Skip to main content

New general integral inequalities for quasi-geometrically convex functions via fractional integrals

Abstract

In this paper, the author introduces the concept of the quasi-geometrically convex functions, gives Hermite-Hadamard’s inequalities for GA-convex functions in fractional integral forms and defines a new identity for fractional integrals. By using this identity, the author obtains new estimates on generalization of Hadamard et al. type inequalities for quasi-geometrically convex functions via Hadamard fractional integrals.

MSC:26A33, 26A51, 26D15.

1 Introduction

Let a real function f be defined on some nonempty interval I of a real line . The function f is said to be convex on I if inequality

f ( t x + ( 1 t ) y ) tf(x)+(1t)f(y)
(1)

holds for all x,yI and t[0,1].

We recall that the notion of quasi-convex function generalizes the notion of convex function. More exactly, a function f:[a,b]RR is said to be quasi-convex on [a,b] if

f ( t x + ( 1 t ) y ) max { f ( x ) , f ( y ) }

for all x,y[a,b] and t[0,1]. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex (see [1]).

The following inequalities are well known in the literature as the Hermite-Hadamard inequality, the Ostrowski inequality and the Simpson inequality, respectively.

Theorem 1.1 Let f:I R R be a convex function defined on the interval I of real numbers, and let a,bI with a<b. The following double inequality holds:

f ( a + b 2 ) 1 b a a b f(x)dx f ( a ) + f ( b ) 2 .
(2)

Theorem 1.2 Let f:I R R be a mapping differentiable in I , the interior of I, and let a,b I with a<b. If | f (x)|M, x[a,b], then the following inequality holds:

|f(x) 1 b a a b f(t)dt| M b a [ ( x a ) 2 + ( b x ) 2 2 ]

for all x[a,b].

Theorem 1.3 Let f:[a,b] R be a four times continuously differentiable mapping on (a,b) and f ( 4 ) = sup x ( a , b ) | f ( 4 ) (x)|<. Then the following inequality holds:

| 1 3 [ f ( a ) + f ( b ) 2 + 2 f ( a + b 2 ) ] 1 b a a b f(x)dx| 1 2 , 880 f ( 4 ) ( b a ) 4 .

The following definitions are well known in the literature.

Definition 1.1 ([2, 3])

A function f:I(0,)R is said to be GA-convex (geometric-arithmetically convex) if

f ( x t y 1 t ) tf(x)+(1t)f(y)

for all x,yI and t[0,1].

Definition 1.2 ([2, 3])

A function f:I(0,)(0,) is said to be GG-convex (called in [4] a geometrically convex function) if

f ( x t y 1 t ) f ( x ) t f ( y ) ( 1 t )

for all x,yI and t[0,1].

We will now give definitions of the right-hand side and left-hand side Hadamard fractional integrals which are used throughout this paper.

Definition 1.3 Let fL[a,b]. The right-hand side and left-hand side Hadamard fractional integrals J a + α f and J b α f of order α>0 with b>a0 are defined by

J a + α f(x)= 1 Γ ( α ) a x ( ln x t ) α 1 f(t) d t t ,a<x<b

and

J b α f(x)= 1 Γ ( α ) x b ( ln t x ) α 1 f(t) d t t ,a<x<b,

respectively, where Γ(α) is the Gamma function defined by Γ(α)= 0 e t t α 1 dt (see [5]).

In recent years, many authors have studied error estimations for Hermite-Hadamard, Ostrowski and Simpson inequalities; for refinements, counterparts, generalization see [4, 620].

In this paper, the concept of the quasi-geometrically convex function is introduced, Hermite-Hadamard’s inequalities for GA-convex functions in fractional integral forms are established, and a new identity for Hadamard fractional integrals is defined. By using this identity, author obtains a generalization of Hadamard, Ostrowski and Simpson type inequalities for quasi-geometrically convex functions via Hadamard fractional integrals.

