Skip to main content

Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex

Abstract

In the paper, the authors establish some new inequalities of Hermite-Hadamard type for functions whose third derivatives are convex.

MSC: 26D15, 26A51, 41A55.

1 Introduction

It is common knowledge in mathematical analysis that a function f:IRR is said to be convex on an interval I if the inequality

f ( λ x + ( 1 λ ) y ) λf(x)+(1λ)f(y)
(1.1)

is valid for all x,yI and λ[0,1]. If f:IRR is a convex function on I and a,bI with a<b, then the double inequality

f ( a + b 2 ) 1 b a a b f(x)dx f ( a ) + f ( b ) 2
(1.2)

holds. This double inequality is known in the literature as Hermite-Hadamard’s integral inequality for convex functions. The definition of convex functions and Hermite-Hadamard’s integral inequality (1.2) have been generalized, refined, and extended by many mathematicians in a lot of references. Some of them may be recited as follows.

Theorem 1.1 ([[1], Theorems 2.2 and 2.3])

Let f: I RR be differentiable on I and a,b I with a<b.

  1. (1)

    If | f (x)| is a convex function on [a,b], then

    | f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x | b a 8 ( | f ( a ) | + | f ( b ) | ) .
    (1.3)
  2. (2)

    If | f ( x ) | p / ( p 1 ) for p>1 is a convex function on [a,b], then

    | f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x | b a 2 ( p + 1 ) 1 / p [ | f ( a ) | p / ( p 1 ) + | f ( b ) | p / ( p 1 ) 2 ] ( p 1 ) / p .
    (1.4)

Theorem 1.2 ([[2], Theorems 2.2 and 2.3])

Let f: I RR be a differentiable mapping on I and a,b I with a<b. If | f | p / ( p 1 ) for p>1 is convex on [a,b], then

| f ( a + b 2 ) 1 b a a b f ( x ) d x | b a 16 ( 4 p + 1 ) 1 / p [ ( | f ( a ) | p / ( p 1 ) + 3 | f ( b ) | p / ( p 1 ) ) ( p 1 ) / p + ( 3 | f ( a ) | p / ( p 1 ) + | f ( b ) | p / ( p 1 ) ) ( p 1 ) / p ]
(1.5)

and

| f ( a + b 2 ) 1 b a a b f ( x ) d x | b a 4 ( 4 p + 1 ) 1 / p [ | f ( a ) | + | f ( b ) | ] .
(1.6)

Definition 1.1 ([3])

A function f:IR[0,) is said to be quasi-convex if

f ( λ x + ( 1 λ ) y ) sup { f ( x ) , f ( y ) }
(1.7)

holds for all x,yI and λ[0,1].

Theorem 1.3 ([[4], Theorem 2])

Let f:IRR be differentiable on I such that f L([a,b]) and a,b I with a<b. If | f | is quasi-convex on [a,b], then

| a b f ( x ) d x b a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] | ( b a ) 4 1152 [ max { | f ( a ) | , | f ( a + b 2 ) | } + max { | f ( a + b 2 ) | , | f ( b ) | } ] .
(1.8)

Definition 1.2 ([5])

Let s(0,1]. A function f: R 0 R 0 is said to be s-convex in the second sense if

f ( λ x + ( 1 λ ) y ) λ s f(x)+ ( 1 λ ) s f(y)
(1.9)

for all x,yI and λ[0,1].

Theorem 1.4 ([[6], Theorem 3.1])

Let f:I R 0 R be differentiable on I , a,b I with a<b, and f L([a,b]). If q1 and | f | is s-convex in the second sense on [a,b] for s(0,1], then

| f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x b a 12 [ f ( b ) f ( a ) ] | ( b a ) 3 192 [ 2 2 s ( s + 6 + 2 s + 2 s ) ( s + 2 ) ( s + 3 ) ( s + 4 ) ] 1 / q [ | f ( a ) | q + | f ( b ) | q ] 1 / q .
(1.10)

For more information on Hermite-Hadamard type inequalities, please refer to [719], for example, and to monographs [20, 21] and related references therein.

In this paper, we will create some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex.

2 Lemma

For establishing some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, we need an integral identity below.

