 y 2 ) ) ) ζ 2 ( y 1 y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( ( ( μ 21 ( x 1 x 2 ) μ 22 ( x 1 x 2 ) ) + ( ν 21 ( y 1 y 2 ) ν 22 γ g ( y 1 y 2 ) ) ) ζ 2 ( y 1 y 2 ) ) + β 2 ( y 1 y 2 ) β 1 ( μ 21 μ 22 ) ( x 1 x 2 ) + ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ( y 1 y 2 ) ;
(3.5)
and
( G 1 , G 2 ) ( x 1 , y 1 ) ( G 1 , G 2 ) ( x 2 , y 2 ) Ψ ( x 1 , y 1 ) ( x 2 , y 2 ) ,
(3.6)
where
Ψ = ( α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 α 1 ( ν 11 + μ 12 ) β 1 ( μ 21 μ 22 ) ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) .
(3.7)
Further, by [27] and Definition 2.2 in [1], we have
( G 1 , G 2 ) ( x 1 , y 1 ) ( G 1 , G 2 ) ( x 2 , y 2 ) N Ψ ( x 1 , y 1 ) ( x 2 , y 2 ) ,
(3.8)
where
Ψ = max { α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } ,

and N is a normal constant of P.

It follows from (3.8) and the assumption condition (3.2) that 0 < N Ψ < 1 , and hence the vector-valued mapping
( G 1 , G 2 ) T = ( ( ( F 11 ( f , ) + F 12 ( , ) u ) B 1 + I ( ) , ( F 21 ( , ) F 22 ( , g ) ) v ) B 2 + I ( ) ) T

has a fixed point ( x , y ) for Lemma 2.11, in an ordered Banach space X × X , which is a solution for system (1.1) by Lemma 3.1. This completes the proof. □

Theorem 3.3 Let the assumption conditions in Theorem  3.2 and (3.2) hold, that is,
N max { α 1 ( μ 11 γ f + ν 12 ) + ζ 1 + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } < 1 .
(3.9)
Then the iterative sequence { ( x n , y n ) } generated by the following algorithm:
x n + 1 = ( 1 ρ ) x n + ρ ( ( F 11 ( f ( x n ) , y n ) + F 12 ( y n , x n ) ) B 1 ( x n ) + I ( x n ) ) , y n + 1 = ( 1 σ ) y n + σ ( ( ( F 21 ( x n , y n ) F 22 ( x n , g ( y n ) ) ) B 2 ( y n ) + I ( y n ) ) )
(3.10)

for any x 0 , y 0 X , x 0 y 0 , ( x 0 , y 0 ) ( x 1 , y 1 ) and 1 > ρ , ϱ > 0 , converges strongly to ( x , y ) , which is a solution of system (1.1).

Proof Let the assumption conditions in Theorem 3.2 hold. For any given x 0 , y 0 X and x 0 y 0 , ( x 0 , y 0 ) ( x 1 , y 1 ) , setting
G 1 ( x , y ) = ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) , G 2 ( x , y ) = ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ,
(3.11)
then for any 1 > ρ , σ > 0 , by algorithm (3.10), (3.4) and (3.5), we have
θ x n + 1 x n = [ ( 1 ρ ) x n + ρ G 1 ( x n , y n ) ] [ ( 1 ρ ) x n 1 + ρ G 1 ( x n 1 , y n 1 ) ] ( 1 ρ ) ( x n 1 x n ) + ρ ( G 1 ( x n , y n ) G 1 ( x n 1 , y n 1 ) ) ( 1 ρ ) ( x n 1 x n ) + ρ ( G 1 ( x n , y n ) G 1 ( x n 1 , y n 1 ) ) [ ( 1 ρ ) + ρ ( α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 ) ] ( x n 1 x n ) + ρ α 1 ( ν 11 + μ 12 ) ( y n 1 y n )
(3.12)
and
θ y n + 1 y n = [ ( 1 σ ) y n + σ G 2 ( x n , y n ) ] [ ( 1 σ ) y n 1 + σ G 2 ( x n 1 , y n 1 ) ] ( 1 σ ) ( y n 1 y n ) + σ ( G 2 ( x n , y n ) G 2 ( x n 1 , y n 1 ) ) ( 1 σ ) ( y n 1 y n ) + σ ( β 1 ( μ 21 μ 22 ) ( x n 1 x n ) + ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ( y n 1 y n ) ) [ ( 1 σ ) + σ ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ] ( y n 1 y n ) + σ β 1 ( μ 21 μ 22 ) ( x n 1 x n ) σ β 1 ( μ 21 μ 22 ) ( x n 1 x n ) + [ ( 1 σ ) + σ ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ] ( y n 1 y n ) ,
(3.13)
combining (3.12) and (3.13), and by Definition 2.8, we have
( x n + 1 , y n + 1 ) ( x n , y n ) Σ ( x n , y n ) ( x n 1 , y n 1 ) ,
where
Σ = ( 1 ρ 0 0 1 σ ) + ( ρ ( α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 ) ρ α 1 ( ν 11 + μ 12 ) σ β 1 ( μ 21 μ 22 ) σ ( ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 ) ) .
Since (3.2) holds, that is,
N max { α 1 ( μ 11 γ f + ν 12 + ζ 1 ) + α 2 , α 1 ( ν 11 + μ 12 ) , β 1 ( μ 21 μ 22 ) , ( β 1 ν 21 ν 22 γ g ) + ζ 2 + β 2 } < 1 ,

the inequality N Σ < 1 is true. It follows that ( x n , y n ) T ( x , y ) T strongly from Lemma 2.11.