2 Main results

Let f:I(0,)R be a differentiable function on I , the interior of I, throughout this section we will take

I f ( x , λ , α , a , b ) = ( 1 λ ) [ ln α x a + ln α b x ] f ( x ) + λ [ f ( a ) ln α x a + f ( b ) ln α b x ] Γ ( α + 1 ) [ J x α f ( a ) + J x + α f ( b ) ] ,

where a,bI with a<b, x[a,b], λ[0,1], α>0 and Γ is the Euler Gamma function.

Definition 2.1 A function f:I(0,) R is said to be quasi-geometrically convex on I if

f ( x t y 1 t ) sup { f ( x ) , f ( y ) } ,

for any x,yI and t[0,1].

Remark 2.1 Clearly, any GA-convex and geometrically convex functions are quasi-geometrically convex functions. Furthermore, there exist quasi-geometrically convex functions which are neither GA-convex nor geometrically convex. In that context, we point out an elementary example. The function f:(0,4]R,

f(x)= { 1 , x ( 0 , 1 ] , ( x 2 ) 2 , x [ 1 , 4 ]

is neither GA-convex nor geometrically convex on (0,4], but it is a quasi-geometrically convex function on (0,4].

Proposition 2.1 If f:I(0,) R is convex and nondecreasing, then it is quasi-geometrically convex on I.

Proof This follows from

f ( x t y 1 t ) f ( t x + ( 1 t ) y ) t f ( x ) + ( 1 t ) f ( y ) sup { f ( x ) , f ( y ) } ,

for all x,yI and t[0,1]. □

Proposition 2.2 If f:I(0,) R is quasi-convex and nondecreasing, then it is quasi-geometrically convex on I. If f:I(0,) R is quasi-geometrically convex and nonincreasing, then it is quasi-convex on I.

Proof These conclusions follows from

f ( x t y 1 t ) f ( t x + ( 1 t ) y ) sup { f ( x ) , f ( y ) }

and

f ( t x + ( 1 t ) y ) f ( x t y 1 t ) sup { f ( x ) , f ( y ) }

for all x,yI and t[0,1], respectively. □

Hermite-Hadamard’s inequalities can be represented for GA-convex functions in fractional integral forms as follows.

Theorem 2.1 Let f:I(0,)R be a function such that fL[a,b], where a,bI with a<b. If f is a GA-convex function on [a,b], then the following inequalities for fractional integrals hold:

f( a b ) Γ ( α + 1 ) 2 ( ln b a ) α { J a + α f ( b ) + J b α f ( a ) } f ( a ) + f ( b ) 2
(3)

with α>0.

Proof Since f is a GA-convex function on [a,b], we have for all x,y[a,b] (with t=1/2 in inequality (1)),

f( x y ) f ( x ) + f ( y ) 2 .

Choosing x= a t b 1 t , y= b t a 1 t , we get

f( a b ) f ( a t b 1 t ) + f ( b t a 1 t ) 2 .
(4)

Multiplying both sides of (4) by t α 1 , then integrating the resulting inequality with respect to t over [0,1], we obtain

f ( a b ) α 2 { 0 1 f ( a t b 1 t ) d t + 0 1 f ( b t a 1 t ) d t } = α 2 { a b ( ln b ln u ln b ln a ) α 1 f ( u ) d u u ln b a + a b ( ln u ln a ln b ln a ) α 1 f ( u ) d u u ln b a } = α Γ ( α ) 2 ( ln b a ) α { J a + α f ( b ) + J b α f ( a ) } = Γ ( α + 1 ) 2 ( ln b a ) α { J a + α f ( b ) + J b α f ( a ) } ,

and the first inequality is proved.

For the proof of the second inequality in (3), we first note that if f is a convex function, then for t[0,1], it yields

f ( a t b 1 t ) tf(a)+(1t)f(b)

and

f ( b t a 1 t ) tf(b)+(1t)f(a).

By adding these inequalities, we have

f ( a t b 1 t ) +f ( b t a 1 t ) f(a)+f(b).
(5)

Then multiplying both sides of (5) by t α 1 , and integrating the resulting inequality with respect to t over [0,1], we obtain

0 1 f ( a t b 1 t ) t α 1 dt+ 0 1 f ( b t a 1 t ) t α 1 dt [ f ( a ) + f ( b ) ] 0 1 t α 1 dt,

i.e.,

Γ ( α + 1 ) ( ln b a ) α { J a + α f ( b ) + J b α f ( a ) } f(a)+f(b).