Lemma 2.1 Let f:IRR be a three times differentiable mapping on I and a,b I with a<b. If f L([a,b]), then

f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] = ( b a ) 3 96 [ 0 1 t ( 1 t ) ( 2 t ) f ( 1 t 2 a + 1 + t 2 b ) d t 0 1 t ( 1 t ) ( 2 t ) f ( 1 + t 2 a + 1 t 2 b ) d t ] .
(2.1)

Proof Integrating by part and changing variable of definite integral yield

0 1 t ( 1 t ) ( 2 t ) f ( 1 t 2 a + 1 + t 2 b ) d t = 2 b a 0 1 ( 3 t 2 6 t + 2 ) f ( 1 t 2 a + 1 + t 2 b ) d t = 4 ( b a ) 2 [ f ( b ) + 2 f ( a + b 2 ) ] + 48 ( b a ) 3 0 1 ( t 1 ) d f ( 1 t 2 a + 1 + t 2 b ) = 4 ( b a ) 2 [ f ( b ) + 2 f ( a + b 2 ) ] + 48 ( b a ) 3 f ( a + b 2 ) 48 ( b a ) 3 0 1 f ( 1 t 2 a + 1 + t 2 b ) d t

and

0 1 t ( 1 t ) ( 2 t ) f ( 1 + t 2 a + 1 t 2 b ) d t = 2 b a 0 1 ( 3 t 2 6 t + 2 ) f ( 1 + t 2 a + 1 t 2 b ) d t = 4 ( b a ) 2 [ f ( a ) + 2 f ( a + b 2 ) ] 48 ( b a ) 3 0 1 ( t 1 ) d f ( 1 + t 2 a + 1 t 2 b ) = 4 ( b a ) 2 [ f ( a ) + 2 f ( a + b 2 ) ] 48 ( b a ) 3 f ( a + b 2 ) + 48 ( b a ) 3 0 1 f ( 1 + t 2 a + 1 t 2 b ) d t .

Lemma 2.1 is thus proved. □

3 Hermite-Hadamard type inequalities for convex functions

Basing on Lemma 2.1, we now start out to establish some new integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex.

Theorem 3.1 Let f:IRR be three times differentiable on I and f L([a,b]) for a,b I with a<b. If | f | q for q1 is convex on [a,b], then

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 384 { [ 4 | f ( a ) | q + 11 | f ( b ) | q 15 ] 1 / q + [ 11 | f ( a ) | q + 4 | f ( b ) | q 15 ] 1 / q } .
(3.1)

Proof Since | f | q is convex on [a,b], by Lemma 2.1 and Hölder’s inequality, we have

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 { 0 1 t ( 1 t ) ( 2 t ) | f ( 1 t 2 a + 1 + t 2 b ) | d t + 0 1 t ( 1 t ) ( 2 t ) | f ( 1 + t 2 a + 1 t 2 b ) | d t } ( b a ) 3 96 [ 0 1 t ( 1 t ) ( 2 t ) d t ] 1 1 / q × { [ 0 1 t ( 1 t ) ( 2 t ) | f ( 1 t 2 a + 1 + t 2 b ) | q d t ] 1 / q + [ 0 1 t ( 1 t ) ( 2 t ) | f ( 1 + t 2 a + 1 t 2 b ) | q d t ] 1 / q } ( b a ) 3 96 ( 1 4 ) 1 1 / q { [ 1 2 0 1 t ( 1 t ) 2 ( 2 t ) | f ( a ) | q d t + 1 2 0 1 t ( 1 t 2 ) ( 2 t ) | f ( b ) | q d t ] 1 / q + [ 1 2 0 1 t ( 1 t 2 ) ( 2 t ) | f ( a ) | q d t + 1 2 0 1 t ( 1 t ) 2 ( 2 t ) | f ( b ) | q d t ] 1 / q } = ( b a ) 3 384 { [ 4 | f ( a ) | q + 11 | f ( b ) | q 15 ] 1 / q + [ 11 | f ( a ) | q + 4 | f ( b ) | q 15 ] 1 / q } .

The proof of Theorem 3.1 is complete. □

Corollary 3.1 Under conditions of Theorem  3.1, if q=1, we have

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 384 [ | f ( a ) | + | f ( b ) | ] .
(3.2)

Theorem 3.2 Let f:IRR be three times differentiable on I and f L([a,b]) for a,b I with a<b. If | f | q for q>1 is convex on [a,b] and if qr and s0, then