Since g, f, B 1 , B 2 and F i j ( i , j = 1 , 2 ) are ordered compressions, and they are comparisons of each other, so that
x = ( 1 ρ ) x + ρ ( ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) ) , y = ( 1 σ ) y + σ ( ( ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ) )
holds. Therefore, ( x , y ) is a fixed point of the vector-valued mapping
( ( F 11 ( f ( x ) , y ) + F 12 ( y , x ) u ) B 1 ( x ) + I ( x ) , ( F 21 ( x , y ) F 22 ( x , g ( y ) ) v ) B 2 ( y ) + I ( y ) ) .

By using Lemma 3.1, ( x , y ) is a solution of system (1.1). This completes the proof. □

Remark 3.4 For a suitable choice of the mappings g, f, B 1 , B 2 and F i j ( i , j = 1 , 2 ), we can obtain several known results [1] and [2] as special cases of Theorem 3.2, 3.3.

Declarations

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 11201512) and the Natural Science Foundation Project of CQ CSTC (cstc2012jjA00001).

Authors’ Affiliations

(1)
Applied Mathematics Institute, College of Mathematics and Physics, Chongqing University of Posts and Telecommunications
(2)
Institute of Nonlinear Analysis Research, Changjiang Normal University

References

  1. Li HG: Approximation solution for general nonlinear ordered variational inequalities and ordered equations in ordered Banach space. Nonlinear Anal. Forum 2008, 13(2):205–214.MathSciNetGoogle Scholar
  2. Li HG: Approximation solution for a new class of general nonlinear ordered variational inequalities and ordered equations in ordered Banach space. Nonlinear Anal. Forum 2009, 14: 1–9.MathSciNetGoogle Scholar
  3. Verma RU: Projection methods, algorithms and a new system of nonlinear variational inequalities. Comput. Math. Appl. 2001, 41: 1025–1031. 10.1016/S0898-1221(00)00336-9MathSciNetView ArticleGoogle Scholar
  4. Amann H: On the number of solutions of nonlinear equations in ordered Banach space. J. Funct. Anal. 1972, 11: 346–384. 10.1016/0022-1236(72)90074-2MathSciNetView ArticleGoogle Scholar
  5. Du YH: Fixed points of increasing operators in ordered Banach spaces and applications. Appl. Anal. 1990, 38: 1–20. 10.1080/00036819008839957MathSciNetView ArticleGoogle Scholar
  6. Ge DJ, Lakshmikantham V: Couple fixed points of nonlinear operators with applications. Nonlinear Anal. TMA 1987, 11: 623–632. 10.1016/0362-546X(87)90077-0View ArticleGoogle Scholar
  7. Ge DJ: Fixed points of mixed monotone operators with applications. Appl. Anal. 1988, 31: 215–224. 10.1080/00036818808839825MathSciNetView ArticleGoogle Scholar
  8. Li HG: Nonlinear inclusion problems for ordered RME set-valued mappings in ordered Hilbert spaces. Nonlinear Funct. Anal. Appl. 2011, 16(1):1–8.Google Scholar
  9. Li HG:Nonlinear inclusion problem involving ( α , λ ) - N O D M set-valued mappings in ordered Hilbert space. Appl. Math. Lett. 2012, 25: 1384–1388. 10.1016/j.aml.2011.12.007MathSciNetView ArticleGoogle Scholar
  10. Ansari QH, Yao JC: A fixed point theorem and its applications to a system of variational inequalities. Bull. Aust. Math. Soc. 1999, 59: 433–442. 10.1017/S0004972700033116MathSciNetView ArticleGoogle Scholar
  11. Ansari QH, Schaible S, Yao JC: Systems of vector equilibrium problems and its applications. J. Optim. Theory Appl. 2000, 107: 547–557. 10.1023/A:1026495115191MathSciNetView ArticleGoogle Scholar
  12. Cho YJ, Fang YP, Huang NJ: Algorithms for systems of nonlinear variational inequalities. J. Korean Math. Soc. 2004, 41: 489–499.MathSciNetView ArticleGoogle Scholar
  13. Fang YP, Huang NJ: H -Monotone operators and system of variational inclusions. Commun. Appl. Nonlinear Anal. 2004, 11(1):93–101.MathSciNetGoogle Scholar
  14. Yan WY, Fang YP, Huang NJ: A new system of set-valued variational inclusions with H -monotone operators. Math. Inequal. Appl. 2005, 8(3):537–546.MathSciNetGoogle Scholar
