Skip to main content

Existence of a tripled coincidence point in ordered G b -metric spaces and applications to a system of integral equations

Abstract

In this paper, tripled coincidence points of mappings satisfying some nonlinear contractive conditions in the framework of partially ordered G b -metric spaces are obtained. Our results extend the results of Aydi et al. (Fixed Point Theory Appl., 2012:101, 2012, doi:10.1186/1687-1812-2012-101). Moreover, some examples of the main result are given. Finally, some tripled coincidence point results for mappings satisfying some contractive conditions of integral type in complete partially ordered G b -metric spaces are deduced.

MSC: 47H10, 54H25.

1 Introduction and preliminaries

The concepts of mixed monotone mapping and coupled fixed point were introduced in [1] by Bhaskar and Lakshmikantham. Also, they established some coupled fixed point theorems for a mixed monotone mapping in partially ordered metric spaces. For more details on coupled fixed point theorems and related topics in different metric spaces, we refer the reader to [213] and [1425].

Also, Berinde and Borcut [26] introduced a new concept of tripled fixed point and obtained some tripled fixed point theorems for contractive-type mappings in partially ordered metric spaces. For a survey of tripled fixed point theorems and related topics, we refer the reader to [2632].

Definition 1.1 [26]

An element (x,y,z) X 3 is called a tripled fixed point of F: X 3 X if F(x,y,z)=x, F(y,x,y)=y and F(z,y,x)=z.

Definition 1.2 [27]

An element (x,y,z) X 3 is called a tripled coincidence point of the mappings F: X 3 X and g:XX if F(x,y,z)=g(x), F(y,x,y)=gy and F(z,y,x)=gz.

Definition 1.3 [27]

An element (x,y,z) X 3 is called a tripled common fixed point of F: X 3 X and g:XX if x=g(x)=F(x,y,z), y=g(y)=F(y,x,y) and z=g(z)=F(z,y,x).

Definition 1.4 [29]

Let X be a nonempty set. We say that the mappings F: X 3 X and g:XX are commutative if g(F(x,y,z))=F(gx,gy,gz) for all x,y,zX.

The notion of altering distance function was introduced by Khan et al. [10] as follows.

Definition 1.5 The function ψ:[0,)[0,) is called an altering distance function if

  1. 1.

    ψ is continuous and nondecreasing.

  2. 2.

    ψ(t)=0 if and only if t=0.

The concept of generalized metric space, or G-metric space, was introduced by Mustafa and Sims [33]. Mustafa and others studied several fixed point theorems for mappings satisfying different contractive conditions (see [3345]).

Definition 1.6 (G-metric space, [33])

Let X be a nonempty set and G: X 3 R + be a function satisfying the following properties:

  • (G1) G(x,y,z)=0 iff x=y=z;

  • (G2) 0<G(x,x,y) for all x,y?X with x?y;

  • (G3) G(x,x,y)=G(x,y,z) for all x,y,z?X with z?y;

  • (G4) G(x,y,z)=G(x,z,y)=G(y,z,x)=? (symmetry in all three variables);

  • (G5) G(x,y,z)=G(x,a,a)+G(a,y,z) for all x,y,z,a?X (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X,G) is called a G-metric space.

Example 1.7 If we think that G(x,y,z) is measuring the perimeter of the triangle with vertices at x, y and z, then (G5) can be interpreted as

[x,y]+[x,z]+[y,z]2[x,a]+[a,y]+[a,z]+[y,z],

where [x,y] is the ‘length’ of the side x, y. If we take y=z, we have

2[x,y]2[x,a]+2[a,y].

Thus, (G5) embodies the triangle inequality. And so (G5) can be sharp.

In [46], Aydi et al. established some tripled coincidence point results for mappings F: X 3 X and g:XX involving nonlinear contractions in the setting of ordered G-metric spaces.

Theorem 1.8 [46]

Let (X,) be a partially ordered set and (X,G) be a G-metric space such that (X,G) is G-complete. Let F: X 3 X and g:XX. Assume that there exist ψ,ϕ:[0,)[0,) such that ψ is an altering distance function and ϕ is a lower-semicontinuous and nondecreasing function with ϕ(t)=0 if and only if t=0 and for all x,y,z,u,v,w,r,s,tX, with gxgugr, gygvgs and gzgwgt, we have

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( r , s , t ) ) ) ψ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) ϕ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) .

Assume that F and g satisfy the following conditions:

  1. (1)

    F( X 3 )g(X),

  2. (2)

    F has the mixed g-monotone property,

  3. (3)

    F is continuous,

  4. (4)

    g is continuous and commutes with F.

Let there exist x 0 , y 0 , z 0 X such that g x 0 F( x 0 , y 0 , z 0 ), g y 0 F( y 0 , x 0 , y 0 ) and g z 0 F( z 0 , y 0 , x 0 ). Then F and g have a tripled coincidence point in X, i.e., there exist x,y,zX such that F(x,y,z)=gx, F(y,x,y)=gy and F(z,y,x)=gz.

Also, they proved that the above theorem is still valid for F not necessarily continuous assuming the following hypothesis (see Theorem 19 of [46]).

  1. (I)

    If { x n } is a nondecreasing sequence with x n x, then x n x for all nN.

  2. (II)

    If { y n } is a nonincreasing sequence with y n y, then y n y for all nN.

A partially ordered G-metric space (X,G) with the above properties is called regular.

In this paper, we obtain some tripled coincidence point theorems for nonlinear (ψ,φ)-weakly contractive mappings in partially ordered G b -metric spaces. This results generalize and modify several comparable results in the literature. First, we recall the concept of generalized b-metric spaces, or G b -metric spaces.

Definition 1.9 [47]

Let X be a nonempty set and s1 be a given real number. Suppose that a mapping G: X 3 R + satisfies:

  • (G b 1) G(x,y,z)=0 if x=y=z,

  • (G b 2) 0<G(x,x,y) for all x,y?X with x?y,

  • (G b 3) G(x,x,y)=G(x,y,z) for all x,y,z?X with y?z,

  • (G b 4) G(x,y,z)=G(p{x,y,z}), where p is a permutation of x, y, z (symmetry),

  • (G b 5) G(x,y,z)=s[G(x,a,a)+G(a,y,z)] for all x,y,z,a?X (rectangle inequality).

Then G is called a generalized b-metric and the pair (X,G) is called a generalized b-metric space or a G b -metric space.

Obviously, each G-metric space is a G b -metric space with s=1. But the following example shows that a G b -metric on X need not be a G-metric on X (see also [48]).

Example 1.10 If we think that G b (x,y,z) is the maximum of the squares of length sides of a triangle with vertices at x, y and z such that:

If xyz, then G b (x,y,z)=max{ ( [ x , y ] ) 2 , ( [ y , z ] ) 2 , ( [ z , x ] ) 2 }.

If xy=z, then G b (x,y,y)= ( [ x , y ] ) 2 ,

where [x,y] is the ‘length’ of the side x, y. Then it is easy to see that G b (x,y,z) is a G b function with s=2.

Since by the triangle inequality we have

[x,y][x,a]+[a,y],[z,x][z,a]+[a,x],

hence

G b ( x , y , z ) = max { ( [ x , y ] ) 2 , ( [ y , z ] ) 2 , ( [ z , x ] ) 2 } max { ( [ x , a ] + [ a , y ] ) 2 , ( [ y , z ] ) 2 , ( [ z , a ] + [ a , x ] ) 2 } max { 2 ( ( [ x , a ] ) 2 + ( [ a , y ] ) 2 ) , ( [ y , z ] ) 2 , 2 ( ( [ z , a ] ) 2 + ( [ a , x ] ) 2 ) } 2 ( [ x , a ] ) 2 + max { 2 ( [ a , y ] ) 2 , ( [ y , z ] ) 2 , 2 ( [ z , a ] ) 2 } 2 ( [ x , a ] ) 2 + max { 2 ( [ a , y ] ) 2 , 2 ( [ y , z ] ) 2 , 2 ( [ z , a ] ) 2 } = 2 ( G b ( x , a , a ) + G b ( a , y , z ) ) .

Example 1.11 [47]

Let (X,G) be a G-metric space and G (x,y,z)=G ( x , y , z ) p , where p>1 is a real number. Then G is a G b -metric with s= 2 p 1 .

Also, in the above example, (X, G ) is not necessarily a G-metric space. For example, let X=R and G-metric G be defined by

G(x,y,z)= 1 3 ( | x y | + | y z | + | x z | )

for all x,y,zR (see [33]). Then G (x,y,z)=G ( x , y , z ) 2 = 1 9 ( | x y | + | y z | + | x z | ) 2 is a G b -metric on with s= 2 2 1 =2, but it is not a G-metric on .

Example 1.12 [47]

Let X=R and d(x,y)=|xy | 2 . We know that (X,d) is a b-metric space with s=2. Let G(x,y,z)=d(x,y)+d(y,z)+d(z,x), then (X,G) is not a G b -metric space. Indeed, (G b 3) is not true for x=0, y=2 and z=1. To see this, we have

G(0,0,2)=d(0,0)+d(0,2)+d(2,0)=2d(0,2)=8

and

G(0,2,1)=d(0,2)+d(2,1)+d(1,0)=4+1+1=6.

