Skip to main content

Further refinements of Gurland’s formula for π

Abstract

We establish more accurate formulas for approximating π which refine some known results due to Gurland and Mortici.

MSC:33B15, 26D07, 41A60.

1 Introduction

Gurland [1] proved that for all integers nN:={1,2,3,},

4 n + 3 ( 2 n + 1 ) 2 ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 <π< 4 4 n + 1 ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 .
(1.1)

Recently, Mortici [[2], Theorem 2] improved Gurland’s result and obtained the following inequality:

α n <π< β n ,
(1.2)

where

α n = ( n + 1 4 n 2 + 1 2 n + 3 32 + 9 2 , 048 n 5 45 8 , 192 n 6 ) ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2
(1.3)

and

β n = ( n + 1 4 n 2 + 1 2 n + 3 32 + 9 2 , 048 n 5 ) ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 .
(1.4)

In this paper, we establish more accurate formulas for approximating π which refine the results due to Gurland and Mortici.

Before stating and proving the main theorems, we first introduce the gamma function and some known results.

The familiar gamma function defined by Euler,

Γ(z)= 0 t z 1 e t dt ( ( z ) > 0 ) ,

is one of the most important functions in mathematical analysis and applications in various diverse areas. The logarithmic derivative of Γ(z), denoted by ψ(z)= Γ ( z ) Γ ( z ) , is called the psi (or digamma) function.

The following lemmas are required in the sequel.

Lemma 1.1 ([3, 4])

If the sequence ( λ n ) n N converges to zero and if the following limit:

lim n n k ( λ n λ n + 1 )=lR(k>1)

exists, then

lim n n k 1 λ n = l k 1 (k>1),

where denotes the set of real numbers.

Lemma 1.1 is useful for accelerating some convergences or in constructing some better asymptotic expansions.

Lemma 1.2 For x>0,

1 2 x 1 8 x 2 + 1 64 x 4 1 128 x 6 <ψ(x+1)ψ ( x + 1 2 ) < 1 2 x 1 8 x 2 + 1 64 x 4 .
(1.5)

Proof The lower bound in (1.5) is obtained by considering the function F(x) defined for x>0 by

F(x)=ψ(x+1)ψ ( x + 1 2 ) 1 2 x + 1 8 x 2 1 64 x 4 + 1 128 x 6 .

Using the following representations:

ψ(x)= 0 ( e t t e x t 1 e t ) dt
(1.6)

in [[5], p.259, 6.3.21] and

1 x r = 1 Γ ( r ) 0 t r 1 e x t dt
(1.7)

in [[5], p.255, 6.1.1], we find (for r>0 and x>0) that

F ( x ) = 0 1 1 + e t / 2 e x t d t 0 ( 1 2 1 8 t + 1 384 t 3 1 15 , 360 t 5 ) e x t d t = 0 p ( t ) 1 + e t / 2 e x t d t
(1.8)

with

p ( t ) = 1 ( 1 2 1 8 t + 1 384 t 3 1 15 , 360 t 5 ) ( 1 + e t / 2 ) = 1 ( 1 2 1 8 t + 1 384 t 3 1 15 , 360 t 5 ) ( 1 + n = 0 1 2 n n ! t n ) = n = 7 ( 17 2 + 451 30 ( n 7 ) + 199 24 ( n 7 ) 2 + 47 24 ( n 7 ) 3 + 5 24 ( n 7 ) 4 + 1 120 ( n 7 ) 5 ) t n 2 n + 2 n ! > 0 for  t > 0 ,

so that (1.8) implies F(x)>0 for x>0. Hence, the first inequality in (1.5) holds for x>0.

The upper bound in (1.5) is obtained by considering the function G(x) defined for x>0 by

G(x)= 1 2 x 1 8 x 2 + 1 64 x 4 [ ψ ( x + 1 ) ψ ( x + 1 2 ) ] .

