Open Access

Endpoint estimates for vector-valued multilinear commutator of fractional area integral operator

Journal of Inequalities and Applications20132013:513

https://doi.org/10.1186/1029-242X-2013-513

Received: 1 May 2013

Accepted: 24 September 2013

Published: 8 November 2013

Abstract

In this paper, we prove the endpoint estimates for vector-valued multilinear commutator of fractional area integral operator.

MSC:42B20, 42B25.

Keywords

vector-valued multilinear commutator Triebel-Lizorkin space Lipschitz space Lebesgue space BMO ( R n )

1 Introduction

Let b BMO ( R n ) and T be the Calderón-Zygmund operator, the commutator [ b , T ] generated by b and T is defined by
[ b , T ] ( f ) ( x ) = b ( x ) T ( f ) ( x ) T ( b f ) ( x ) .

A classical result of Coifman, Rochberb and Weiss (see [1]) proved that the commutator [ b , T ] is bounded on L p ( R n ) ( 1 < p < ). In [24], the boundedness properties of the commutators for the extreme values of p are obtained. In this paper, we introduce vector-valued multilinear commutator of fractional area integral operator and prove the endpoint estimates for the commutator | S ψ , δ b | r generated by the fractional area integral operator S ψ , δ and BMO functions.

2 Notations and results

We give the following definitions (see [2, 3, 57]).

Definition 1 Let 0 < δ < n , a function ψ satisfies:
  1. (1)

    R n ψ ( x ) d x = 0 ;

     
  2. (2)

    | ψ ( x ) | C ( 1 + | x | ) ( n + 1 δ ) ;

     
  3. (3)

    | ψ ( x + y ) ψ ( x ) | C | y | ε ( 1 + | x | ) ( n + 2 δ ) , 2 | y | < | x | .

     
Suppose that 1 < r < , b j ( j = 1 , , m ) are the fixed locally integrable functions on R n . Set Γ ( x ) = { ( y , t ) R + n + 1 : | x y | t } and the eigenfunction by χ Γ ( x ) . We define the vector-valued multilinear commutator of fractional area integral operator by
| S ψ , δ b ( f ) ( x ) | r = ( i = 1 ( S ψ , δ b ( f i ) ( x ) ) r ) 1 / r ,
where
S ψ , δ b ( f ) ( x ) = ( Γ ( x ) | F t b ( f ) ( x , y ) | 2 d y d t t n + 1 ) 1 / 2
and
F t b ˜ ( f ) ( x ) = R n [ j = 1 m ( b j ( x ) b j ( z ) ) ] ψ t ( y z ) f ( z ) d z .
Definition 2 We call a locally integrable function b in the central BMO space, namely CMO ( R n ) , if the function b satisfies
b CMO = sup r > 1 | Q ( 0 , r ) | 1 Q | b ( y ) b Q | d y < .
We have
b CMO sup r > 1 inf c C | Q ( 0 , r ) | 1 Q | b ( y ) c | d y .
Definition 3 Let 0 < δ < n , 1 < p < n / δ . We call a locally integrable function b in B p δ ( R n ) , if the function b satisfies
b B p δ = sup r > 1 r n ( 1 / p δ / n ) b χ Q ( 0 , r ) L p < .

Now we state our theorems as follows.

Theorem 1 Suppose 1 < r < , 0 < δ < n , and b = ( b 1 , , b m ) for b j BMO , 1 j m . Then | S ψ , δ b | r is bounded from L n / δ to BMO ( R n ) .

Theorem 2 Let 1 < r < , 0 < δ < n , 1 < p < n / δ , and b = ( b 1 , , b m ) , with b j BMO ( R n ) , for 1 j m . Then | S ψ , δ b | r is bounded from B p δ ( R n ) to CMO ( R n ) .

3 Proofs of theorems

We begin with a preliminaries lemma.

Lemma 1 (see [3, 4])

Let 1 < r < , 0 < δ < n , 1 < p < n / δ , 1 / q = 1 / p δ / n . Then | S ψ , δ | r is bounded from L p ( R n ) to L q ( R n ) .

Proof of Theorem 1 It is only to prove that there exists a constant C Q , the following inequality holds:
1 | Q | Q | | S ψ , δ b ( f ) ( x ) | r C Q | d x C | f | r L n / δ .

Fix a cube Q = Q ( x 0 , r ) , let f = g + h = { g i } + { h i } for g i = f i χ Q , h i = f i χ ( Q ) c .