So, G(0,0,2)>G(0,2,1).

However, G(x,y,z)=max{d(x,y),d(y,z),d(z,x)} is a G b -metric on with s=2. Similarly, if d(x,y)=|xy | p is selected with p1, then G(x,y,z)=max{d(x,y),d(y,z),d(z,x)} is a G b -metric on with s= 2 p 1 .

Now we present some definitions and propositions in a G b -metric space.

Definition 1.13 [47]

A G b -metric G is said to be symmetric if G(x,y,y)=G(y,x,x) for all x,yX.

Definition 1.14 Let (X,G) be a G b -metric space. Then, for x 0 X and r>0, the G b -ball with center x 0 and radius r is

B G ( x 0 ,r)= { y X G ( x 0 , y , y ) < r } .

By some straight forward calculations, we can establish the following.

Proposition 1.15 [47]

Let X be a G b -metric space. Then, for each x,y,z,aX, it follows that:

  1. (1)

    if G(x,y,z)=0, then x=y=z,

  2. (2)

    G(x,y,z)s(G(x,x,y)+G(x,x,z)),

  3. (3)

    G(x,y,y)2sG(y,x,x),

  4. (4)

    G(x,y,z)s(G(x,a,z)+G(a,y,z)).

Definition 1.16 [47]

Let X be a G b -metric space. We define d G (x,y)=G(x,y,y)+G(x,x,y) for all x,yX. It is easy to see that d G defines a b-metric d on X, which we call the b-metric associated with G.

Proposition 1.17 [47]

Let X be a G b -metric space. Then, for any x 0 X and r>0, if y B G ( x 0 ,r), then there exists δ>0 such that B G (y,δ) B G ( x 0 ,r).

From the above proposition, the family of all G b -balls

Ϝ= { B G ( x , r ) x X , r > 0 }

is a base of a topology τ(G) on X, which we call the G b -metric topology.

Now, we generalize Proposition 5 in [34] for a G b -metric space as follows.

Proposition 1.18 [47]

Let X be a G b -metric space. Then, for any x 0 X and r>0, we have

B G ( x 0 , r 2 s + 1 ) B d G ( x 0 ,r) B G ( x 0 ,r).

Thus every G b -metric space is topologically equivalent to a b-metric space. This allows us to readily transport many concepts and results from b-metric spaces into G b -metric space setting.

Definition 1.19 [47]

Let X be a G b -metric space. A sequence { x n } in X is said to be:

  1. (1)

    G b -Cauchy if for each ε>0, there exists a positive integer n 0 such that, for all m,n,l n 0 , G( x n , x m , x l )<ε;

  2. (2)

    G b -convergent to a point xX if for each ε>0, there exists a positive integer n 0 such that, for all m,n n 0 , G( x n , x m ,x)<ε.

Proposition 1.20 [47]

Let X be a G b -metric space. Then the following are equivalent:

  1. (1)

    the sequence { x n } is G b -Cauchy;

  2. (2)

    for any ε>0, there exists n 0 N such that G( x n , x m , x m )<ε for all m,n n 0 .

Proposition 1.21 [47]

Let X be a G b -metric space. The following are equivalent:

  1. (1)

    { x n } is G b -convergent to x;

  2. (2)

    G( x n , x n ,x)0 as n+;

  3. (3)

    G( x n ,x,x)0 as n+.

Definition 1.22 [47]

A G b -metric space X is called complete if every G b -Cauchy sequence is G b -convergent in X.

Definition 1.23 [47]

Let (X,G) and ( X , G ) be two G b -metric spaces. Then a function f:X X is G b -continuous at a point xX if and only if it is G b -sequentially continuous at x, that is, whenever { x n } is G b -convergent to x, {f( x n )} is G b -convergent to f(x).

Mustafa and Sims proved that each G-metric function G(x,y,z) is jointly continuous in all three of its variables (see Proposition 8 in [33]). But, in general, a G b -metric function G(x,y,z) for s>1 is not jointly continuous in all its variables. Now, we recall an example of a discontinuous G b -metric.

Example 1.24 [49]

Let X=N{} and let D:X×XR be defined by

D(m,n)={ 0 if  m = n , | 1 m 1 n | if one of  m , n  is even and the other is even or  , 5 if one of  m , n  is odd and the other is odd  ( and  m n )  or  , 2 otherwise .

Then it is easy to see that for all m,n,pX, we have

D(m,p) 5 2 ( D ( m , n ) + D ( n , p ) ) .

Thus, (X,D) is a b-metric space with s= 5 2 (see corrected Example 3 in [9]).

Let G(x,y,z)=max{D(x,y),D(y,z),D(z,x)}. It is easy to see that G is a G b -metric with s=5/2. In [49], it is proved that G(x,y,z) is not a continuous function.

So, from the above discussion, we need the following simple lemma about the G b -convergent sequences in the proof of our main result.

Lemma 1.25 [49]

Let (X,G) be a G b -metric space with s>1 and suppose that { x n }, { y n } and { z n } are G b -convergent to x, y and z, respectively. Then we have

1 s 3 G ( x , y , z ) lim inf n G ( x n , y n , z n ) lim sup n G ( x n , y n , z n ) s 3 G ( x , y , z ) .

In particular, if x=y=z, then we have lim n G( x n , y n , z n )=0.

In this paper, we present some tripled coincidence point results in ordered G b -metric spaces. Our results extend and generalize the results in [46].

2 Main results

Let (X,,G) be an ordered G b -metric space and F: X 3 X and g:XX. In the rest of this paper, unless otherwise stated, for all x,y,z,u,v,w,r,s,tX, let

M F ( x , y , z , u , v , w , r , s , t ) = max { G ( F ( x , y , z ) , F ( u , v , w ) , F ( r , s , t ) ) , G ( F ( y , x , y ) , F ( v , u , v ) , F ( s , r , s ) ) , G ( F ( z , y , x ) , F ( w , v , u ) , F ( t , s , r ) ) }

and

M g (x,y,z,u,v,w,r,s,t)=max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } .

Now, the main result is presented as follows.

Theorem 2.1 Let (X,,G) be a partially ordered G b -metric space and F: X 3 X and g:XX be such that F( X 3 )g(X). Assume that

ψ ( s M F ( x , y , z , u , v , w , r , s , t ) ) ψ ( M g ( x , y , z , u , v , w , r , s , t ) ) φ ( M g ( x , y , z , u , v , w , r , s , t ) )
(2.1)

for every x,y,z,u,v,w,r,s,tX with gxgugr, gygvgs and gzgwgt, or grgugx, gsgvgy and gtgwgz, where ψ,φ:[0,)[0,) are altering distance functions.

Assume that

  1. (1)

    F has the mixed g-monotone property.

  2. (2)

    g is G b -continuous and commutes with F.

Also suppose that

  1. (a)

    either F is G b -continuous and (X,G) is G b -complete, or

  2. (b)

    (X,G) is regular and (g(X),G) is G b -complete.

If there exist x 0 , y 0 , z 0 X such that g x 0 F( x 0 , y 0 , z 0 ), g y 0 F( y 0 , x 0 , y 0 ) and g z 0 F( z 0 , y 0 , x 0 ), then F and g have a tripled coincidence point in X.

Proof Let x 0 , y 0 , z 0 X be such that g x 0 F( x 0 , y 0 , z 0 ), g y 0 F( y 0 , x 0 , y 0 ) and g z 0 F( z 0 , y 0 , x 0 ). Define x 1 , y 1 , z 1 X such that g x 1 =F( x 0 , y 0 , z 0 ), g y 1 =F( y 0 , x 0 , y 0 ) and g z 1 =F( z 0 , y 0 , x 0 ). Then g x 0 g x 1 , g y 0 g y 1 and g z 0 g z 1 . Similarly, define g x 2 =F( x 1 , y 1 , z 1 ), g y 2 =F( y 1 , x 1 , y 1 ) and g z 2 =F( z 1 , y 1 , x 1 ). Since F has the mixed g-monotone property, we have g x 0 g x 1 g x 2 , g y 0 g y 1 g y 2 and g z 0 g z 1 g z 2 .

In this way, we construct the sequences { a n }, { b n } and { c n } as

a n = g x n = F ( x n 1 , y n 1 , z n 1 ) , b n = g y n = F ( y n 1 , x n 1 , y n 1 )

and

c n =g z n =F( z n 1 , y n 1 , x n 1 )

for all n1.

We will finish the proof in two steps.

Step I. We shall show that { a n }, { b n } and { c n } are G b -Cauchy.

Let

δ n =max { G ( a n 1 , a n , a n ) , G ( b n 1 , b n , b n ) , G ( c n 1 , c n , c n ) } .

So, we have

δ n = M F ( x n 2 , y n 2 , z n 2 , x n 1 , y n 1 , z n 1 , x n 1 , y n 1 , z n 1 )

and

δ n = M g ( x n 1 , y n 1 , z n 1 , x n , y n , z n , x n , y n , z n ).