The proof is completed. □

In order to prove our main results, we need the following identity.

Lemma 2.1 Let f:I(0,)R be a differentiable function on I such that f L[a,b], where a,bI with a<b. Then for all x[a,b], λ[0,1] and α>0, we have:

I f ( x , λ , α , a , b ) = a ( ln x a ) α + 1 0 1 ( t α λ ) ( x a ) t f ( x t a 1 t ) d t b ( ln b x ) α + 1 0 1 ( t α λ ) ( x b ) t f ( x t b 1 t ) d t .
(6)

Proof By integration by parts and twice changing the variable, for xa, we can state that

a ln x a 0 1 ( t α λ ) ( x a ) t f ( x t a 1 t ) d t = 0 1 ( t α λ ) d f ( x t a 1 t ) = ( t α λ ) f ( x t a 1 t ) | 0 1 α ( ln x a ) α a x ( ln u a ) α 1 f ( u ) u d u = ( 1 λ ) f ( x ) + λ f ( a ) Γ ( α + 1 ) ( ln x a ) α J x α f ( a ) ,
(7)

and for xb, similarly, we get

b ln b x 0 1 ( t α λ ) ( x b ) t f ( x t b 1 t ) d t = 0 1 ( t α λ ) d f ( x t b 1 t ) = ( t α λ ) f ( x t b 1 t ) | 0 1 α ( ln b x ) α x b ( ln b u ) α 1 f ( u ) u d u = ( 1 λ ) f ( x ) + λ f ( b ) Γ ( α + 1 ) ( ln b x ) α J x + α f ( b ) .
(8)

Multiplying both sides of (7) and (8) by ( ln x a ) α and ( ln b x ) α , respectively, and adding the resulting identities, we obtain the desired result. For x=a and x=b, the identities

I f (a,λ,α;a,b)=b ( ln b a ) α + 1 0 1 ( t α λ ) ( a b ) t f ( a t b 1 t ) dt,

and

I f (b,λ,α;a,b)=a ( ln b a ) α + 1 0 1 ( t α λ ) ( b a ) t f ( b t a 1 t ) ,

can be proved respectively easily by performing an integration by parts in the integrals from the right-hand side and changing the variable. □

Theorem 2.2 Let f:I(0,)R be a differentiable function on I such that f L[a,b], where a,b I with a<b. If | f | q is quasi-geometrically convex on [a,b] for some fixed q1, x[a,b], λ[0,1] and α>0, then the following inequality for fractional integrals holds:

| I f ( x , λ , α , a , b ) | A 1 1 1 q ( α , λ ) { a ( ln x a ) α + 1 ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q B 1 1 q ( x , α , λ , q ) + b ( ln b x ) α + 1 ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q B 2 1 q ( x , α , λ , q ) } ,
(9)

where

A 1 ( α , λ ) = 2 α λ 1 + 1 α + 1 α + 1 λ , B 1 ( x , α , λ , q ) = 0 1 | t α λ | ( x a ) q t d t , B 2 ( x , α , λ , q ) = 0 1 | t α λ | ( x b ) q t d t .

Proof Since | f | q is quasi-geometrically convex on [a,b], for all t[0,1],

| f ( x t a 1 t ) | q sup { | f ( x ) | q , | f ( a ) | q }

and

| f ( x t b 1 t ) | q sup { | f ( x ) | q , | f ( b ) | q } .