Using the above representations (1.6) and (1.7), we find that

G(x)= 0 ( 1 2 1 8 t + 1 384 t 3 ) e x t dt 0 1 1 + e t / 2 e x t dt= 0 q ( t ) 1 + e t / 2 e x t dt
(1.9)

with

q ( t ) = ( 1 2 1 8 t + 1 384 t 3 ) ( 1 + e t / 2 ) 1 = ( 1 2 1 8 t + 1 384 t 3 ) ( 1 + n = 0 1 2 n n ! t n ) 1 = n = 5 ( 2 + 35 12 ( n 5 ) + ( n 5 ) 2 + 1 12 ( n 5 ) 3 ) t n 2 n + 2 n ! > 0 for  t > 0 ,

so that (1.9) implies G(x)>0 for x>0. Hence, the second inequality in (1.5) holds for x>0. This completes the proof of Lemma 1.2. □

Remark 1.3 A function f is said to be completely monotonic on an interval I if it has derivatives of all orders on I and satisfies the following inequality:

( 1 ) n f ( n ) (x)0 ( x I ; n N 0 : = N { 0 } ) .
(1.10)

Dubourdieu [[6], p.98] pointed out that if a non-constant function f is completely monotonic on I=(a,), then a strict inequality holds true in (1.10). See also [7] for a simpler proof of this result.

From (1.8) and (1.9), we obtain

( 1 ) n F ( n ) (x)= 0 t n p ( t ) 1 + e t / 2 e x t dt>0(x>0;n N 0 )

and

( 1 ) n G ( n ) (x)= 0 t n q ( t ) 1 + e t / 2 e x t dt>0(x>0;n N 0 ).

Hence, the functions F(x) and G(x) are both completely monotonic on (0,).

2 Main results

The famous Wallis sequence ( W n ) n 1 is defined by

W n = k = 1 n 4 k 2 4 k 2 1 ( n N : = { 1 , 2 , 3 , } ) .

Wallis (1655) showed that W =π/2.

It is known (see [810]) that

W n = π 2 +O ( 1 n ) (n).
(2.1)

The convergence of W n is very slow, so it is not suitable for approximating π. The Wallis sequence can be expressed as (see [1113])

W n = 1 2 n + 1 ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 = 1 2 n + 1 ( π Γ ( n + 1 ) Γ ( n + 1 2 ) ) 2 .

Now we define the sequence ( u n ) n N by

u n = 2 2 n + 1 ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 ( 1 + a n + b n 2 + c n 3 + p n 4 + q n 5 + r n 6 ) .
(2.2)

We are interested in finding fixed parameters a, b, c, p, q and r such that ( u n ) n N converges as fast as possible to the constant π. Our study is based on Lemma 1.1.

Theorem 2.1 Let the sequence ( u n ) n N be defined by (2.2). Then for

a = 1 4 , b = 3 32 , c = 3 128 , p = 3 2 , 048 , q = 33 8 , 192 , r = 39 65 , 536 ,
(2.3)

we have

lim n n 8 ( u n u n + 1 )= 4 , 893 π 262 , 144 and lim n n 7 ( u n π)= 699 π 262 , 144 .
(2.4)

The speed of convergence of the sequence ( u n ) n N is given by the order estimate O( n 7 ).

Proof We write the difference u n u n + 1 as the following power series in n 1 :

u n u n + 1 = π ( 4 a 1 ) 4 n 2 + π ( 32 b 24 a + 9 ) 16 n 3 + π ( 384 c 480 b + 284 a 125 ) 128 n 4 + π ( 3 , 136 b 1 , 680 a + 795 3 , 584 c + 2 , 048 p ) 512 n 5 + π ( 40 , 960 q 92 , 160 p 19 , 523 + 39 , 932 a + 108 , 800 c 77 , 760 b ) 8 , 192 n 6 + π ( 118 , 167 238 , 392 a 749 , 056 c + 808 , 960 p 540 , 672 q + 472 , 096 b + 196 , 608 r ) / ( 32 , 768 n 7 ) + π ( 10 , 838 , 016 q 5 , 963 , 776 r 12 , 486 , 656 p + 2 , 854 , 972 a + 9 , 779 , 840 c 5 , 688 , 480 b 1 , 422 , 745 ) / ( 262 , 144 n 8 ) + O ( 1 n 9 ) .

The fastest sequence ( u n ) n N is obtained when the first six coefficients of this power series vanish. In this case, a= 1 4 , b= 3 32 , c= 3 128 , p= 3 2 , 048 , q= 33 8 , 192 and r= 39 65 , 536 , we have

u n u n + 1 = 4 , 893 π 262 , 144 n 8 +O ( 1 n 9 ) .

Finally, by using Lemma 1.1, we obtain assertion (2.4) of Theorem 2.1. □

Solutions (2.3) provide the following approximation for π:

(2.5)

This fact motivated us to observe the following theorem.