As g x n 1 g x n , g y n 1 g y n and g z n 1 g z n , using (2.1) we obtain that

ψ ( s δ n + 1 ) = ψ ( s M F ( x n 1 , y n 1 , z n 1 , x n , y n , z n , x n , y n , z n ) ) ψ ( M g ( x n 1 , y n 1 , z n 1 , x n , y n , z n , x n , y n , z n ) ) φ ( M g ( x n 1 , y n 1 , z n 1 , x n , y n , z n , x n , y n , z n ) ) = ψ ( δ n ) φ ( δ n ) ψ ( s δ n ) φ ( δ n ) .
(2.2)

Since ψ is an altering distance function, by (2.2) we deduce that

δ n + 1 δ n ,

that is, { δ n } is a nonincreasing sequence of nonnegative real numbers. Thus, there is r0 such that

lim n δ n =r.

Letting n in (2.2), from the continuity of ψ and φ, we obtain that

ψ(sr)ψ(sr)φ(r),

which implies that φ(r)=0 and hence r=0.

Next, we claim that { a n }, { b n } and { c n } are G b -Cauchy.

We shall show that for every ε>0, there exists kN such that if m,nk,

max { G ( a m , a n , a n ) , G ( b m , b n , b n ) , G ( c m , c n , c n ) } <ε.

Suppose that the above statement is false. Then there exists ε>0 for which we can find subsequences { a m ( k ) } and { a n ( k ) } of { a n }, { b m ( k ) } and { b n ( k ) } of { b n } and { c m ( k ) } and { c n ( k ) } of { c n } such that n(k)>m(k)>k and

max { G ( a m ( k ) , a n ( k ) , a n ( k ) ) , G ( b m ( k ) , b n ( k ) , b n ( k ) ) , G ( c m ( k ) , c n ( k ) , c n ( k ) ) } ε,
(2.3)

where n(k) is the smallest index with this property, i.e.,

max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } <ε.
(2.4)

From (2.4), we have

lim sup k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ε .
(2.5)

From the rectangle inequality,

G( a m ( k ) , a n ( k ) , a n ( k ) )s [ G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) + G ( a n ( k ) 1 , a n ( k ) , a n ( k ) ) ] .
(2.6)

Similarly,

G( b m ( k ) , b n ( k ) , b n ( k ) )s [ G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) + G ( b n ( k ) 1 , b n ( k ) , b n ( k ) ) ]
(2.7)

and

G( c m ( k ) , c n ( k ) , c n ( k ) )s [ G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) + G ( c n ( k ) 1 , c n ( k ) , c n ( k ) ) ] .
(2.8)

So,

max { G ( a m ( k ) , a n ( k ) , a n ( k ) ) , G ( b m ( k ) , b n ( k ) , b n ( k ) ) , G ( c m ( k ) , c n ( k ) , c n ( k ) ) } s max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } + s max { G ( a n ( k ) 1 , a n ( k ) , a n ( k ) ) , G ( b n ( k ) 1 , b n ( k ) , b n ( k ) ) , G ( c n ( k ) 1 , c n ( k ) , c n ( k ) ) } .
(2.9)

Letting k as lim n δ n =0, by (2.3) and (2.4), we can conclude that

ε s lim inf k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } .
(2.10)

Since

G( a m ( k ) , a n ( k ) , a n ( k ) )sG( a m ( k ) , a m ( k ) + 1 , a m ( k ) + 1 )+sG( a m ( k ) + 1 , a n ( k ) , a n ( k ) )
(2.11)

and

G( b m ( k ) , b n ( k ) , b n ( k ) )sG( b m ( k ) , b m ( k ) + 1 , b m ( k ) + 1 )+sG( b m ( k ) + 1 , b n ( k ) , b n ( k ) ),
(2.12)

and

G( c m ( k ) , c n ( k ) , c n ( k ) )sG( c m ( k ) , c m ( k ) + 1 , c m ( k ) + 1 )+sG( c m ( k ) + 1 , c n ( k ) , c n ( k ) ),
(2.13)

we obtain that

max { G ( a m ( k ) , a n ( k ) , a n ( k ) ) , G ( b m ( k ) , b n ( k ) , b n ( k ) ) , G ( c m ( k ) , c n ( k ) , c n ( k ) ) } s max { G ( a m ( k ) , a m ( k ) + 1 , a m ( k ) + 1 ) , G ( b m ( k ) , b m ( k ) + 1 , b m ( k ) + 1 ) , G ( c m ( k ) , c m ( k ) + 1 , c m ( k ) + 1 ) } + s max { G ( a m ( k ) + 1 , a n ( k ) , a n ( k ) ) , G ( b m ( k ) + 1 , b n ( k ) , b n ( k ) ) , G ( c m ( k ) + 1 , c n ( k ) , c n ( k ) ) } .
(2.14)

If in the above inequality k as lim n δ n =0, from (2.3) we have

ε s lim sup k max { G ( a m ( k ) + 1 , a n ( k ) , a n ( k ) ) , G ( b m ( k ) + 1 , b n ( k ) , b n ( k ) ) , G ( c m ( k ) + 1 , c n ( k ) , c n ( k ) ) } .
(2.15)

As n(k)>m(k), we have g x m ( k ) g x n ( k ) 1 , g y m ( k ) g y n ( k ) 1 and g z m ( k ) g z n ( k ) 1 . Putting x= x m ( k ) , y= y m ( k ) , z= z m ( k ) , u= x n ( k ) 1 , v= y n ( k ) 1 , w= z n ( k ) 1 , r= x n ( k ) 1 , s= y n ( k ) 1 and t= z n ( k ) 1 in (2.1), we have

ψ ( s max { G ( a m ( k ) + 1 , a n ( k ) , a n ( k ) ) , G ( b m ( k ) + 1 , b n ( k ) , b n ( k ) ) , G ( c m ( k ) + 1 , c n ( k ) , c n ( k ) ) } ) = ψ ( s M F ( x m ( k ) , y m ( k ) , z m ( k ) , x n ( k ) 1 , y n ( k ) 1 , z n ( k ) 1 , x n ( k ) 1 , y n ( k ) 1 , z n ( k ) 1 ) ) ψ ( M g ( x m ( k ) , y m ( k ) , z m ( k ) , x n ( k ) 1 , y n ( k ) 1 , z n ( k ) 1 , x n ( k ) 1 , y n ( k ) 1 , z n ( k ) 1 ) ) φ ( M g ( x m ( k ) , y m ( k ) , z m ( k ) , x n ( k ) 1 , y n ( k ) 1 , z n ( k ) 1 , x n ( k ) 1 , y n ( k ) 1 , z n ( k ) 1 ) ) = ψ ( max { G ( g x m ( k ) , g x n ( k ) 1 , g x n ( k ) 1 ) , G ( g y m ( k ) , g y n ( k ) 1 , g y n ( k ) 1 ) , G ( g z m ( k ) , g z n ( k ) 1 , g z n ( k ) 1 ) } ) φ ( max { G ( g x m ( k ) , g x n ( k ) 1 , g x n ( k ) 1 ) , G ( g y m ( k ) , g y n ( k ) 1 , g y n ( k ) 1 ) , G ( g z m ( k ) , g z n ( k ) 1 , g z n ( k ) 1 ) } ) = ψ ( max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ) φ ( max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ) .
(2.16)

Letting k in (2.16),

ψ ( s ε s ) ψ ( s lim sup k max { G ( a m ( k ) + 1 , a n ( k ) , a n ( k ) ) , G ( b m ( k ) + 1 , b n ( k ) , b n ( k ) ) , G ( c m ( k ) + 1 , c n ( k ) , c n ( k ) ) } ) ψ ( lim sup k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ) φ ( lim inf k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ) ψ ( ε ) φ ( lim inf k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ) .
(2.17)

From (2.17), we have

φ ( lim inf k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } ) 0 .

Therefore,

lim inf k max { G ( a m ( k ) , a n ( k ) 1 , a n ( k ) 1 ) , G ( b m ( k ) , b n ( k ) 1 , b n ( k ) 1 ) , G ( c m ( k ) , c n ( k ) 1 , c n ( k ) 1 ) } =0,

which is a contradiction to (2.10). Consequently, { a n }, { b n } and { c n } are G b -Cauchy.

Step II. We shall show that F and g have a tripled coincidence point.

First, let (a) hold, that is, F is G b -continuous and (X,G) is G b -complete.

Since X is G b -complete and { a n } is G b -Cauchy, there exists aX such that

lim n G( a n , a n ,a)= lim n G(g x n ,g x n ,a)=0.
(2.18)

Similarly, there exist b,cX such that

lim n G( b n , b n ,b)= lim n G(g y n ,g y n ,b)=0
(2.19)

and

lim n G( c n , c n ,c)= lim n G(g z n ,g z n ,c)=0.
(2.20)

Now, we prove that (a,b,c) is a tripled coincidence point of F and g.

Continuity of g and Lemma 1.25 yields that

0 = 1 s 3 G ( g a , g a , g a ) lim inf n G ( g ( g x n ) , g ( g x n ) , g a ) lim sup n G ( g ( g x n ) , g ( g x n ) , g a ) s 3 G ( g a , g a , g a ) = 0 .