Hence, using Lemma 2.1 and power mean inequality, we get

| I f ( x , λ , α , a , b ) | a ( ln x a ) α + 1 ( 0 1 | t α λ | d t ) 1 1 q ( 0 1 | t α λ | ( x a ) q t sup { | f ( x ) | q , | f ( a ) | q } d t ) 1 q + b ( ln b x ) α + 1 ( 0 1 | t α λ | d t ) 1 1 q ( 0 1 | t α λ | ( x b ) q t sup { | f ( x ) | q , | f ( b ) | q } d t ) 1 q , | I f ( x , λ , α , a , b ) | ( 0 1 | t α λ | d t ) 1 1 q | I f ( x , λ , α , a , b ) | × { a ( ln x a ) α + 1 ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q ( 0 1 | t α λ | ( x a ) q t d t ) 1 q | I f ( x , λ , α , a , b ) | + b ( ln b x ) α + 1 ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q ( 0 1 | t α λ | ( x b ) q t d t ) 1 q } | I f ( x , λ , α , a , b ) | A 1 1 1 q ( α , λ ) { a ( ln x a ) α + 1 ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q B 1 1 q ( x , α , λ , q ) | I f ( x , λ , α , a , b ) | + b ( ln b x ) α + 1 ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q B 2 1 q ( x , α , λ , q ) } ,

which completes the proof. □

Corollary 2.1 Under the assumptions of Theorem  2.2 with q=1, inequality (9) reduces to the following inequality:

| I f ( x , λ , α , a , b ) | { a ( ln x a ) α + 1 B 1 ( x , α , λ , 1 ) sup { | f ( x ) | , | f ( a ) | } + b ( ln b x ) α + 1 B 2 ( x , α , λ , 1 ) sup { | f ( x ) | , | f ( b ) | } } .

Corollary 2.2 Under the assumptions of Theorem  2.2 with α=1, inequality (9) reduces to the following inequality:

( ln b a ) 1 | I f ( x , λ , α , a , b ) | | ( 1 λ ) f ( x ) + λ [ f ( a ) ln x a + f ( b ) ln b x ln b a ] 1 ln b a a b f ( u ) u d u | ( ln b a ) 1 ( 2 λ 2 2 λ + 1 2 ) 1 1 q { a ( ln x a ) 2 B 1 1 q ( x , 1 , λ , q ) ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q + b ( ln b x ) 2 B 2 1 q ( x , 1 , λ , q ) ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q } ,

where

B 1 ( x , 1 , λ , q ) = h λ ( ( x a ) q ) , B 2 ( x , 1 , λ , q ) = h λ ( ( x b ) q ) , h ( u , λ ) = 2 u λ u 1 ( ln u ) 2 + ( 1 λ ) u λ ln u , u ( 0 , ) { 1 } ,
(10)

specially for x= a b , we get

| ( 1 λ ) f ( a b ) + λ ( f ( a ) + f ( b ) 2 ) 1 ln b a a b f ( u ) u d u | ln b a 4 ( 2 λ 2 2 λ + 1 2 ) 1 1 q { a h 1 q ( ( b a ) q 2 , λ ) ( sup { | f ( a b ) | q , | f ( a ) | q } ) 1 q + b h 1 q ( ( a b ) q 2 , λ ) ( sup { | f ( a b ) | q , | f ( b ) | q } ) 1 q } .
(11)

Corollary 2.3 In Theorem  2.2,

  1. 1.

    If we take x= a b , λ= 1 3 , then we get the following Simpson-type inequality for fractional integrals:

    | 1 6 [ f ( a ) + 4 f ( a b ) + f ( b ) ] 2 α 1 Γ ( α + 1 ) ( ln b a ) α [ J a b α f ( a ) + J a b + α f ( b ) ] | ln b a 4 A 1 1 1 q ( α , 1 3 ) { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q B 1 1 q ( a b , α , 1 3 , q ) + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q B 2 1 q ( a b , α , 1 3 , q ) } ,

specially for α=1, we get

| 1 6 [ f ( a ) + 4 f ( a b ) + f ( b ) ] 1 ln b a a b f ( u ) u d u | ln b a 4 ( 5 18 ) 1 1 q { a [ sup { | f ( a b ) | , | f ( a ) | } ] 1 q h 1 q ( ( b a ) q 2 , 1 3 ) + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q h 1 q ( ( a b ) q 2 , 1 3 ) } ,

where h is defined as in (10).

Remark 2.2

  1. 1.