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 [ 2 B ( 2 q r 1 q 1 , 2 q s 1 q 1 ) B ( 3 q r 2 q 1 , 2 q s 1 q 1 ) ] 1 1 / q × ( 1 2 ) 1 / q { ( [ 2 B ( r + 1 , s + 2 ) B ( r + 2 , s + 2 ) ] | f ( a ) | q + [ 2 B ( r + 1 , s + 1 ) + B ( r + 2 , s + 1 ) B ( r + 3 , s + 1 ) ] | f ( b ) | q ) 1 / q + ( [ 2 B ( r + 1 , s + 1 ) + B ( r + 2 , s + 1 ) B ( r + 3 , s + 1 ) ] | f ( a ) | q + [ 2 B ( r + 1 , s + 2 ) B ( r + 2 , s + 2 ) ] | f ( b ) | q ) 1 / q } ,

where B(x,y) is the classical Beta function, which may be defined for Re(x)>0 and Re(y)>0 by

B(x,y)= 0 1 t x 1 ( 1 t ) y 1 dt.
(3.3)

Proof By Lemma 2.1, Hölder’s inequality, and the convexity of | f | q on [a,b], we have

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 { 0 1 t ( 1 t ) ( 2 t ) | f ( 1 t 2 a + 1 + t 2 b ) | d t + 0 1 t ( 1 t ) ( 2 t ) | f ( 1 + t 2 a + 1 t 2 b ) | d t } ( b a ) 3 96 ( 0 1 t ( q r ) / ( q 1 ) ( 1 t ) ( q s ) / ( q 1 ) ( 2 t ) d t ) 1 1 / q × { ( 0 1 t r ( 1 t ) s ( 2 t ) | f ( 1 t 2 a + 1 + t 2 b ) | q d t ) 1 / q + ( 0 1 t r ( 1 t ) s ( 2 t ) | f ( 1 + t 2 a + 1 t 2 b ) | q d t ) 1 / q } ( b a ) 3 96 [ 2 B ( 2 q r 1 q 1 , 2 q s 1 q 1 ) B ( 3 q r 2 q 1 , 2 q s 1 q 1 ) ] 1 1 / q × { [ 1 2 0 1 t r ( 1 t ) s + 1 ( 2 t ) | f ( a ) | q d t + 1 2 0 1 t r ( 1 + t ) ( 1 t ) s ( 2 t ) | f ( b ) | q d t ] 1 / q + [ 1 2 0 1 t r ( 1 + t ) ( 1 t ) s ( 2 t ) | f ( a ) | q d t + 1 2 0 1 t r ( 1 t ) s + 1 ( 2 t ) | f ( b ) | q d t ] 1 / q } = ( b a ) 3 96 [ 2 B ( 2 q r 1 q 1 , 2 q s 1 q 1 ) B ( 3 q r 2 q 1 , 2 q s 1 q 1 ) ] 1 1 / q × ( 1 2 ) 1 / q { [ [ 2 B ( r + 1 , s + 2 ) B ( r + 2 , s + 2 ) ] | f ( a ) | q + [ 2 B ( r + 1 , s + 1 ) + B ( r + 2 , s + 1 ) B ( r + 3 , s + 1 ) ] | f ( b ) | q ] 1 / q + [ [ 2 B ( r + 1 , s + 1 ) + B ( r + 2 , s + 1 ) B ( r + 3 , s + 1 ) ] | f ( a ) | q + [ 2 B ( r + 1 , s + 2 ) B ( r + 2 , s + 2 ) ] | f ( b ) | q ] 1 / q } .

The proof of Theorem 3.2 is completed. □

Corollary 3.2 Under conditions of Theorem  3.2,

  1. (1)

    if r=0, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 [ 2 B ( 2 q 1 q 1 , 2 q s 1 q 1 ) B ( 3 q 2 q 1 , 2 q s 1 q 1 ) ] 1 1 / q ( 1 2 ( s + 1 ) ( s + 2 ) ( s + 3 ) ) 1 / q × { [ ( s + 1 ) ( 2 s + 5 ) | f ( a ) | q + ( 2 s 2 + 11 s + 13 ) | f ( b ) | q ] 1 / q + [ ( 2 s 2 + 11 s + 13 ) | f ( a ) | q + ( s + 1 ) ( 2 s + 5 ) | f ( b ) | q ] 1 / q } ;
  2. (2)

    if s=0, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 [ 2 B ( 2 q r 1 q 1 , 2 q 1 q 1 ) B ( 3 q r 2 q 1 , 2 q 1 q 1 ) ] 1 1 / q [ 1 2 ( r + 1 ) ( r + 2 ) ( r + 3 ) ] 1 / q × { [ ( r + 5 ) | f ( a ) | q + ( 2 r 2 + 11 r + 13 ) | f ( b ) | q ] 1 / q + [ ( 2 r 2 + 11 r + 13 ) | f ( a ) | q + ( r + 5 ) | f ( b ) | q ] 1 / q } ;
  3. (3)