Hence,

lim n G ( g ( g x n ) , g ( g x n ) , g a ) =0
(2.21)

and similarly,

lim n G ( g ( g y n ) , g ( g y n ) , g b ) =0
(2.22)

and

lim n G ( g ( g z n ) , g ( g z n ) , g c ) =0.
(2.23)

Since g x n + 1 =F( x n , y n , z n ), g y n + 1 =F( y n , x n , y n ) and g z n + 1 =F( z n , y n , x n ), the commutativity of F and g yields that

g(g x n + 1 )=g ( F ( x n , y n , z n ) ) =F(g x n ,g y n ,g z n ),
(2.24)
g(g y n + 1 )=g ( F ( y n , x n , y n ) ) =F(g y n ,g x n ,g y n )
(2.25)

and

g(g z n + 1 )=g ( F ( z n , y n , x n ) ) =F(g z n ,g y n ,g x n ).
(2.26)

From the continuity of F and (2.24), (2.25) and (2.26) and Lemma 1.25, {g(g x n + 1 )} is G b -convergent to F(a,b,c), {g(g y n + 1 )} is G b -convergent to F(b,a,b) and {g(g z n + 1 )} is G b -convergent to F(c,b,a). From (2.21), (2.22) and (2.23) and uniqueness of the limit, we have F(a,b,c)=ga, F(b,a,b)=gb and F(c,b,a)=gc, that is, g and F have a tripled coincidence point.

In what follows, suppose that assumption (b) holds.

Following the proof of the previous step, there exist u,v,wX such that

lim n G(g x n ,g x n ,gu)=0,
(2.27)
lim n G(g y n ,g y n ,gv)=0
(2.28)

and

lim n G(g z n ,g z n ,gw)=0,
(2.29)

as (g(X),G) is G b -complete.

Now, we prove that F(u,v,w)=gu, F(v,u,v)=gv and F(w,v,u)=gw. From regularity of X and using (2.1), we have

ψ ( s M F ( x n , y n , z n , u , v , w , u , v , w ) ) ψ ( max { G ( g x n , g u , g u ) , G ( g y n , g v , g v ) , G ( g z n , g w , g w ) } ) φ ( max { G ( g x n , g u , g u ) , G ( g y n , g v , g v ) , G ( g z n , g w , g w ) } ) .
(2.30)

As {g x n } is G b -convergent to gu, from Lemma 1.25, we have lim n G(g x n ,gu,gu)=0. Analogously, lim n G(g y n ,gv,gv)= lim n G(g z n ,gw,gw)=0.

As ψ and φ are continuous, from (2.30) we have

lim n M F ( x n , y n , z n ,u,v,w,u,v,w)=0,

or, equivalently,

lim n G ( g x n + 1 , F ( u , v , w ) , F ( u , v , w ) ) =0.
(2.31)

Similarly,

lim n G ( g y n + 1 , F ( v , u , v ) , F ( v , u , v ) ) = lim n G ( g z n + 1 , F ( w , v , u ) , F ( w , v , u ) ) =0.
(2.32)

On the other hand,

G ( g u , F ( u , v , w ) , F ( u , v , w ) s G ( g u , g x n + 1 , g x n + 1 ) + s G ( g x n + 1 , F ( u , v , w ) , F ( u , v , w ) .
(2.33)

Taking the limit when n and using (2.27) and (2.31), we get

G ( g u , F ( u , v , w ) , F ( u , v , w ) ) s lim n G ( g u , g x n + 1 , g x n + 1 ) + s lim n G ( g x n + 1 , F ( u , v , w ) , F ( u , v , w ) = 0 ,
(2.34)

that is, gu=F(u,v,w).

Analogously, we can show that gv=F(v,u,v) and gw=F(w,v,u).

Thus, we have proved that g and F have a tripled coincidence point. This completes the proof of the theorem. □

Let

M(x,y,z,u,v,w,r,s,t)=max { G ( x , u , r ) , G ( y , v , s ) , G ( z , w , t ) } .

Taking g= I X (the identity mapping on X) in Theorem 2.1, we obtain the following tripled fixed point result.

Corollary 2.2 Let (X,,G) be a G b -complete partially ordered G b -metric space, and let F: X 3 X be a mapping with the mixed monotone property. Assume that

ψ ( s M F ( x , y , z , u , v , w , r , s , t ) ) ψ ( M ( x , y , z , u , v , w , r , s , t ) ) φ ( M ( x , y , z , u , v , w , r , s , t ) )
(2.35)

for every x,y,z,u,v,w,r,s,tX with xur, yvs and zwt, or rux, svy and twz, where ψ,φ:[0,)[0,) are altering distance functions.

Also suppose that

  1. (a)

    either F is G b -continuous, or

  2. (b)

    (X,G) is regular.

If there exist x 0 , y 0 , z 0 X such that x 0 F( x 0 , y 0 , z 0 ), y 0 F( y 0 , x 0 , y 0 ) and z 0 F( z 0 , y 0 , x 0 ), then F has a tripled fixed point in X.

Taking ψ(t)=t and φ(t)= t 2 1 + t for all t[0,) in Corollary 2.2, we obtain the following tripled fixed point result.

Corollary 2.3 Let (X,,G) be a G b -complete partially ordered G b -metric space and F: X 3 X with the mixed monotone property. Assume that

s M F (x,y,z,u,v,w,r,s,t) M ( x , y , z , u , v , w , r , s , t ) 1 + M ( x , y , z , u , v , w , r , s , t )
(2.36)

for every x,y,z,u,v,w,r,s,tX with xur, yvs and zwt, or rux, svy and twz.

Also suppose that

  1. (a)

    either F is G b -continuous, or

  2. (b)

    (X,G) is regular.

If there exist x 0 , y 0 , z 0 X such that x 0 F( x 0 , y 0 , z 0 ), y 0 F( y 0 , x 0 , y 0 ) and z 0 F( z 0 , y 0 , x 0 ), then F has a tripled fixed point in X.

Remark 2.4 Theorem 1.8 is a special case of Theorem 2.1.

Remark 2.5 Theorem 2.1 part (a) holds if we replace the commutativity assumption of F and g by compatibility assumption (also see Remark 2.2 of [30]).

The following corollary can be deduced from our previously obtained results.

Corollary 2.6 Let (X,) be a partially ordered set and (X,G) be a G b -complete G b -metric space. Let F: X 3 X be a mapping with the mixed monotone property such that

ψ ( s M F ( x , y , z , u , v , w , r , s , t ) ) ψ ( G ( x , u , r ) + G ( y , v , s ) + G ( z , w , t ) 3 ) φ ( max { G ( x , u , r ) , G ( y , v , s ) , G ( z , w , t ) } )
(2.37)

for every x,y,z,u,v,w,r,s,tX with xur, yvs and zwt, or rux, svy and twz.

Also suppose that

  1. (a)

    either F is G b -continuous, or

  2. (b)

    (X,G) is regular.

If there exist x 0 , y 0 , z 0 X such that x 0 F( x 0 , y 0 , z 0 ), y 0 F( y 0 , x 0 , y 0 ) and z 0 F( z 0 , y 0 , x 0 ), then F has a tripled fixed point in X.

Proof If F satisfies (2.37), then F satisfies (2.35). So, the result follows from Theorem 2.1. □

In Theorem 2.1, if we take ψ(t)=t and φ(t)=(1k)t for all t[0,), where k[0,1), we obtain the following result.

Corollary 2.7 Let (X,) be a partially ordered set and (X,G) be a G b -complete G b -metric space. Let F: X 3 X be a mapping having the mixed monotone property and

M F (x,y,z,u,v,w,r,s,t) k s M(x,y,z,u,v,w,r,s,t)
(2.38)

for every x,y,z,u,v,w,r,s,tX with xur, yvs and zwt, or rux, svy and twz.

Also suppose that

  1. (a)

    either F is G b -continuous, or

  2. (b)

    (X,G) is regular.

If there exist x 0 , y 0 , z 0 X such that x 0 F( x 0 , y 0 , z 0 ), y 0 F( y 0 , x 0 , y 0 ) and z 0 F( z 0 , y 0 , x 0 ), then F has a tripled fixed point in X.

Corollary 2.8 Let (X,) be a partially ordered set and (X,G) be a G b -complete G b -metric space. Let F: X 3 X be a mapping with the mixed monotone property such that

M F (x,y,z,u,v,w,r,s,t) k 3 s [ G ( x , u , r ) + G ( y , v , s ) + G ( z , w , t ) ]
(2.39)

for every x,y,z,u,v,w,r,s,tX with xur, yvs and zwt, or rux, svy and twz.

Also suppose that

  1. (a)

    either F is G b -continuous, or

  2. (b)

    (X,G) is regular.

If there exist x 0 , y 0 , z 0 X such that x 0 F( x 0 , y 0 , z 0 ), y 0 F( y 0 , x 0 , y 0 ) and z 0 F( z 0 , y 0 , x 0 ), then F has a tripled fixed point in X.

Proof If F satisfies (2.39), then F satisfies (2.38). □

Note that if (X,) is a partially ordered set, then we can endow X 3 with the following partial order relation:

(x,y,z)(u,v,w)xu,yv,zw

for all (x,y,z),(u,v,w) X 3 (see [26]).