  15. Fang YP, Huang NJ, Thompson HB:A new system of variational inclusions with ( H , η ) -monotone operators in Hilbert spaces. Comput. Math. Appl. 2005, 49: 365–374. 10.1016/j.camwa.2004.04.037MathSciNetView ArticleGoogle Scholar
  16. Lan HY, Kang JI, Cho YJ:Nonlinear ( A , η ) -monotone operator inclusion systems involving non-monotone set-valued mappings. Taiwan. J. Math. 2007, 11: 683–701.MathSciNetGoogle Scholar
  17. Peng JW, Zhu DL:Three-step iterative algorithm for a system of set-valued variational inclusions with ( H , η ) -monotone operators. Nonlinear Anal. 2008, 68: 139–153. 10.1016/j.na.2006.10.037MathSciNetView ArticleGoogle Scholar
  18. Li HG, Xu AJ, Jin MM:A hybrid proximal point three-step algorithm for nonlinear set-valued quasi-variational inclusions system involving ( A , η ) -accretive mappings. Fixed Point Theory Appl. 2010., 2010: Article ID 635382 10.1155/2010/635382Google Scholar
  19. Lan HY, Cho YJ, Verma RU:On nonlinear relaxed cocoercive inclusions involving ( A , η ) -accretive mappings in Banach spaces. Comput. Math. Appl. 2006, 51: 1529–1538. 10.1016/j.camwa.2005.11.036MathSciNetView ArticleGoogle Scholar
  20. Li HG:Approximation solutions for generalized multi-valued variational-like inclusions with ( G , η ) -monotone mappings. J. Jishou Univ., Nat. Sci. Ed. 2009, 30(4):7–12.Google Scholar
  21. Schaefer HH: Banach Lattices and Positive Operators. Springer, Berlin; 1974.View ArticleGoogle Scholar
  22. Li HG, Xu AJ, Jin MM:An Ishikawa-hybrid proximal point algorithm for nonlinear set-valued inclusions problem based on ( A , η ) -accretive framework. Fixed Point Theory Appl. 2010., 2010: Article ID 501293 10.1155/2010/501293Google Scholar
  23. Pan XB, Li HG, Xu AJ: The over-relaxed A -proximal point algorithm for general nonlinear mixed set-valued inclusion framework. Fixed Point Theory Appl. 2011., 2011: Article ID 840978 10.1155/2011/840978Google Scholar
  24. Li H-G, Xu A-J: A new class of generalized nonlinear random set-valued quasi-variational inclusion system with random nonlinear ( A i ω , η i ω ) -accretive mappings in q -uniformly smooth Banach spaces. Nonlinear Anal. Forum 2010, 15: 1–20.MathSciNetView ArticleGoogle Scholar
  25. Shim SH, Kang SM, Huang NJ, Yao JC: Perturbed iterative algorithms with errors for completely generalized strongly nonlinear implicit variational-like inclusions. J. Inequal. Appl. 2000, 5(4):381–395.MathSciNetGoogle Scholar
  26. Verma RU: A -Monotonicity and applications to nonlinear variational inclusions. J. Appl. Math. Stoch. Anal. 2004, 17(2):193–195.View ArticleGoogle Scholar
  27. Horn RA, Johnson CR: Matrix Analysis. Cambridge University Press, Cambridge; 1986.Google Scholar
  28. Li HG:Approximation solutions for generalized multi-valued variational-like inclusions with ( G , η ) -monotone mappings. J. Jishou Univ., Nat. Sci. Ed. 2009, 30(4):7–12.Google Scholar
  29. Alimohammady M, Balooee J, Cho YJ, Roohi M: Iterative algorithms for a new class of extended general nonconvex set-valued variational inequalities. Nonlinear Anal. 2010, 73: 3907–3923. 10.1016/j.na.2010.08.022MathSciNetView ArticleGoogle Scholar
  30. Alimohammady M, Balooee J, Cho YJ, Roohi M: New perturbed finite step iterative algorithms for a system of extended generalized nonlinear mixed-quasi variational inclusions. Comput. Math. Appl. 2010, 60: 2953–2970. 10.1016/j.camwa.2010.09.055MathSciNetView ArticleGoogle Scholar
  31. Yao Y, Cho YJ, Liou Y: Iterative algorithms for variational inclusions, mixed equilibrium problems and fixed point problems approach to optimization problems. Cent. Eur. J. Math. 2011, 9: 640–656. 10.2478/s11533-011-0021-3MathSciNetView ArticleGoogle Scholar
  32. Yao Y, Cho YJ, Liou Y: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur. J. Oper. Res. 2011, 212: 242–250. 10.1016/j.ejor.2011.01.042MathSciNetView ArticleGoogle Scholar

Copyright

© Li et al.; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.