    If we take x= a b , λ=0, then we get the following midpoint- type inequality for fractional integrals:

    | f ( a b ) 2 α 1 Γ ( α + 1 ) ( ln b a ) α [ J a b α f ( a ) + J a b + α f ( b ) ] | ln b a 4 ( 1 α + 1 ) 1 1 q { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q B 1 1 q ( a b , 1 , 0 , q ) + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q B 2 1 q ( a b , 1 , 0 , q ) } ,

specially for α=1, we get

| f ( a b ) 1 ln b a a b f ( u ) u d u | 2 1 q ln b a 8 { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q h 1 q ( ( b a ) q 2 , 0 ) + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q h 1 q ( ( a b ) q 2 , 0 ) } ,

where h is defined as in (10).

  1. 2.

    If we take x= a b , λ=1, then we get the following trapezoid-type inequality for fractional integrals:

    | f ( a ) + f ( b ) 2 2 α 1 Γ ( α + 1 ) ( ln b a ) α [ J a b α f ( a ) + J a b + α f ( b ) ] | ln b a 4 ( 1 α + 1 ) 1 1 q { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q B 1 1 q ( a b , α , 1 , q ) + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q B 2 1 q ( a b , α , 1 , q ) } ,

specially for α=1, we get

| f ( a ) + f ( b ) 2 1 ln b a a b f ( u ) u d u | 2 1 q ln b a 8 { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q h 1 q ( ( b a ) q 2 , 1 ) + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q h 1 q ( ( a b ) q 2 , 1 ) } ,

where h is defined as in (10).

Corollary 2.4 Let the assumptions of Theorem  2.2 hold. If | f (x)|M for all x[a,b] and λ=0, then we get the following Ostrowski-type inequality for fractional integrals from inequality (9):

| [ ( ln x a ) α + ( ln b x ) α ] f ( x ) Γ ( α + 1 ) [ J a b α f ( a ) + J a b + α f ( b ) ] | M ( α + 1 ) 1 1 q [ a ( ln x a ) α + 1 B 1 1 q ( x , α , 0 , q ) + b ( ln b x ) α + 1 B 2 1 q ( x , α , 0 , q ) ] .

Theorem 2.3 Let f:I(0,)R be a differentiable function on I such that f L[a,b], where a,b I with a<b. If | f | q is quasi-geometrically convex on [a,b] for some fixed q>1, x[a,b], λ[0,1] and α>0, then the following inequality for fractional integrals holds:

| I f ( x , λ , α , a , b ) | A 2 1 p ( α , λ , p ) { a ( ln x a ) α + 1 p ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q ( x q a q q ) 1 q + b ( ln b x ) α + 1 p ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q ( b q x q q ) 1 q } ,
(12)

where

A 2 ( α , λ , p ) = { 1 α p + 1 , λ = 0 , λ α p + 1 α α { β ( 1 α , p + 1 ) + ( 1 λ ) p + 1 p + 1 × 2 F 1 ( 1 α + p + 1 , p + 1 , p + 2 ; 1 λ ) } , 0 < λ < 1 , 1 α β ( p + 1 , 1 α ) , λ = 1 ,

F 1 2 is hypergeometric function defined by

F 1 2 (a,b;c;z)= 1 β ( b , c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a dt,c>b>0,|z|<1(see [21]),

and 1 p + 1 q =1.

Proof Using Lemma 2.1, the Hölder inequality and quasi-geometrical convexity of | f | q , we get

| I f ( x , λ , α , a , b ) | a ( ln x a ) α + 1 ( 0 1 | t α λ | p d t ) 1 p ( 0 1 ( x a ) q t sup { | f ( x ) | q , | f ( a ) | q } d t ) 1 q + b ( ln b x ) α + 1 ( 0 1 | t α λ | p d t ) 1 p ( 0 1 ( x b ) q t sup { | f ( x ) | q , | f ( b ) | q } d t ) 1 q , | I f ( x , λ , α , a , b ) | ( 0 1 | t α λ | p d t ) 1 p | I f ( x , λ , α , a , b ) | × { a ( ln x a ) α + 1 ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q ( 0 1 ( x a ) q t d t ) 1 q | I f ( x , λ , α , a , b ) | + b ( ln b x ) α + 1 ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q ( 0 1 ( x b ) q t d t ) 1 q } | I f ( x , λ , α , a , b ) | A 2 1 p ( α , λ , p ) { a ( ln x a ) α + 1 1 q ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q ( x q a q q ) 1 q | I f ( x , λ , α , a , b ) | + b ( ln b x ) α + 1 1 q ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q ( b q x q q ) 1 q } ,