In the following theorem, we give a sufficient condition for the uniqueness of the common tripled fixed point (also see, e.g., [4, 46, 50] and [51]).

Theorem 2.9 In addition to the hypotheses of Theorem 2.1, suppose that for every (x,y,z) and ( x , y , z )X×X×X, there exists (u,v,w) X 3 such that (F(u,v,w),F(v,u,v),F(w,v,u)) is comparable with (F(x,y,z),F(y,x,y),F(z,y,x)) and (F( x , y , z ),F( y , x , y ),F( z , y , x )). Then F and g have a unique common tripled fixed point.

Proof From Theorem 2.1 the set of tripled coincidence points of F and g is nonempty. We shall show that if (x,y,z) and ( x , y , z ) are tripled coincidence points, that is,

g(x)=F(x,y,z),g(y)=F(y,x,y),g(z)=F(z,y,x)

and

g ( x ) =F ( x , y , z ) ,g ( y ) =F ( y , x , y ) ,g ( z ) =F ( z , y , x ) ,

then gx=g x and gy=g y and gz=g z .

Choose an element (u,v,w) X 3 such that (F(u,v,w),F(v,u,v),F(w,v,u)) is comparable with

( F ( x , y , z ) , F ( y , x , y ) , F ( z , y , x ) )

and

( F ( x , y , z ) , F ( y , x , y ) , F ( z , y , x ) ) .

Let u 0 =u, v 0 =v and w 0 =w and choose u 1 , v 1 and w 1 X so that g u 1 =F( u 0 , v 0 , w 0 ), g v 1 =F( v 0 , u 0 , v 0 ) and g w 1 =F( w 0 , v 0 , u 0 ). Then, similarly as in the proof of Theorem 2.1, we can inductively define sequences {g u n }, {g v n } and {g w n } such that g u n + 1 =F( u n , v n , w n ), g v n + 1 =F( v n , u n , v n ) and g w n + 1 =F( w n , v n , u n ). Since (gx,gy,gz)=(F(x,y,z),F(y,x,y),F(w,y,x)) and (F(u,v,w),F(v,u,v),F(w,v,u))=(g u 1 ,g v 1 ,g w 1 ) are comparable, we may assume that (gx,gy,gz)(g u 1 ,g v 1 ,g w 1 ). Then gxg u 1 , gyg v 1 and gzg w 1 . Using the mathematical induction, it is easy to prove that gxg u n , gyg v n and gzg w n for all n0.

Applying (2.1), as gxg u n , gyg v n and gzg w n , one obtains that

ψ ( s max { G ( g x , g u n + 1 , g u n + 1 ) , G ( g y , g v n + 1 , g v n + 1 ) , G ( g z , g w n + 1 , g w n + 1 ) } ) = ψ ( s M F ( x , y , z , u n , v n , w n , u n , v n , w n ) ) ψ ( M g ( x , y , z , u n , v n , w n , u n , v n , w n ) ) φ ( M g ( x , y , z , u n , v n , w n , u n , v n , w n ) ) = ψ ( max { G ( g x , g u n , g u n ) , G ( g y , g v n , g v n ) , G ( g z , g w n , g w n ) } ) φ ( max { G ( g x , g u n , g u n ) , G ( g y , g v n , g v n ) , G ( g z , g w n , g w n ) } ) .
(2.40)

From the properties of ψ, we deduce that

{ max { G ( g x , g u n , g u n ) , G ( g y , g v n , g v n ) , G ( g z , g w n , g w n ) } }

is nonincreasing.

Hence, if we proceed as in Theorem 2.1, we can show that

lim n max { G ( g x , g u n , g u n ) , G ( g y , g v n , g v n ) , G ( g z , g w n , g w n ) } =0,

that is, {g u n }, {g v n } and {g w n } are G b -convergent to gx, gy and gz, respectively.

Similarly, we can show that

lim n max { G ( g x , g u n , g u n ) , G ( g y , g v n , g v n ) , G ( g z , g w n , g w n ) } =0,

that is, {g u n }, {g v n } and {g w n } are G b -convergent to g x , g y and g z , respectively. Finally, since the limit is unique, gx=g x , gy=g y and gz=g z .

Since gx=F(x,y,z), gy=F(y,x,y) and gz=F(z,y,x), by commutativity of F and g, we have g(gx)=g(F(x,y,z))=F(gx,gy,gz), g(gy)=g(F(y,x,y))=F(gy,gx,gy) and g(gz)=g(F(z,y,x))=F(gz,gy,gx). Let gx=a, gy=b and g(z)=c. Then ga=F(a,b,c), gb=F(b,a,b) and gc=F(c,b,a). Thus, (a,b,c) is another tripled coincidence point of F and g. Then a=gx=ga, b=gy=gb and c=gz=gc. Therefore, (a,b,c) is a tripled common fixed point of F and g.

To prove the uniqueness, assume that (p,q,r) is another tripled common fixed point of F and g. Then p=gp=F(p,q,r), q=gq=F(q,p,q) and r=gr=F(r,p,q). Since (p,q,r) is a tripled coincidence point of F and g, we have gp=gx, gq=gy and gr=gz. Thus, p=gp=ga=a, q=gq=gb=b and r=gr=gc=c. Hence, the tripled common fixed point is unique. □

3 Examples

The following examples support our results.

Example 3.1 Let X=(,) be endowed with the usual ordering and the G b -complete G b -metric

G(x,y,z)= ( | x y | + | y z | + | z x | ) 2 ,

where s=2.

Define F: X 3 X as

F(x,y,z)= x 2 y + 4 z 96

for all x,y,zX and g:XX with g(x)= x 2 for all xX.

Let φ:[0,)[0,) be defined by φ(t)=ln(t+1), and let ψ:[0,)[0,) be defined by ψ(t)=ln( 4 t + 4 t + 4 ).

Now, from the fact that for α,β,γ0, ( α + β + γ ) p 2 2 p 2 α p + 2 2 p 2 β p + 2 p 1 γ p , we have

ψ ( s G ( F ( x , y , z ) , F ( u , v , w ) , F ( r , s , t ) ) ) = ln ( 2 ( 1 96 [ | ( x 2 y + 4 z ) ( u 2 v + 4 w ) | ] + 1 96 [ | ( u 2 v + 4 w ) ( r 2 s + 4 t ) | ] + 1 96 [ | ( r 2 s + 4 t ) ( x 2 y + 4 z ) | ] ) 2 + 1 ) ln ( 2 ( 1 48 | x 2 u 2 | + 1 24 | y 2 v 2 | + 1 12 | z 2 w 2 | + 1 48 | u 2 r 2 | + 1 24 | v 2 s 2 | + 1 12 | w 2 t 2 | + 1 48 | r 2 x 2 | + 1 24 | s 2 y 2 | + 1 12 | t 2 z 2 | ) 2 + 1 ) = ln ( 2 ( 1 48 [ | x 2 u 2 | + | u 2 r 2 | + | r 2 x 2 | ] + 1 24 [ | y 2 v 2 | + | v 2 s 2 | + | s 2 y 2 | ] + 1 12 [ | z 2 w 2 | + | w 2 t 2 | + | t 2 z 2 | ] ) 2 + 1 ) ln ( 8 48 2 ( [ | x 2 u 2 | + | u 2 r 2 | + | r 2 x 2 | ] 2 + 8 24 2 [ | y 2 v 2 | + | v 2 s 2 | + | s 2 y 2 | ] 2 + 4 12 2 [ | z 2 w 2 | + | w 2 t 2 | + | t 2 z 2 | ] 2 ) + 1 ) ln ( 1 12 ( [ | x 2 u 2 | + | u 2 r 2 | + | r 2 x 2 | ] 2 + 1 12 [ | y 2 v 2 | + | v 2 s 2 | + | s 2 y 2 | ] 2 + 1 12 [ | z 2 w 2 | + | w 2 t 2 | + | t 2 z 2 | ] 2 ) + 1 ) ln ( 1 4 max { [ | x 2 u 2 | + | u 2 r 2 | + | r 2 x 2 | ] 2 , [ | y 2 v 2 | + | v 2 s 2 | + | s 2 y 2 | ] 2 , [ | z 2 w 2 | + | w 2 t 2 | + | t 2 z 2 | ] 2 } + 1 ) ln ( 1 4 max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } + 1 ) = ln ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } + 1 ) ln ( 4 max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } + 4 max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } + 4 ) = ψ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) φ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) .

Analogously, we can show that

ψ ( G ( F ( y , x , y ) , F ( v , u , v ) , F ( s , r , s ) ) ) ψ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) φ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } )

and

ψ ( G ( F ( z , y , x ) , F ( w , v , u ) , F ( t , s , r ) ) ) ψ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) φ ( max { G ( g x , g u , g r ) , G ( g y , g v , g s ) , G ( g z , g w , g t ) } ) .

Thus,

ψ ( s M F ( x , y , z , u , v , w , r , s , t ) ) ψ ( M g ( x , y , z , u , v , w , r , s , t ) ) φ ( M g ( x , y , z , u , v , w , r , s , t ) ) .