Theorem 2.2 For all nN, we have

λ n <π< μ n ,
(2.6)

where

λ n = ( 1 + 1 4 n 3 32 n 2 + 3 128 n 3 + 3 2 , 048 n 4 33 8 , 192 n 5 39 65 , 536 n 6 ) 2 2 n + 1 ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2
(2.7)

and

μ n = ( 1 + 1 4 n 3 32 n 2 + 3 128 n 3 + 3 2 , 048 n 4 ) 2 2 n + 1 ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 .
(2.8)

Proof Inequality (2.6) can be rewritten as

α(n)< Γ ( n + 1 ) Γ ( n + 1 2 ) <β(n),
(2.9)

where

α ( x ) = ( ( 1 + 1 4 x 3 32 x 2 + 3 128 x 3 + 3 2 , 048 x 4 ) 2 2 n + 1 ) 1 / 2 = ( 1 , 024 x 4 ( 2 x + 1 ) 2 , 048 x 4 + 512 x 3 192 x 2 + 48 x + 3 ) 1 / 2

and

β ( x ) = ( ( 1 + 1 4 x 3 32 x 2 + 3 128 x 3 + 3 2 , 048 x 4 33 8 , 192 x 5 39 65 , 536 x 6 ) 2 2 x + 1 ) 1 / 2 = ( 32 , 768 x 6 ( 2 x + 1 ) 65 , 536 x 6 + 16 , 384 x 5 6 , 144 x 4 + 1 , 536 x 3 + 96 x 2 264 x 39 ) 1 / 2 .

The lower bound in (2.9) is obtained by considering the function f(x) defined for x1 by

f(x)=lnΓ(x+1)lnΓ ( x + 1 2 ) 1 2 ln ( 1 , 024 x 4 ( 2 x + 1 ) 2 , 048 x 4 + 512 x 3 192 x 2 + 48 x + 3 ) .

Using the asymptotic expansion [[5], p.257, 6.1.41]

ln Γ ( x ) ( x 1 2 ) ln x x + ln 2 π + 1 12 x 1 360 x 3 + 1 1 , 620 x 5 1 1 , 680 x 7 + ( x ) ,
(2.10)

we find

lim x f(x)=0.

Differentiating f(x) and applying the second inequality in (1.5), we find that, for x1,

f ( x ) = ψ ( x + 1 ) ψ ( x + 1 2 ) 2 , 048 x 5 + 1 , 024 x 4 320 x 3 + 87 x + 6 x ( 2 x + 1 ) ( 2 , 048 x 4 + 512 x 3 192 x 2 + 48 x + 3 ) < 1 2 x 1 8 x 2 + 1 64 x 4 2 , 048 x 5 + 1 , 024 x 4 320 x 3 + 87 x + 6 x ( 2 x + 1 ) ( 2 , 048 x 4 + 512 x 3 192 x 2 + 48 x + 3 ) = 592 x 3 + 120 x 2 54 x 3 64 x 4 ( 2 x + 1 ) ( 2 , 048 x 4 + 512 x 3 192 x 2 + 48 x + 3 ) < 0 .

Consequently, the sequence ( f ( n ) ) n N is strictly decreasing. This leads to

f(n)> lim n f(n)=0(nN),

which means that the first inequality in (2.9) is valid for nN.

The upper bound in (2.9) is obtained by considering the function g(x) defined for x1 by

g ( x ) = ln Γ ( x + 1 ) ln Γ ( x + 1 2 ) 1 2 ln ( 32 , 768 x 6 ( 2 x + 1 ) 65 , 536 x 6 + 16 , 384 x 5 6 , 144 x 4 + 1 , 536 x 3 + 96 x 2 264 x 39 ) .

We conclude from the asymptotic expansion (2.10) that

lim x g(x)=0.