here, it is seen by a simple computation that

A 2 ( α , λ , p ) = 0 1 | t α λ | p d t = { 1 α p + 1 , λ = 0 , λ α p + 1 α α { β ( 1 α , p + 1 ) + ( 1 λ ) p + 1 p + 1 × 2 F 1 ( 1 α + p + 1 , p + 1 , 2 + p ; 1 λ ) } , 0 < λ < 1 , 1 α β ( p + 1 , 1 α ) , λ = 1 .

Hence, the proof is completed. □

Corollary 2.5 Under the assumptions of Theorem  2.3 with α=1, inequality (12) reduces to the following inequality:

| ( 1 λ ) f ( x ) + λ [ f ( a ) ln x a + f ( b ) ln b x ln b a ] 1 ln b a a b f ( u ) u d u | ( ln b a ) 1 ( λ p + 1 + ( 1 λ ) p + 1 p + 1 ) 1 p × { a ( ln x a ) 1 + 1 p ( sup { | f ( x ) | q , | f ( a ) | q } ) 1 q ( x q a q q ) 1 q + b ( ln b x ) 1 + 1 p ( sup { | f ( x ) | q , | f ( b ) | q } ) 1 q ( b q x q q ) 1 q } ,

specially for x= a b , we get

| ( 1 λ ) f ( a b ) + λ ( f ( a ) + f ( b ) 2 ) 1 ln b a a b f ( u ) u d u | 1 2 ( ln b a ( λ p + 1 + ( 1 λ ) p + 1 ) 2 ( p + 1 ) ) 1 p { a ( sup { | f ( a b ) | q , | f ( a ) | q } ) 1 q ( a b q a q q ) 1 q + b ( sup { | f ( a b ) | q , | f ( b ) | q } ) 1 q ( b q a b q q ) 1 q } .
(13)

Corollary 2.6 In Theorem  2.3,

  1. 1.

    If we take x= a b , λ= 1 3 , then we get the following Simpson-type inequality for fractional integrals:

    | 1 6 [ f ( a ) + 4 f ( a b ) + f ( b ) ] 2 α 1 Γ ( α + 1 ) ( ln b a ) α [ J a b α f ( a ) + J a b + α f ( b ) ] | 1 2 ( ln b a ( 1 + 2 p + 1 ) 3 p + 1 ( p + 1 ) 2 ) 1 p { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q ( a b q a q q ) 1 q + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q ( b q a b q q ) 1 q } ,

specially for α=1, we get

| 1 6 [ f ( a ) + 4 f ( a b ) + f ( b ) ] 1 ln b a a b f ( u ) u d u | 1 2 ( ln b a ( 1 + 2 p + 1 ) 3 p + 1 ( p + 1 ) 2 ) 1 p × { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q ( a b q a q q ) 1 q + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q ( b q a b q q ) 1 q } .

Remark 2.3

  1. 1.

    If we take x= a b , λ=0, then we get the following midpoint- type inequality for fractional integrals:

    | f ( a b ) 2 α 1 Γ ( α + 1 ) ( ln b a ) α [ J a b α f ( a ) + J a b + α f ( b ) ] | 1 2 ( ln b a 2 ( α p + 1 ) ) 1 p { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q ( a b q a q q ) 1 q + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q ( b q a b q q ) 1 q } ,

specially for α=1, we get

| f ( a b ) 1 ln b a a b f ( u ) u d u | 1 2 ( ln b a 2 ( p + 1 ) ) 1 p { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q ( a b q a q q ) 1 q + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q ( b q a b q q ) 1 q } .
  1. 2.