Hence, all of the conditions of Theorem 2.1 are satisfied. Moreover, (0,0,0) is the unique common tripled fixed point of F and g.

The following example has been constructed according to Example 2.12 of [2].

Example 3.2 Let X={(x,0,x)}{(0,x,0)} R 3 , where x[0,] with the order defined as

( x 1 , y 1 , z 1 )( x 2 , y 2 , z 2 ) x 1 x 2 , y 1 y 2 , z 1 z 2 .

Let d be given as

d(x,y)=max { | x 1 x 2 | 2 , | y 1 y 2 | 2 , | z 1 z 2 | 2 }

and

G(x,y,z)=max { d ( x , y ) , d ( y , z ) , d ( z , x ) } ,

where x=( x 1 , y 1 , z 1 ) and y=( x 2 , y 2 , z 2 ). (X,G) is, clearly, a G b -complete G b -metric space.

Let g:XX and F: X 3 X be defined as follows:

F(x,y,z)=x

and

g ( ( x , 0 , x ) ) =(0,x,0)andg ( ( 0 , x , 0 ) ) =(x,0,x).

Let ψ,φ:[0,)[0,) be as in the above example.

According to the order on X and the definition of g, we see that for any element xX, g(x) is comparable only with itself.

By a careful computation, it is easy to see that all of the conditions of Theorem 2.1 are satisfied. Finally, Theorem 2.1 guarantees the existence of a unique common tripled fixed point for F and g, i.e., the point ((0,0,0),(0,0,0),(0,0,0)).

4 Applications

In this section, we obtain some tripled coincidence point theorems for a mapping satisfying a contractive condition of integral type in a complete ordered G b -metric space.

We denote by Λ the set of all functions μ:[0,+)[0,+) verifying the following conditions:

  1. (I)

    μ is a positive Lebesgue integrable mapping on each compact subset of [0,+).

  2. (II)

    For all ε>0, 0 ε μ(t)dt>0.

Corollary 4.1 Replace the contractive condition (2.1) of Theorem 2.1 by the following condition:

There exists μΛ such that

0 ψ ( s M F ( x , y , z , u , v , w , r , s , t ) ) μ ( t ) d t 0 ψ ( M g ( x , y , z , u , v , w , r , s , t ) ) μ ( t ) d t 0 φ ( M g ( x , y , z , u , v , w , r , s , t ) ) μ ( t ) d t .
(4.1)

If the other conditions of Theorem 2.1 are satisfied, then F and g have a tripled coincidence point.

Proof Consider the function Γ(x)= 0 x μ(t)dt. Then (4.1) becomes

Γ ( ψ ( s M F ( x , y , z , u , v , w , r , s , t ) ) ) Γ ( ψ ( M g ( x , y , z , u , v , w , r , s , t ) ) ) Γ ( φ ( M g ( x , y , z , u , v , w , r , s , t ) ) ) .

Taking ψ 1 =Γoψ and φ 1 =Γoφ and applying Theorem 2.1, we obtain the proof (it is easy to verify that ψ 1 and φ 1 are altering distance functions). □

Corollary 4.2 Substitute the contractive condition (2.1) of Theorem 2.1 by the following condition:

There exists μΛ such that

ψ ( 0 s M F ( x , y , z , u , v , w , r , s , t ) μ ( t ) d t ) ψ ( 0 M g ( x , y , z , u , v , w , r , s , t ) μ ( t ) d t ) φ ( 0 M g ( x , y , z , u , v , w , r , s , t ) μ ( t ) d t ) .
(4.2)

If the other conditions of Theorem 2.1 are satisfied, then F and g have a tripled coincidence point.

Proof Again, as in Corollary 4.1, define the function Γ(x)= 0 x μ(t)dt. Then (4.2) changes to

ψ ( Γ ( s M F ( x , y , z , u , v , w , r , s , t ) ) ) ψ ( Γ ( M g ( x , y , z , u , v , w , r , s , t ) ) ) φ ( Γ ( M g ( x , y , z , u , v , w , r , s , t ) ) ) .

Now, if we define ψ 1 =ψoΓ and φ 1 =φoΓ and apply Theorem 2.1, then the proof is completed. □

Corollary 4.3 Replace the contractive condition (2.1) of Theorem 2.1 by the following condition:

There exists μΛ such that

ψ 1 ( 0 ψ 2 ( s M F ( x , y , z , u , v , w , r , s , t ) ) μ ( t ) d t ) ψ 1 ( 0 ψ 2 ( M g ( x , y , z , u , v , w , r , s , t ) ) μ ( t ) d t ) φ 1 ( 0 φ 2 ( M g ( x , y , z , u , v , w , r , s , t ) ) μ ( t ) d t )
(4.3)

for altering distance functions ψ 1 , ψ 2 , φ 1 and φ 2 . If the other conditions of Theorem 2.1 are satisfied, then F and g have a tripled coincidence point.

Similar to [52], let NN be fixed. Let { μ i } 1 i N be a family of N functions which belong to Λ. For all t0, we define

I 1 ( t ) = 0 t μ 1 ( s ) d s , I 2 ( t ) = 0 I 1 t μ 2 ( s ) d s = 0 0 t μ 1 ( s ) d s μ 2 ( s ) d s , I 3 ( t ) = 0 I 2 t μ 3 ( s ) d s = 0 0 0 t μ 1 ( s ) d s μ 2 ( s ) d s μ 3 ( s ) d s , , I N ( t ) = 0 I ( N 1 ) t μ N ( s ) d s .

We have the following result.

Corollary 4.4 Replace inequality (2.1) of Theorem 2.1 by the following condition:

ψ ( I N ( s M F ( x , y , z , u , v , w , r , s , t ) ) ) ψ ( I N ( M g ( x , y , z , u , v , w , r , s , t ) ) ) φ ( I N ( M g ( x , y , z , u , v , w , r , s , t ) ) ) .
(4.4)

If the other conditions of Theorem 2.1 are satisfied, then F and g have a tripled coincidence point.

Proof Consider Ψ ˆ =ψo I N and Φ ˆ =φo I N . Then the above inequality becomes

Ψ ˆ ( s M F ( x , y , z , u , v , w , r , s , t ) ) Ψ ˆ ( M g ( x , y , z , u , v , w , r , s , t ) ) Φ ˆ ( M g ( x , y , z , u , v , w , r , s , t ) ) .

Applying Theorem 2.1, we obtain the desired result (it is easy to verify that Ψ ˆ and Φ ˆ are altering distance functions). □

Another consequence of the main theorem is the following result.

Corollary 4.5 Substitute contractive condition (2.1) of Theorem 2.1 by the following condition:

There exist μ 1 , μ 2 Λ such that

0 s M F ( x , y , z , u , v , w , r , s , t ) μ 1 ( t ) d t 0 M g ( x , y , z , u , v , w , r , s , t ) μ 1 ( t ) d t 0 M g ( x , y , z , u , v , w , r , s , t ) μ 2 ( t ) d t .

If the other conditions of Theorem 2.1 are satisfied, then F and g have a tripled coincidence point.

Proof It is clear that the function s 0 s μ i (t)dt for i=1,2 is an altering distance function. □

Motivated by [46], we study the existence of solutions for nonlinear integral equations using the results proved in the previous section.

Consider the integral equations in the following system.

x ( t ) = ω ( t ) + 0 T S ( t , r ) [ f ( r , x ( r ) ) + k ( r , y ( r ) ) + h ( r , z ( r ) ) ] d r , y ( t ) = ω ( t ) + 0 T S ( t , r ) [ f ( r , y ( r ) ) + k ( r , x ( r ) ) + h ( r , y ( r ) ) ] d r , z ( t ) = ω ( t ) + 0 T S ( t , r ) [ f ( λ , z ( r ) ) + k ( r , y ( r ) ) + h ( r , x ( r ) ) ] d r .
(4.5)

We will consider system (4.5) under the following assumptions:

  1. (i)

    f,k,h:[0,T]×RR are continuous,

  2. (ii)

    ω:[0,T]R is continuous,

  3. (iii)

    S:[0,T]×R[0,) is continuous,

  4. (iv)

    there exists q>0 such that for all x,yR,

    0 f ( r , y ) f ( r , x ) q ( y x ) , 0 k ( r , x ) k ( r , y ) q ( y x )

    and

    0h(r,y)h(r,x)q(yx).
  5. (v)

    We suppose that

    2 3 p 3 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p <1.
  6. (vi)

    There exist continuous functions α,β,γ:[0,T]R such that

    α ( t ) ω ( t ) + 0 T S ( t , r ) [ f ( r , α ( r ) ) + k ( r , β ( r ) ) + h ( r , γ ( r ) ) ] d r , β ( t ) ω ( t ) + 0 T S ( t , r ) [ f ( r , β ( r ) ) + k ( r , α ( r ) ) + h ( r , β ( r ) ) ] d r

and

γ(t)ω(t)+ 0 T S(t,r) [ f ( r , γ ( r ) ) + k ( r , β ( r ) ) + h ( r , α ( r ) ) ] dr.