When m = 1 , set ( b 1 ) Q = | Q | 1 Q b 1 ( y ) d y , then
F t b 1 ( f i ) ( x , y ) = ( b 1 ( x ) ( b 1 ) Q ) F t ( f i ) ( y ) F t ( ( b 1 ( b 1 ) Q ) g i ) ( y ) F t ( ( b 1 ( b 1 ) Q ) h i ) ( y ) ,
so
| S ψ , δ b 1 ( f ) ( x ) | r | S ψ , δ ( ( ( b 1 ) 2 Q b 1 ) h ) ( x 0 ) r | ( i = 1 χ Γ ( x ) ( b 1 ( x ) ( b 1 ) Q ) F t ( f i ) ( y ) r ) 1 / r + ( i = 1 χ Γ ( x ) F t ( ( ( b 1 ) Q b 1 ) g i ) ( y ) r ) 1 / r + χ Γ ( x ) F t ( ( b 1 ( b 1 ) Q ) f 2 ) ( y ) χ Γ ( x 0 ) F t ( ( b 1 ( b 1 ) Q ) h ) ( y ) r = A ( x ) + B ( x ) + C ( x ) .
For A ( x ) , suppose 1 < p < n / δ , 1 / q = 1 / p δ / n and 1 / q + 1 / q = 1 , by the Hölder inequality, then
1 | Q | Q | A ( x ) | d x = 1 | Q | Q | b 1 ( x ) ( b 1 ) Q | | S ψ , δ ( f ) ( x ) | r d x ( 1 | Q | Q | b 1 ( x ) ( b 1 ) Q | q d x ) 1 / q × ( 1 | Q | R n | S ψ , δ ( f ) ( x ) | r q χ Q ( x ) d x ) 1 / q C b 1 BMO | Q | 1 / q ( R n | f ( x ) | r p χ Q ( x ) d x ) 1 / p C b 1 BMO | Q | 1 / q × [ ( R n | f ( x ) | r n / δ d x ) δ p / n ( Q χ Q ( x ) d x ) 1 δ p / n ] 1 / p C b 1 BMO | Q | 1 / q | f | r L n / δ | Q | ( 1 δ p / n ) / p C b 1 BMO | f | r L n / δ .
For B ( x ) , fix 1 < u < n / δ , 1 / v = 1 / u δ / n , by the Hölder inequality, then
1 | Q | Q | B ( x ) | d x = 1 | Q | Q | S ψ , δ ( ( b 1 ( b 1 ) Q ) g ) ( x ) | r d x ( 1 | Q | R n | S ψ , δ ( ( b 1 ( b 1 ) Q ) g ) ( x ) ) v d x | r ) 1 / v C | Q | 1 / v ( R n | b 1 ( x ) ( b 1 ) Q | u | f ( x ) | r u χ Q ( x ) d x ) 1 / u C ( 1 | Q | Q | b 1 ( x ) ( b 1 ) Q | u d x ) 1 / u | f | r L n / δ C b 1 BMO | f | r L n / δ .
For C ( x ) , we have
C ( x ) = χ Γ ( x ) F t ( ( b 1 ( b 1 ) Q ) f 2 ) ( y ) χ Γ ( x 0 ) F t ( ( b 1 ( b 1 ) Q ) h ) ( y ) r [ R + n + 1 ( Q c | χ Γ ( x ) χ Γ ( x 0 ) b 1 ( z ) ( b 1 ) Q ψ t ( y z ) | | f ( z ) | r d z ) 2 d y d t t n + 1 ] 1 / 2 C Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r × | | x y | t t 1 n d y d t ( t + | y z | ) 2 n + 2 2 δ | x 0 y | t t 1 n d y d t ( t + | y z | ) 2 n + 2 2 δ | 1 / 2 d z C Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r × ( | y | t , | x + y z | t | 1 ( t + | x + y z | ) 2 n + 2 2 δ 1 ( t + | x 0 + y z | ) 2 n + 2 2 δ | d y d t t n 1 ) 1 / 2 d z Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r ( | y | t , | x + y z | t | x x 0 | t 1 n ( t + | x + y z | ) 2 n + 3 2 δ d y d t ) 1 / 2 d z .
Notice that when | y | t , 2 t + | x + y z | 2 t + | x z | | y | t + | x z | , and
0 t d t ( t + | x z | ) 2 n + 3 2 δ = C | x z | 2 n 1 + 2 δ ,
then, for x Q ,
C ( x ) Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r ( | y | t 2 2 n + 3 2 δ | x 0 x | t 1 n d y d t ( 2 t + 2 | x + y z | ) 2 n + 3 2 δ ) 1 / 2 d z C Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r | x x 0 | 1 / 2 ( | y | t t 1 n d y d t ( t + | x z | ) 2 n + 3 2 δ ) 1 / 2 d z C Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r | x x 0 | 1 / 2 ( 0 t d t ( t + | x z | ) 2 n + 3 2 δ ) 1 / 2 d z C Q c | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r | x 0 x | 1 / 2 | x 0 z | n + 1 / 2 δ d z C k = 1 2 k + 1 Q 2 k Q | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r | x 0 x | 1 / 2 | x 0 z | n + 1 / 2 δ d z C k = 1 2 k / 2 | 2 k + 1 Q | 1 + δ / n 2 k + 1 Q | b 1 ( z ) ( b 1 ) Q | | f ( z ) | r d z C b 1 BMO k = 1 k 2 k / 2 | f | r L n / δ C b 1 BMO | f | r L n / δ ,
so that
1 | Q | Q | C ( x ) | d x C b 1 BMO | f | r L n / δ .