    If we take x= a b , λ=1, then we get the following trapezoid-type inequality for fractional integrals 1 α β(p+1, 1 α ):

    | f ( a ) + f ( b ) 2 2 α 1 Γ ( α + 1 ) ( ln b a ) α [ J a b α f ( a ) + J a b + α f ( b ) ] | 1 2 ( ln b a β ( p + 1 , 1 α ) 2 α ) 1 p × { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q ( a b q a q q ) 1 q + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q ( b q a b q q ) 1 q } ,

specially for α=1, we get

| f ( a ) + f ( b ) 2 1 ln b a a b f ( u ) u d u | 1 2 ( ln b a 2 ( p + 1 ) ) 1 p { a [ sup { | f ( a b ) | q , | f ( a ) | q } ] 1 q ( a b q a q q ) 1 q + b [ sup { | f ( a b ) | q , | f ( b ) | q } ] 1 q ( b q a b q q ) 1 q } .

Corollary 2.7 Let the assumptions of Theorem  2.3 hold. If | f (x)|M for all x[a,b] and λ=0, then we get the following Ostrowski-type inequality for fractional integrals from inequality (12):

| [ ( ln x a ) α + ( ln b x ) α ] f ( x ) Γ ( α + 1 ) [ J a b α f ( a ) + J a b + α f ( b ) ] | M ( α p + 1 ) 1 p [ a ( ln x a ) α + 1 p ( x q a q q ) 1 q + b ( ln b x ) α + 1 p ( b q x q q ) 1 q ] .

3 Application to special means

Let us recall the following special means of two nonnegative numbers a, b with b>a:

  1. 1.

    The arithmetic mean

    A=A(a,b):= a + b 2 .
  2. 2.

    The geometric mean

    G=G(a,b):= a b .
  3. 3.

    The logarithmic mean

    L=L(a,b):= b a ln b ln a .
  4. 4.

    The p-logarithmic mean

    L p = L p (a,b):= ( b p + 1 a p + 1 ( p + 1 ) ( b a ) ) 1 p ,pR{1,0}.

Proposition 3.1 For b>a>0, n>0 and q1, we have

| ( 1 λ ) G n + 1 ( a , b ) + λ A ( a n + 1 , b n + 1 ) ( n + 1 ) L ( a , b ) L n n ( a , b ) | ( n + 1 ) ln b a 4 ( 2 λ 2 2 λ + 1 2 ) 1 1 q { a G n ( a , b ) h 1 q ( ( b a ) q 2 , λ ) + b n + 1 h 1 q ( ( a b ) q 2 , λ ) } ,

where h is defined as in (10).

Proof Let f(x)= x n + 1 n + 1 , x>0, n>0 and q1. Then the function | f (x) | q = x n q is quasi-geometrically convex on (0,). Thus, by inequality (11), Proposition 3.1 is proved. □

Proposition 3.2 For b>a>0, n>0 and q>1, we have

| ( 1 λ ) G n + 1 ( a , b ) + λ A ( a n + 1 , b n + 1 ) ( n + 1 ) L ( a , b ) L n n ( a , b ) | n + 1 2 ( ln b a ( λ p + 1 + ( 1 λ ) p + 1 ) 2 ( p + 1 ) ) 1 p { a G n ( a , b ) ( G q ( a , b ) a q q ) 1 q + b n + 1 ( b q G q ( a , b ) q ) 1 q } .