We consider the space X=C([0,T],R) of continuous functions defined on [0,T] endowed with the G b -metric given by

G(θ,φ,ψ)= ( max t [ 0 , T ] | θ ( t ) φ ( t ) | p , max t [ 0 , T ] | φ ( t ) ψ ( t ) | p , max t [ 0 , T ] | ψ ( t ) θ ( t ) | p )

for all θ,φ,ψX, where s= 2 p 1 and p1 (see Example 1.12).

We endow X with the partial ordered given by

xyx(t)y(t),for all t[0,T].

On the other hand, (X,d) is regular [53].

Our result is the following.

Theorem 4.6 Under assumptions (i)-(vi), system (4.5) has a solution in X 3 where X=(C[0,T],R).

Proof As in [46], we consider the operators F: X 3 X and g:XX defined by

F( x 1 , x 2 , x 3 )(t)=ω(t)+ 0 T S(t,r) [ f ( r , x 1 ( r ) ) + k ( r , x 2 ( r ) ) + h ( r , x 3 ( r ) ) ] dr

and

g(x)=x

for all t[0,T] and x 1 , x 2 , x 3 ,xX.

F has the mixed monotone property (see Theorem 25 of [46]).

Let x,y,z,u,v,wX be such that xu, yv and zw. Since F has the mixed monotone property, we have

F(u,v,w)F(x,y,z).

On the other hand,

G ( F ( x , y , z ) , F ( u , v , w ) , F ( a , b , c ) ) =max { max t [ 0 , T ] | F ( x , y , z ) ( t ) F ( u , v , w ) ( t ) | p , max t [ 0 , T ] | F ( u , v , w ) ( t ) F ( a , b , c ) ( t ) | p , max t [ 0 , T ] | F ( a , b , c ) ( t ) F ( x , y , z ) ( t ) | p } .

Now, for all t[0,T] from (iv) and the fact that for α,β,γ0, ( α + β + γ ) p 2 2 p 2 α p + 2 2 p 2 β p + 2 p 1 γ p , we have

| F ( x , y , z ) ( t ) F ( u , v , w ) ( t ) | p = | 0 T S ( t , r ) [ f ( r , x ( r ) ) f ( r , u ( r ) ) ] d r + 0 T S ( t , r ) [ k ( r , y ( r ) ) k ( r , v ( r ) ) ] d r + 0 T S ( t , r ) [ h ( r , z ( r ) ) h ( r , w ( r ) ) ] d r | p ( | 0 T S ( t , r ) [ f ( r , x ( r ) ) f ( r , u ( r ) ) ] d r | + | 0 T S ( t , r ) [ k ( r , y ( r ) ) k ( r , v ( r ) ) ] d r | + | 0 T S ( t , r ) [ h ( r , z ( r ) ) h ( r , w ( r ) ) ] d r | ) p ( 2 2 p 2 | 0 T S ( t , r ) [ f ( r , x ( r ) ) f ( r , u ( r ) ) ] d r | p + 2 2 p 2 | 0 T S ( t , r ) [ k ( r , y ( r ) ) k ( r , v ( r ) ) ] d r | p + 2 p 1 | 0 T S ( t , r ) [ h ( r , z ( r ) ) h ( r , w ( r ) ) ] d r | p ) 2 2 p 2 [ ( 0 T | S ( t , r ) [ f ( r , x ( r ) ) f ( r , u ( r ) ) ] | d r ) p + ( 0 T | S ( t , r ) [ k ( r , y ( r ) ) k ( r , v ( r ) ) ] | d r ) p + ( 0 T | S ( t , r ) [ h ( r , z ( r ) ) h ( r , w ( r ) ) ] | d r ) p ] 2 2 p 2 q p [ ( max r [ 0 , T ] | x ( r ) u ( r ) | ) p + ( max r [ 0 , T ] | y ( r ) v ( r ) | ) p + ( max r [ 0 , T ] | z ( r ) w ( r ) | ) p ] ( 0 T | S ( t , r ) | d r ) p = 2 2 p 2 q p [ max r [ 0 , T ] | x ( r ) u ( r ) | p + max r [ 0 , T ] | y ( r ) v ( r ) | p + max r [ 0 , T ] | z ( r ) w ( r ) | p ] ( 0 T | S ( t , r ) | d r ) p .

Thus,

max t [ 0 , T ] | F ( x , y , z ) ( t ) F ( u , v , w ) ( t ) | p 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max r [ 0 , T ] | x ( r ) u ( r ) | p , max r [ 0 , T ] | y ( r ) v ( r ) | p , max r [ 0 , T ] | z ( r ) w ( r ) | p } .
(4.6)

Repeating this idea and using the definition of the G b -metric G, we obtain

max t [ 0 , T ] | F ( u , v , w ) ( t ) F ( a , b , c ) ( t ) | p 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max r [ 0 , T ] | u ( r ) a ( r ) | p , max r [ 0 , T ] | v ( r ) b ( r ) | p , max r [ 0 , T ] | w ( r ) c ( r ) | p }
(4.7)

and

max t [ 0 , T ] | F ( a , b , c ) ( t ) F ( x , y , z ) ( t ) | p 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max r [ 0 , T ] | a ( r ) x ( r ) | p , max r [ 0 , T ] | b ( r ) y ( r ) | p , max r [ 0 , T ] | c ( r ) z ( r ) | p } .
(4.8)

So, from (4.6), (4.7) and (4.8), we have

G ( F ( x , y , z ) , F ( u , v , w ) , F ( a , b , c ) ) 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max { max r [ 0 , T ] | x ( r ) u ( r ) | p , max r [ 0 , T ] | y ( r ) v ( r ) | p , max r [ 0 , T ] | z ( r ) w ( r ) | p } , max { max r [ 0 , T ] | u ( r ) a ( r ) | p , max r [ 0 , T ] | v ( r ) b ( r ) | p , max r [ 0 , T ] | w ( r ) c ( r ) | p } , max { max r [ 0 , T ] | a ( r ) x ( r ) | p , max r [ 0 , T ] | b ( r ) y ( r ) | p , max r [ 0 , T ] | c ( r ) z ( r ) | p } } .
(4.9)

Similarly, we can obtain

G ( F ( y , x , y ) , F ( v , u , v ) , F ( b , a , b ) ) 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max { max r [ 0 , T ] | y ( r ) v ( r ) | p , max r [ 0 , T ] | x ( r ) u ( r ) | p , max r [ 0 , T ] | y ( r ) v ( r ) | p } , max { max r [ 0 , T ] | v ( r ) b ( r ) | p , max r [ 0 , T ] | u ( r ) a ( r ) | p , max r [ 0 , T ] | v ( r ) b ( r ) | p } , max { max r [ 0 , T ] | b ( r ) y ( r ) | p , max r [ 0 , T ] | a ( r ) x ( r ) | p , max r [ 0 , T ] | b ( r ) y ( r ) | p } }
(4.10)

and

G ( F ( z , y , x ) , F ( w , v , u ) , F ( c , b , a ) ) 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max { max r [ 0 , T ] | z ( r ) w ( r ) | p , max r [ 0 , T ] | y ( r ) v ( r ) | p , max r [ 0 , T ] | x ( r ) u ( r ) | p } , max { max r [ 0 , T ] | w ( r ) c ( r ) | p , max r [ 0 , T ] | v ( r ) b ( r ) | p , max r [ 0 , T ] | u ( r ) a ( r ) | p } , max { max r [ 0 , T ] | c ( r ) z ( r ) | p , max r [ 0 , T ] | b ( r ) y ( r ) | p , max r [ 0 , T ] | a ( r ) x ( r ) | p } } .
(4.11)

Now, from (4.9), (4.10) and (4.11), we have

max { G ( F ( x , y , z ) , F ( u , v , w ) , F ( a , b , c ) ) , G ( F ( y , x , y ) , F ( v , u , v ) , F ( b , a , b ) ) , G ( F ( z , y , x ) , F ( w , v , u ) , F ( c , b , a ) ) } 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p × max { max { max r [ 0 , T ] | x ( r ) u ( r ) | p , max r [ 0 , T ] | u ( r ) a ( r ) | p , max r [ 0 , T ] | x ( r ) a ( r ) | p } , max { max r [ 0 , T ] | y ( r ) v ( r ) | p , max r [ 0 , T ] | v ( r ) b ( r ) | p , max r [ 0 , T ] | y ( r ) b ( r ) | p } , max { max r [ 0 , T ] | z ( r ) w ( r ) | p , max r [ 0 , T ] | w ( r ) c ( r ) | p , max r [ 0 , T ] | z ( r ) c ( r ) | p } } = 2 2 p 2 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p max { G ( x , u , a ) , G ( y , v , b ) , G ( z , w , c ) } = 2 3 p 3 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p 2 p 1 max { G ( x , u , a ) , G ( y , v , b ) , G ( z , w , c ) } .

But from (v), we have

2 3 p 3 3 q p sup t [ 0 , T ] ( 0 T | S ( t , r ) | d r ) p <1.

This proves that the operator F satisfies the contractive condition appearing in Corollary 2.7.

Let α, β, γ be the functions appearing in assumption (vi), then by (vi), we get

αF(α,β,γ),βF(β,α,β),γF(γ,β,α).