Differentiating g(x) and applying the first inequality in (1.5) yields, for x1,

g ( x ) = ψ ( x + 1 ) ψ ( x + 1 2 ) 65 , 536 x 7 + 32 , 768 x 6 10 , 240 x 5 + 2 , 784 x 3 1 , 392 x 2 933 x 117 x ( 2 x + 1 ) ( 65 , 536 x 6 + 16 , 384 x 5 6 , 144 x 4 + 1 , 536 x 3 + 96 x 2 264 x 39 ) > 1 2 x 1 8 x 2 + 1 64 x 4 1 128 x 6 65 , 536 x 7 + 32 , 768 x 6 10 , 240 x 5 + 2 , 784 x 3 1 , 392 x 2 933 x 117 x ( 2 x + 1 ) ( 65 , 536 x 6 + 16 , 384 x 5 6 , 144 x 4 + 1 , 536 x 3 + 96 x 2 264 x 39 ) = 342 x + 2 , 832 x 4 + 354 x 2 + 17 , 312 x 5 2 , 412 x 3 + 39 x 6 ( 2 x + 1 ) ( 65 , 536 x 6 + 16 , 384 x 5 6 , 144 x 4 + 1 , 536 x 3 + 96 x 2 264 x 39 ) > 0 .

Consequently, the sequence ( g ( n ) ) n N is strictly increasing. This leads to

g(n)< lim n g(n)=0(nN),

which means that the second inequality in (2.9) is valid for nN. The proof of Theorem 2.2 is complete. □

Remark 2.3 Let α n , β n , λ n and μ n be defined by (1.3), (1.4), (2.7) and (2.8), respectively. Direct computation would yield

λ n α n = 3 ( 1 , 056 n 2 + 704 n + 141 ) 32 , 768 n 6 ( 2 n + 1 ) ( 32 n 2 + 16 n + 3 ) ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 >0

and

μ n β n = 3 ( 64 n 2 + 60 n + 9 ) 2 , 048 n 5 ( 2 n + 1 ) ( 32 n 2 + 16 n + 3 ) ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 <0,

which show that inequality (2.6) is sharper than inequality (1.2).

By using Lemma 1.1, we find that

Among sequences α n , β n , λ n and μ n , the sequence λ n is the best in the sense that it is the fastest sequence which would approximate the constant π.

The logarithm of the gamma function has the asymptotic expansion (see [[14], p.32]):

ln Γ ( x + t ) ( x + t 1 2 ) ln x x + 1 2 ln ( 2 π ) + n = 1 ( 1 ) n + 1 B n + 1 ( t ) n ( n + 1 ) 1 x n ( x ) .
(2.11)

Here B n (t) denote the Bernoulli polynomials defined by the following generating function:

x e t x e x 1 = n = 0 B n (t) x n n ! .
(2.12)

Note that the Bernoulli numbers B n (n N 0 ) are defined by B n := B n (0) in (2.12).

From (2.11) we easily obtain

Γ ( x + t ) Γ ( x + s ) x t s exp ( j = 1 ( 1 ) j + 1 ( B j + 1 ( t ) B j + 1 ( s ) ) j ( j + 1 ) 1 x j ) (x).
(2.13)

Taking (s,t)=(1, 1 2 ) in (2.13) and noting that

B n (0)= ( 1 ) n B n (1)= B n and B n ( 1 2 ) = ( 2 1 n 1 ) B n (n N 0 )

(see [[5], p.805]), we obtain

[ Γ ( x + 1 2 ) Γ ( x + 1 ) ] 2 1 x exp ( j = 1 2 ( ( 1 ) j ( 1 2 j ) 1 ) B j + 1 j ( j + 1 ) 1 x j ) (x),
(2.14)

namely,

[ Γ ( x + 1 2 ) Γ ( x + 1 ) ] 2 1 x exp ( 1 4 x + 1 96 x 3 1 320 x 5 + 17 7 , 168 x 7 31 9 , 216 x 9 + 691 90 , 112 x 11 5 , 461 212 , 992 x 13 + 929 , 569 7 , 864 , 320 x 15 ) ( x ) .
(2.15)

From (2.15) we imply

( ( 2 n 1 ) ! ! ( 2 n ) ! ! ) 2 = 1 π ( Γ ( n + 1 2 ) Γ ( n + 1 ) ) 2 1 n π exp ( 1 4 n + 1 96 n 3 1 320 n 5 + 17 7 , 168 n 7 31 9 , 216 n 9 + 691 90 , 112 n 11 5 , 461 212 , 992 n 13 + 929 , 569 7 , 864 , 320 n 15 ) ,
(2.16)

which implies the following asymptotic expansion for π:

π ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 1 n exp ( 1 4 n + 1 96 n 3 1 320 n 5 + 17 7 , 168 n 7 31 9 , 216 n 9 + 691 90 , 112 n 11 5 , 461 212 , 992 n 13 + 929 , 569 7 , 864 , 320 n 15 ) .
(2.17)

The formula (2.17) motivated us to observe the following theorem.