When m > 1 , let b Q = ( ( b 1 ) Q , , ( b m ) Q ) R n , where
( b j ) Q = | Q | 1 Q b j ( y ) d y , 1 j m ,
let f = g + h = { g i } + { h i } for g i = f i χ Q , h i = f i χ ( Q ) c . We have
F t b ( f i ) ( x , y ) = R n [ j = 1 m ( b 1 ( x ) b 1 ( z ) ) ] ψ t ( y z ) f i ( z ) d z = ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) F t ( f i ) ( y ) + ( 1 ) m F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) f i ) ( y ) + j = 1 m 1 σ C j m ( 1 ) m j ( b ( x ) b Q ) σ × R n ( b ( z ) b Q ) σ c ψ t ( y z ) f i ( z ) d z = ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) F t ( f i ) ( y ) + ( 1 ) m F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) g i ) ( y ) + ( 1 ) m F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) h i ) ( y ) + j = 1 m 1 σ C j m ( 1 ) m j ( b ( x ) b Q ) σ F t ( ( b b Q ) σ c f i ) ( x , y ) ,
by the Minkowski inequality, we have
| | S ψ , δ b ( f ) ( x ) | r | S ψ , δ ( ( ( b 1 ) Q b 1 ) ( ( b m ) Q b m ) h ) ( x 0 ) | r | χ Γ ( x ) ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) F t ( f ) ( y ) r + j = 1 m 1 σ C j m χ Γ ( x ) ( b ( x ) b Q ) σ F t ( ( b b Q ) σ c f ) ( x , y ) r + χ Γ ( x ) F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) g ) ( y ) r + χ Γ ( x ) F t ( j = 1 m ( b j ( b j ) Q ) h ) ( y ) χ Γ ( x 0 ) F t ( j = 1 m ( b j ( b j ) Q ) h ) ( y ) r = M 1 ( x ) + M 2 ( x ) + M 3 ( x ) + M 4 ( x ) .
For M 1 ( x ) , similar to the proof of m = 1 , we take 1 < p < n / δ , 1 / q = 1 / p δ / n , by the Hölder inequality and Lemma 1, we have
1 | Q | Q M 1 ( x ) d x ( 1 | Q | Q | j = 1 m ( b j ( x ) ( b j ) Q ) | q d x ) 1 / q ( 1 | Q | Q | S ψ , δ ( f ) ( x ) | r q d x ) 1 / q C b BMO | Q | 1 / q ( Q | f ( x ) | r p d x ) 1 / p C b BMO | Q | 1 / q ( Q | f ( x ) | r n / δ d x ) δ / n | Q | ( 1 ( δ p / n ) ) / p C b BMO | f | r L n / δ .
For M 2 ( x ) , taking 1 < p < n / δ , 1 / q = 1 / p δ / n , we get
1 | Q | Q M 2 ( x ) d x C j = 1 m 1 σ C j m b σ BMO | Q | 1 / q ( R n | ( b ( x ) b Q ) σ c f ( x ) | r p χ Q ( x ) d x ) 1 / p C j = 1 m 1 σ C j m b σ BMO ( 1 | Q | Q | ( b ( x ) b Q ) σ c | q d x ) 1 / q | f | r L n / δ C j = 1 m 1 σ C j m b σ BMO b σ c BMO f L n / δ C b BMO | f | r L n / δ .
For M 3 ( x ) , taking 1 < p < n / δ , 1 / q = 1 / p δ / n , we obtain
1 | Q | Q M 3 ( x ) d x ( 1 | Q | Q | S ψ , δ ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) g ) ( x ) | r q d x ) 1 / q C | Q | 1 / q ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) | g ( x ) | r L p C ( 1 | Q | Q | ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) | q d x ) 1 / q | f | r L n / δ C b BMO | f | r L n / δ .
For M 4 ( x ) , we have
M 4 ( x ) C Q c | x 0 x | 1 / 2 | x 0 z | ( n + 1 / 2 δ ) | j = 1 m ( b j ( z ) ( b j ) Q ) | | f ( z ) | r d z C k = 1 2 k Q 2 k 1 Q | x 0 x | 1 / 2 | x 0 z | ( n + 1 / 2 δ ) | j = 1 m ( b j ( z ) ( b j ) Q ) | | f ( z ) | r d z C k = 1 2 k Q 2 k 1 Q | x 0 x | 1 / 2 | x 0 z | n + 1 / 2 δ | j = 1 m ( b j ( z ) ( b j ) Q ) | | f ( z ) | r d z C k = 1 2 k / 2 1 | 2 k Q | 1 δ / n 2 k Q | j = 1 m ( b j ( z ) ( b j ) Q ) | | f ( z ) | r d z C k = 1 2 k / 2 ( 2 k Q | f ( z ) | r n / δ d z ) δ / n × ( 1 | 2 k Q | 2 k Q | j = 1 m ( b j ( z ) ( b j ) Q ) | n / ( n δ ) d z ) ( n δ ) / n C k = 1 k m 2 k / 2 j = 1 m b j BMO | f | r L n / δ C b BMO | f | r L n / δ ,
so
1 | Q | Q | M 4 ( x ) | d x C b BMO | f | r L n / δ .