Proof Let f(x)= x n + 1 n + 1 , x>0, n>0 and q>1. Then the function | f (x) | q = x n q is quasi-geometrically convex on (0,). Thus, by inequality (13), Proposition 3.2 is proved. □

References

  1. Ion DA: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova, Ser. Mat. Inform. 2007, 34: 82–87.

    MathSciNet  Google Scholar 

  2. Niculescu CP: Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3(2):155–167. 10.7153/mia-03-19

    MathSciNet  MATH  Google Scholar 

  3. Niculescu CP: Convexity according to means. Math. Inequal. Appl. 2003, 6(4):571–579. 10.7153/mia-06-53

    MathSciNet  MATH  Google Scholar 

  4. Zhang T-Y, Ji A-P, Qi F: On integral inequalities of Hermite-Hadamard type for s -geometrically convex functions. Abstr. Appl. Anal. 2012., 2012: Article ID 560586 10.1155/2012/560586

    Google Scholar 

  5. Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    MATH  Google Scholar 

  6. Alomari M, Darus M, Dragomir SS, Cerone P: Ostrowski type inequalities for functions whose derivatives are s -convex in the second sense. Appl. Math. Lett. 2010, 23: 1071–1076. 10.1016/j.aml.2010.04.038

    Article  MathSciNet  MATH  Google Scholar 

  7. Avci M, Kavurmaci H, Ozdemir ME: New inequalities of Hermite-Hadamard type via s -convex functions in the second sense with applications. Appl. Math. Comput. 2011, 217: 5171–5176. 10.1016/j.amc.2010.11.047

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahmani Z: On Minkowski and Hermite-Hadamard integral inequalities via fractional via fractional integration. Ann. Funct. Anal. 2010, 1(1):51–58.

    Article  MathSciNet  MATH  Google Scholar 

  9. Iscan I:A new generalization of some integral inequalities for (α,m)-convex functions. Math. Sci. 2013., 7: Article ID 22 10.1186/2251-7456-7-22

    Google Scholar 

  10. Iscan I:New estimates on generalization of some integral inequalities for (α,m)-convex functions. Contemp. Anal. Appl. Math. 2013, 1(2):253–264.

    MathSciNet  MATH  Google Scholar 

  11. Iscan I: New estimates on generalization of some integral inequalities for s -convex functions and their applications. Int. J. Pure Appl. Math. 2013, 86(4):727–746.

    Article  Google Scholar 

  12. Iscan I: On generalization of some integral inequalities for quasi-convex functions and their applications. Int. J. Eng. Appl. Sci. 2013, 3(1):37–42.

    Google Scholar 

  13. Park J: Generalization of some Simpson-like type inequalities via differentiable s -convex mappings in the second sense. Int. J. Math. Math. Sci. 2011., 2011: Article ID 493531 10.1155/493531

    Google Scholar 

  14. Sarıkaya MZ, Aktan N: On the generalization of some integral inequalities and their applications. Math. Comput. Model. 2011, 54: 2175–2182. 10.1016/j.mcm.2011.05.026

    Article  MATH  MathSciNet  Google Scholar 

  15. Set E: New inequalities of Ostrowski type for mapping whose derivatives are s -convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63: 1147–1154. 10.1016/j.camwa.2011.12.023

    Article  MathSciNet  MATH  Google Scholar 

  16. Sarıkaya MZ, Ogunmez H: On new inequalities via Riemann-Liouville fractional integration. Abstr. Appl. Anal. 2012., 2012: Article ID 428983 10.1155/2012/428983

    Google Scholar 

  17. Set E, Ozdemir ME, Sarıkaya MZ: On new inequalities of Simpson’s type for quasi-convex functions with applications. Tamkang J. Math. 2012, 43(3):357–364.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sarıkaya MZ, Set E, Ozdemir ME: On new inequalities of Simpson’s type for s -convex functions. Comput. Math. Appl. 2010, 60: 2191–2199. 10.1016/j.camwa.2010.07.033

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarıkaya MZ, Set E, Yaldız H, Başak N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57(9–10):2403–2407. 10.1016/j.mcm.2011.12.048

    Article  MATH  Google Scholar 

  20. Zhu C, Feckan M, Wang J: Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inform. 2012, 8: 21–28.

    Article  MATH  Google Scholar 

  21. Abramowitz M, Stegun IA (Eds): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York; 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İmdat İşcan.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

İşcan, İ. New general integral inequalities for quasi-geometrically convex functions via fractional integrals. J Inequal Appl 2013, 491 (2013). https://doi.org/10.1186/1029-242X-2013-491

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-491

Keywords