Theorem 2.4 For all nN, we have

δ n <π< ω n ,
(2.18)

where

δ n = ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 1 n exp ( 1 4 n + 1 96 n 3 1 320 n 5 + 17 7 , 168 n 7 31 9 , 216 n 9 )
(2.19)

and

ω n = ( ( 2 n ) ! ! ( 2 n 1 ) ! ! ) 2 1 n exp ( 1 4 n + 1 96 n 3 1 320 n 5 + 17 7 , 168 n 7 ) .
(2.20)

Proof Inequality (2.18) can be rewritten as

a(n)< Γ ( n + 1 ) Γ ( n + 1 2 ) <b(n),
(2.21)

where

a(x)= x exp ( 1 8 x 1 192 x 3 + 1 640 n 5 17 14 , 336 x 7 )

and

b(x)= x exp ( 1 8 x 1 192 x 3 + 1 640 n 5 17 14 , 336 x 7 + 31 18 , 432 x 9 ) .

The lower bound in (2.21) is obtained by considering the function F(x) defined for x1 by

F(x)=lnΓ(x+1)lnΓ ( x + 1 2 ) 1 2 lnxln ( 1 8 x 1 192 x 3 + 1 640 n 5 17 14 , 336 x 7 ) .

Differentiating F(x) and applying the first inequality in (1.5) yields, for x1,

F ( x ) = ψ ( x + 1 ) ψ ( x + 1 2 ) 1 2 x + 105 ( 256 x 6 32 x 4 + 16 x 2 17 ) x ( 26 , 880 x 6 1 , 120 x 4 + 336 x 2 255 ) > 1 8 x 2 + 1 64 x 4 1 128 x 6 + 105 ( 256 x 6 32 x 4 + 16 x 2 17 ) x ( 26 , 880 x 6 1 , 120 x 4 + 336 x 2 255 ) = c ( x ) 128 x 6 ( 26 , 880 x 6 1 , 120 x 4 + 336 x 2 255 )

with

c ( x ) = 2 , 609 , 505 + 30 , 426 , 660 ( x 1 ) + 158 , 153 , 746 ( x 1 ) 2 + 488 , 558 , 528 ( x 1 ) 3 + 1 , 001 , 794 , 352 ( x 1 ) 4 + 1 , 435 , 099 , 904 ( x 1 ) 5 + 1 , 466 , 609 , 984 ( x 1 ) 6 + 1 , 069 , 107 , 200 ( x 1 ) 7 + 544 , 552 , 960 ( x 1 ) 8 + 184 , 504 , 320 ( x 1 ) 9 + 37 , 416 , 960 ( x 1 ) 10 + 3 , 440 , 640 ( x 1 ) 11 .

Hence, F (x)>0 for x1, and therefore, the sequence ( F ( n ) ) n N is strictly increasing. This leads to

F(n)F(1)=ln ( 430 , 080 25 , 841 ) 1 2 lnπ=2.23964391>0(nN),

which means that the first inequality in (2.21) is valid for nN.

The upper bound in (2.21) is obtained by considering the function G(x) defined for x1 by

G ( x ) = ln Γ ( x + 1 ) ln Γ ( x + 1 2 ) 1 2 ln x ln ( 1 8 x 1 192 x 3 + 1 640 n 5 17 14 , 336 x 7 + 31 18 , 432 x 9 ) .

We conclude from the asymptotic expansion (2.10) that

lim x G(x)=0.

Differentiating G(x) and applying the first inequality in (1.5) yields, for x1,

G ( x ) = ψ ( x + 1 ) ψ ( x + 1 2 ) 1 2 x + 315 ( 256 x 8 32 x 6 + 16 x 4 17 x 2 + 31 ) x ( 80 , 640 x 8 3 , 360 x 6 + 1 , 008 x 4 765 x 2 + 1 , 085 ) > 1 8 x 2 + 1 64 x 4 1 128 x 6 + 315 ( 256 x 8 32 x 6 + 16 x 4 17 x 2 + 31 ) x ( 80 , 640 x 8 3 , 360 x 6 + 1 , 008 x 4 765 x 2 + 1 , 085 ) = d ( x ) 128 x 6 ( 80 , 640 x 8 3 , 360 x 6 + 1 , 008 x 4 765 x 2 + 1 , 085 )