This completes the proof of Theorem 1. □

Proof of Theorem 2 It is only to prove that there exists a constant C Q , for any of the cubes Q = Q ( 0 , d ) ( d > 1 ), the following inequality holds:
1 | Q | Q | | S ψ , δ b ( f ) ( x ) | r C Q | d x C f B p δ .
Fix a cube Q = Q ( 0 , d ) ( d > 1 ). Let f = g + h = { g i } + { h i } , where g i = f i χ Q , h i = f i χ ( Q ) c and b Q = ( ( b 1 ) Q , , ( b m ) Q ) . For ( b j ) Q = | Q | 1 Q | b j ( y ) | d y , 1 j m , we have
F t b ( f i ) ( x , y ) = R n [ j = 1 m ( b 1 ( x ) b 1 ( z ) ) ] ψ t ( y z ) f i ( z ) d z = ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) F t ( f i ) ( y ) + ( 1 ) m F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) g i ) ( y ) + ( 1 ) m F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) h i ) ( y ) + j = 1 m 1 σ C j m ( 1 ) m j ( b ( x ) b Q ) σ F t ( ( b b Q ) σ c f i ) ( x , y ) .
By the Minkowski inequality, we have
| | S ψ , δ b ( f ) ( x ) | r | S ψ , δ ( ( ( b 1 ) Q b 1 ) ( ( b m ) Q b m ) h ) ( x 0 ) | r | χ Γ ( x ) ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) F t ( f ) ( y ) r + j = 1 m 1 σ C j m χ Γ ( x ) ( b ( x ) b Q ) σ F t ( ( b b Q ) σ c f ) ( x , y ) r + χ Γ ( x ) F t ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) g ) ( y ) r + χ Γ ( x ) F t ( j = 1 m ( b j ( b j ) Q ) h ) ( y ) χ Γ ( x 0 ) F t ( j = 1 m ( b j ( b j ) Q ) h ) ( y ) r = H 1 ( x ) + H 2 ( x ) + H 3 ( x ) + H 4 ( x ) .
For H 1 ( x ) , take 1 / q = 1 / p δ / n , by the Hölder inequality and Lemma 1, we have
1 | Q | Q H 1 ( x ) d x ( 1 | Q | Q | j = 1 m ( b j ( x ) ( b j ) Q ) | q d x ) 1 / q ( 1 | Q | Q | S ψ , δ ( f ) ( x ) | r q d x ) 1 / q C b BMO | Q | 1 / q ( R n | f ( x ) | r p χ Q ( x ) d x ) 1 / p C b BMO d n ( 1 / p δ / n ) | f | r χ Q L p C b BMO | f | r B p δ .
For H 2 ( x ) , taking 1 < u < p < n / δ , 1 / v = 1 / u δ / n , we get
1 | Q | Q H 2 ( x ) d x C j = 1 m 1 σ C j m ( 1 | Q | Q | ( b ( x ) b Q ) σ | v d x ) 1 / v × ( 1 | Q | Q | S ψ , δ ( ( b b Q ) σ c f ) ( x ) | r u d x ) 1 / u C j = 1 m 1 σ C j m b σ BMO | Q | 1 / v ( R n | ( b ( x ) b Q ) σ c f ( x ) | r u χ Q ( x ) d x ) 1 / u C j = 1 m 1 σ C j m b σ BMO | Q | ( δ / n 1 / p ) | f | r χ Q L p × ( 1 | Q | Q | ( b ( x ) b Q ) σ c | p r / ( p r ) d x ) ( p u ) / p u C j = 1 m 1 σ C j m b σ BMO b σ c BMO d n ( 1 / p δ / n ) | f | r χ Q L p C b BMO | f | r B p δ .