Applying Corollary 2.7, we deduce the existence of x 1 , x 2 , x 3 X such that x 1 =F( x 1 , x 2 , x 3 ), x 2 =F( x 2 , x 1 , x 2 ) and x 3 =F( x 3 , x 2 , x 1 ). □

References

  1. Gnana Bhaskar T, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  2. Abbas M, Ali Khan M, Radenović S: Common coupled fixed point theorems in cone metric spaces for w -compatible mappings. Appl. Math. Comput. 2010, 217: 195–202. 10.1016/j.amc.2010.05.042

    Article  MathSciNet  Google Scholar 

  3. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for (ψ,φ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63: 298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  Google Scholar 

  4. Berinde V: Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2012, 75: 3218–3228. 10.1016/j.na.2011.12.021

    Article  MathSciNet  Google Scholar 

  5. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036

    Article  MathSciNet  Google Scholar 

  6. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 2010, 73: 2524–2531. 10.1016/j.na.2010.06.025

    Article  MathSciNet  Google Scholar 

  7. Ćirić L, Damjanović B, Jleli M, Samet B: Coupled fixed point theorems for generalized Mizoguchi-Takahashi contraction and applications to ordinary differential equations. Fixed Point Theory Appl. 2012., 2012: Article ID 51

    Google Scholar 

  8. Ding HS, Li L, Radenović S: Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 96

    Google Scholar 

  9. Hussain N, Dorić D, Kadelburg Z, Radenović S: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012. 10.1186/1687-1812-2012-126

    Google Scholar 

  10. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30: 1–9. 10.1017/S0004972700001659

    Article  MathSciNet  Google Scholar 

  11. Lakshmikantham V, Ćirić L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70(12):4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  Google Scholar 

  12. Luong NV, Thuan NX: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 2011, 74: 983–992. 10.1016/j.na.2010.09.055

    Article  MathSciNet  Google Scholar 

  13. Luong NV, Thuan NX: Coupled fixed point theorems in partially ordered G -metric spaces. Math. Comput. Model. 2012, 55: 1601–1609. 10.1016/j.mcm.2011.10.058

    Article  MathSciNet  Google Scholar 

  14. Razani A, Parvaneh V: Coupled coincidence point results for (ψ,α,β)-weak contractions in partially ordered metric spaces. J. Appl. Math. 2012., 2012: Article ID 496103 10.1155/2012/496103

    Google Scholar 

  15. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacet. J. Math. Stat. 2011, 40: 441–447.

    MathSciNet  Google Scholar 

  16. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 80

    Google Scholar 

  17. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55(3–4):680–687. 10.1016/j.mcm.2011.08.042

    Article  MathSciNet  Google Scholar 

  18. Sintunavarat W, Cho YJ, Kumam P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 81

    Google Scholar 

  19. Sintunavarat W, Cho YJ, Kumam P: Coupled fixed point theorems for weak contraction mapping under F -invariant set. Abstr. Appl. Anal. 2012., 2012: Article ID 324874

    Google Scholar 

  20. Sintunavarat W, Kumam P: Coupled coincidence and coupled common fixed point theorems in partially ordered metric spaces. Thai J. Math. 2012, 10(3):551–563.

    MathSciNet  Google Scholar 

  21. Sintunavarat W, Cho YJ, Kumam P: Coupled fixed-point theorems for contraction mapping induced by cone ball-metric in partially ordered spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 128

    Google Scholar 

  22. Sintunavarat W, Petrusel A, Kumam P: Common coupled fixed point theorems for w -compatible mappings without mixed monotone property. Rend. Circ. Mat. Palermo 2012, 61: 361–383. 10.1007/s12215-012-0096-0

    Article  MathSciNet  Google Scholar 

  23. Sintunavarat W, Kumam P, Cho YJ: Coupled fixed point theorems for nonlinear contractions without mixed monotone property. Fixed Point Theory Appl. 2012., 2012: Article ID 170

    Google Scholar 

  24. Karapınar E, Kumam P, Sintunavarat W: Coupled fixed point theorems in cone metric spaces with a c -distance and applications. Fixed Point Theory Appl. 2012., 2012: Article ID 194

    Google Scholar 

  25. Agarwal RP, Sintunavarat W, Kumam P: Coupled coincidence point and common coupled fixed point theorems lacking the mixed monotone property. Fixed Point Theory Appl. 2013., 2013: Article ID 22

    Google Scholar 

  26. Berinde V, Borcut M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 4889–4897. 10.1016/j.na.2011.03.032

    Article  MathSciNet  Google Scholar 

  27. Borcut M: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 7339–7346. 10.1016/j.amc.2012.01.030

    Article  MathSciNet  Google Scholar 

  28. Borcut M, Berinde V: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 5929–5936. 10.1016/j.amc.2011.11.049

    Article  MathSciNet  Google Scholar 

  29. Choudhury BS, Karapınar E, Kundu A: Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces. Int. J. Math. Math. Sci. 2012., 2012: Article ID 329298 10.1155/2012/329298

    Google Scholar 

  30. Radenović S, Pantelić S, Salimi P, Vujaković J: A note on some tripled coincidence point results in G -metric spaces. Int. J. Math. Sci. Eng. Appl. 2012, 6(6):23–38.

    MathSciNet  Google Scholar 

  31. Aydi H, Abbas M, Sintunavarat W, Kumam P: Tripled fixed point of W -compatible mappings in abstract metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 134

    Google Scholar 

  32. Abbas M, Ali B, Sintunavarat W, Kumam P: Tripled fixed point and tripled coincidence point theorems in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 187

    Google Scholar 

  33. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MathSciNet  Google Scholar 

  34. Mustafa Z: Common fixed points of weakly compatible mappings in G -metric spaces. Appl. Math. Sci. 2012, 6(92):4589–4600.

    MathSciNet  Google Scholar 

  35. Mustafa Z: Some new common fixed point theorems under strict contractive conditions in G -metric spaces. J. Appl. Math. 2012., 2012: Article ID 248937 10.1155/2012/248937

    Google Scholar 

  36. Mustafa Z: Mixed g -monotone property and quadruple fixed point theorems in partially ordered G -metric spaces using (ϕψ) contractions. Fixed Point Theory Appl. 2012., 2012: Article ID 199

    Google Scholar 

  37. Mustafa Z, Aydi H, Karapınar E: Mixed g -monotone property and quadruple fixed point theorems in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 71

    Google Scholar 

  38. Mustafa Z, Aydi H, Karapınar E: On common fixed points in G -metric spaces using (E.A) property. Comput. Math. Appl. 2012, 64: 1944–1956. 10.1016/j.camwa.2012.03.051

    Article  MathSciNet  Google Scholar 

  39. Mustafa Z, Awawdeh F, Shatanawi W: Fixed point theorem for expansive mappings in G -metric spaces. Int. J. Contemp. Math. Sci. 2010, 5: 49–52.

    MathSciNet  Google Scholar 

  40. Mustafa Z, Khandagjy M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48(3):304–319.

    Google Scholar 

  41. Mustafa Z, Obiedat H, Awawdeh F: Some of fixed point theorem for mapping on complete G -metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 189870

    Google Scholar 

  42. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point result in G -metric spaces. Int. J. Math. Math. Sci. 2009., 2009: Article ID 283028

    Google Scholar 

  43. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric space. Fixed Point Theory Appl. 2009., 2009: Article ID 917175

    Google Scholar 

  44. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point of generalized contractive mappings on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 31

    Google Scholar 

  45. Chandok S, Sintunavarat W, Kumam P: Some coupled common fixed points for a pair of mappings in partially ordered G -metric spaces. Math. Sci. 2013., 7: Article ID 24

    Google Scholar 

  46. Aydi H, Karapınar E, Shatanawi W: Tripled coincidence point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 101

    Google Scholar 

  47. Aghajani, A, Abbas, M, Roshan, JR: Common fixed point of generalized weak contractive mappings in partially ordered G b -metric spaces Filomat (2013, in press)

  48. Aghajani, A, Abbas, M, Roshan, JR: Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca (2012, in press)

  49. Mustafa Z, Rezaei Roshan J, Parvaneh V: Coupled coincidence point results for (ψ,φ)-weakly contractive mappings in partially ordered G b -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 206 10.1186/1687-1812-2013-206

    Google Scholar 

  50. Aydi H, Karapınar E, Shatanawi W: Coupled fixed point results for (ψ,φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62: 4449–4460. 10.1016/j.camwa.2011.10.021

    Article  MathSciNet  Google Scholar 

  51. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8

    Google Scholar 

  52. Nashine HK, Samet B: Fixed point results for mappings satisfying (ψ,φ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

    Article  MathSciNet  Google Scholar 

  53. Nieto JJ, Rodriguez-López R: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Order 2005, 22(3):223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zead Mustafa.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Mustafa, Z., Roshan, J.R. & Parvaneh, V. Existence of a tripled coincidence point in ordered G b -metric spaces and applications to a system of integral equations. J Inequal Appl 2013, 453 (2013). https://doi.org/10.1186/1029-242X-2013-453

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-453

Keywords