    if r=s=0, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 [ 2 B ( 2 q 1 q 1 , 2 q 1 q 1 ) B ( 3 q 2 q 1 , 2 q 1 q 1 ) ] 1 1 / q ( 3 2 ) 1 / q × { [ 5 | f ( a ) | q + 13 | f ( b ) | q 18 ] 1 / q + [ 13 | f ( a ) | q + 5 | f ( b ) | q 18 ] 1 / q } ;
  4. (4)

    if r=q, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 [ ( 5 q 2 s 3 ) ( q 1 ) ( q s ) 2 + ( 5 q 3 s 2 ) ( q 1 ) ] 1 1 / q ( 1 2 ) 1 / q × { [ [ 2 B ( q + 1 , s + 2 ) B ( q + 2 , s + 2 ) ] | f ( a ) | q + [ 2 B ( q + 1 , s + 1 ) + B ( q + 2 , s + 1 ) B ( q + 3 , s + 1 ) ] | f ( b ) | q ] 1 / q + [ [ 2 B ( q + 1 , s + 1 ) + B ( q + 2 , s + 1 ) B ( q + 3 , s + 1 ) ] | f ( a ) | q + [ 2 B ( q + 1 , s + 2 ) B ( q + 2 , s + 2 ) ] | f ( b ) | q ] 1 / q } ;
  5. (5)

    if s=q, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 ( ( q 1 ) ( 4 q r 3 ) ( 2 q r 1 ) ( 3 q r 2 ) ) 1 1 / q ( 1 2 ) 1 / q × { [ [ 2 B ( r + 1 , q + 2 ) B ( r + 2 , q + 2 ) ] | f ( a ) | q + [ 2 B ( r + 1 , q + 1 ) + B ( r + 2 , q + 1 ) B ( r + 3 , q + 1 ) ] | f ( b ) | q ] 1 / q + [ [ 2 B ( r + 1 , q + 1 ) + B ( r + 2 , q + 1 ) B ( r + 3 , q + 1 ) ] | f ( a ) | q + [ 2 B ( r + 1 , q + 2 ) B ( r + 2 , q + 2 ) ] | f ( b ) | q ] 1 / q } ;
  6. (6)

    if r=s=q, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | 3 1 / q ( b a ) 3 64 { [ [ 2 B ( q + 1 , q + 2 ) B ( q + 2 , q + 2 ) ] | f ( a ) | q + [ 2 B ( q + 1 , q + 1 ) + B ( q + 2 , q + 1 ) B ( q + 3 , q + 1 ) ] | f ( b ) | q ] 1 / q + [ [ 2 B ( q + 1 , q + 1 ) + B ( q + 2 , q + 1 ) B ( q + 3 , q + 1 ) ] | f ( a ) | q + [ 2 B ( q + 1 , q + 2 ) B ( q + 2 , q + 2 ) ] | f ( b ) | q ] 1 / q } .

Theorem 3.3 Let f:IRR be three times differentiable on I and f L([a,b]) for a,b I with a<b. If | f | q is convex on [a,b] for q>1 and q0, then

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 [ ( 2 ξ + 2 + 1 ) ξ 2 ξ + 2 + 5 ξ 3 + 6 ξ 2 + 11 ξ + 6 ] 1 1 / q [ 1 ( + 1 ) ( + 2 ) ( + 3 ) ( + 4 ) ] 1 / q × { [ ( 2 + 1 2 ( 2 + 1 + 1 ) + 2 + 3 7 ) | f ( a ) | q + ( ( 2 + 1 + 1 ) 2 + 2 ( 7 × 2 + 5 ) 3 × 2 + 3 + 27 ) | f ( b ) | q ] 1 / q + [ ( ( 2 + 1 + 1 ) 2 + 2 ( 7 × 2 + 5 ) 3 × 2 + 3 + 27 ) | f ( a ) | q + ( 2 + 1 2 ( 2 + 1 + 1 ) + 2 + 3 7 ) | f ( b ) | q ] 1 / q } ,

where ξ= q q 1 .