For H 3 ( x ) , taking 1 < u < p < n / δ , 1 / v = 1 / u δ / n , we obtain
1 | Q | Q H 3 ( x ) d x ( 1 | Q | Q | S ψ , δ ( ( b 1 ( b 1 ) Q ) ( b m ( b m ) Q ) g ) ( x ) | r v d x ) 1 / v C | Q | 1 / v ( Q | ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) g ( x ) | r u d x ) 1 / u C | Q | 1 / v ( b 1 ( x ) ( b 1 ) Q ) ( b m ( x ) ( b m ) Q ) | f | r χ Q L v C b BMO | f | r B p δ .
For H 4 ( x ) , we have
I 4 ( x ) [ R + n + 1 ( Q c | χ Γ ( x ) χ Γ ( x 0 ) | j = 1 m | b j ( z ) ( b j ) Q | | ψ t ( y z ) | | f ( z ) | r d z ) 2 d y d t t n + 1 ] 1 / 2 C k = 0 2 k + 1 Q 2 k Q | x 0 x | 1 / 2 | x 0 z | ( n + 1 / 2 2 δ ) | j = 1 m ( b j ( z ) ( b j ) Q ) | | f ( z ) | r d z C k = 1 2 k / 2 | 2 k + 1 Q | 1 + δ / n 2 k + 1 Q | j = 1 m ( b j ( z ) ( b j ) Q ) | | f ( z ) | r d z C k = 1 k m 2 k / 2 | 2 k Q | ( 1 / p δ / n ) b BMO | f | r χ 2 k Q L p C b BMO | f | r B p δ ,
so
1 | Q | Q | H 4 ( x ) | d x C b BMO | f | r B p δ .

This completes the proof of Theorem 2. □

Declarations

Authors’ Affiliations

(1)
Department of Mathematics, Huaihua University

References

  1. Coifman R, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103: 611–635. 10.2307/1970954MathSciNetView ArticleMATHGoogle Scholar
  2. Garcia-Cuerva J, Rubio de Francia JL North-Holland Mathematics Studies 116. In Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam; 1985.Google Scholar
  3. Liu LZ: The continuity of commutators on Triebel-Lizorkin spaces. Integral Equ. Oper. Theory 2004, 49: 65–76. 10.1007/s00020-002-1186-8View ArticleMATHGoogle Scholar
  4. Liu LZ, Wu BS: Weighted boundedness for commutator of Littewood-Paley integral on some Hardy spaces. Southeast Asian Bull. Math. 2004, 28: 643–650.MathSciNetMATHGoogle Scholar
  5. Liu LZ:Weighted weak type ( H 1 , L 1 ) estimates for commutators of Littlewood-Paley operator. Indian J. Math. 2003, 45: 71–78.MathSciNetMATHGoogle Scholar
  6. Pérez C, Trujillo-Gonzalez R: Sharp Weighted estimates for multilinear commutators. J. Lond. Math. Soc. 2002, 65: 672–692. 10.1112/S0024610702003174View ArticleMATHGoogle Scholar
  7. Stein EM: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton; 1993.MATHGoogle Scholar

Copyright

© Kuang; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.