with

d ( x ) = 9 , 062 , 160 + 113 , 121 , 510 ( x 1 ) + 677 , 246 , 923 ( x 1 ) 2 + 2 , 518 , 307 , 800 ( x 1 ) 3 + 6 , 417 , 427 , 702 ( x 1 ) 4 + 11 , 782 , 991 , 328 ( x 1 ) 5 + 16 , 015 , 812 , 432 ( x 1 ) 6 + 16 , 312 , 281 , 216 ( x 1 ) 7 + 12 , 448 , 132 , 032 ( x 1 ) 8 + 7 , 028 , 152 , 320 ( x 1 ) 9 + 2 , 852 , 935 , 680 ( x 1 ) 10 + 788 , 336 , 640 ( x 1 ) 11 + 132 , 894 , 720 ( x 1 ) 12 + 10 , 321 , 920 ( x 1 ) 13 .

Hence, G (x)>0 for x1, and therefore, the sequence ( G ( n ) ) n N is strictly increasing. This leads to

G(n)< lim n G(n)=0(nN),

which means that the second inequality in (2.21) is valid for nN. The proof of Theorem 2.4 is complete. □

Remark 2.5 The following numerical computations (see Table 1) would show that, for nN{1}, inequality (2.18) is sharper than inequality (2.6).

Table 1 Comparison between inequalities ( 2.6 ) and ( 2.18 )

By using Lemma 1.1, we find that

δ n =π+O ( 1 n 11 ) and ω n =π+O ( 1 n 9 ) ,

which provide the higher-order estimates for the constant π.

Remark 2.6 Some calculations in this work were performed by using the Maple software for symbolic calculations.

References

  1. Gurland J: On Wallis’ formula. Am. Math. Mon. 1956, 63: 643–645. 10.2307/2310591

    Article  MathSciNet  Google Scholar 

  2. Mortici C: Refinements of Gurland’s formula for pi. Comput. Math. Appl. 2011, 62: 2616–2620. 10.1016/j.camwa.2011.07.073

    Article  MathSciNet  Google Scholar 

  3. Mortici C: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23: 97–100. 10.1016/j.aml.2009.08.012

    Article  MathSciNet  Google Scholar 

  4. Mortici C: Product approximations via asymptotic integration. Am. Math. Mon. 2010, 117: 434–441. 10.4169/000298910X485950

    Article  MathSciNet  Google Scholar 

  5. Abramowitz M, Stegun IA (Eds): Applied Mathematics Series 55 In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th edition. National Bureau of Standards, Washington; 1972.

  6. Dubourdieu J: Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes. Compos. Math. 1939, 7: 96–111. (in French)

    MathSciNet  Google Scholar 

  7. van Haeringen H: Completely monotonic and related functions. J. Math. Anal. Appl. 1996, 204: 389–408. 10.1006/jmaa.1996.0443

    Article  MathSciNet  Google Scholar 

  8. Hirschhorn MD: Comments on the paper “Wallis’ sequence…” by Lampret. Aust. Math. Soc. Gaz. 2005, 32: 194.

    MathSciNet  Google Scholar 

  9. Lampret V: Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately. Aust. Math. Soc. Gaz. 2004, 31: 328–339.

    MathSciNet  Google Scholar 

  10. Păltănea E: On the rate of convergence of Wallis’ sequence. Aust. Math. Soc. Gaz. 2007, 34: 34–38.

    Google Scholar 

  11. Chen C-P, Qi F: The best bounds in Wallis’ inequality. Proc. Am. Math. Soc. 2005, 133: 397–401. 10.1090/S0002-9939-04-07499-4

    Article  MathSciNet  Google Scholar 

  12. Mortic C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 2010, 52: 425–433. 10.1016/j.mcm.2010.03.013

    Article  Google Scholar 

  13. Mortic C: Completely monotone functions and the Wallis ratio. Appl. Math. Lett. 2012, 25: 717–722. 10.1016/j.aml.2011.10.008

    Article  MathSciNet  Google Scholar 

  14. Luke YL: The Special Functions and Their Approximations, vol. I. Academic Press, New York; 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Lin.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Lin, L. Further refinements of Gurland’s formula for π. J Inequal Appl 2013, 48 (2013). https://doi.org/10.1186/1029-242X-2013-48

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-48

Keywords