Proof By Lemma 2.1, Hölder’s inequality, and the convexity of | f | q on [a,b], we have

| f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 { 0 1 t ( 1 t ) ( 2 t ) | f ( 1 t 2 a + 1 + t 2 b ) | d t + 0 1 t ( 1 t ) ( 2 t ) | f ( 1 + t 2 a + 1 t 2 b ) | d t } ( b a ) 3 96 ( 0 1 t ( 1 t ) ( 2 t ) ( q ) / ( q 1 ) d t ) 1 1 / q × { ( 0 1 t ( 1 t ) ( 2 t ) | f ( 1 t 2 a + 1 + t 2 b ) | q d t ) 1 / q + ( 0 1 t ( 1 t ) ( 2 t ) | f ( 1 + t 2 a + 1 t 2 b ) | q d t ) 1 / q } ( b a ) 3 96 ( 0 1 t ( 1 t ) ( 2 t ) ( q ) / ( q 1 ) d t ) 1 1 / q × { [ 1 2 0 1 t ( 1 t ) ( 2 t ) [ ( 1 t ) | f ( a ) | q + ( 1 + t ) | f ( b ) | q ] d t ] 1 / q + [ 1 2 0 1 t ( 1 t ) ( 2 t ) [ ( 1 + t ) | f ( a ) | q + ( 1 t ) | f ( b ) | q ] d t ] 1 / q } = ( b a ) 3 96 [ ( 2 ξ + 2 + 1 ) ξ 2 ξ + 2 + 5 ξ 3 + 6 ξ 2 + 11 ξ + 6 ] 1 1 / q [ 1 ( + 1 ) ( + 2 ) ( + 3 ) ( + 4 ) ] 1 / q × { [ ( 2 + 1 2 ( 2 + 1 + 1 ) + 2 + 3 7 ) | f ( a ) | q + ( ( 2 + 1 + 1 ) 2 + 2 ( 7 × 2 + 5 ) 3 × 2 + 3 + 27 ) | f ( b ) | q ] 1 / q + [ ( ( 2 + 1 + 1 ) 2 + 2 ( 7 × 2 + 5 ) 3 × 2 + 3 + 27 ) | f ( a ) | q + ( 2 + 1 2 ( 2 + 1 + 1 ) + 2 + 3 7 ) | f ( b ) | q ] 1 / q } .

The proof of Theorem 3.3 is complete. □

Corollary 3.3 Under conditions of Theorem  3.3.

  1. (1)

    if =0, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 ( 1 6 ) 1 / q [ ( q 1 ) 2 ( 6 q + 2 ( 3 q 2 ) / ( q 1 ) 5 ) ( 2 q 1 ) ( 3 q 2 ) ( 4 q 3 ) ] 1 1 / q × { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } ,
    (3.4)
  2. (2)

    if =q, we have

    | f ( a + b 2 ) 1 b a a b f ( x ) d x + b a 24 [ f ( b ) f ( a ) ] | ( b a ) 3 96 ( 1 6 ) 1 1 / q [ 1 ( q + 1 ) ( q + 2 ) ( q + 3 ) ( q + 4 ) ] 1 / q × { [ ( 2 q + 1 q 2 ( 2 q + 1 + 1 ) q + 2 q + 3 7 ) | f ( a ) | q + ( ( 2 q + 1 + 1 ) q 2 + 2 ( 7 × 2 q + 5 ) q 3 × 2 q + 3 + 27 ) | f ( b ) | q ] 1 / q + [ ( ( 2 q + 1 + 1 ) q 2 + 2 ( 7 × 2 q + 5 ) q 3 × 2 q + 3 + 27 ) | f ( a ) | q + ( 2 q + 1 q 2 ( 2 q + 1 + 1 ) q + 2 q + 3 7 ) | f ( b ) | q ] 1 / q } .

References

  1. Dragomir SS: Two mappings on connection to Hadamard’s inequality. J. Math. Anal. Appl. 1992, 167(1):49–56. Available online at 10.1016/0022-247X(92)90233-4

    Article  MathSciNet  Google Scholar 

  2. Kirmaci US: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147(1):137–146. Available online at 10.1016/S0096-3003(02)00657-4

    Article  MathSciNet  Google Scholar 

  3. Dragomir SS, Pečarić J, Persson L-E: Some inequalities of Hadamard type. Soochow J. Math. 1995, 21(3):335–341.

    MathSciNet  Google Scholar 

  4. Alomari M, Hussain S: Two inequalities of Simpson type for quasi-convex functions and applications. Appl. Math. E-Notes 2011, 11: 110–117.

    MathSciNet  Google Scholar 

  5. Hudzik H, Maligranda L: Some remarks on s -convex functions. Aequ. Math. 1994, 48(1):100–111. Available online at 10.1007/BF01837981

    Article  MathSciNet  Google Scholar 

  6. Chun L, Qi F: Integral inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are s -convex. Appl. Math. 2012, 3(11):1680–1685. Available online at 10.4236/am.2012.311232

    Article  Google Scholar 

  7. Bai R-F, Qi F, Xi B-Y: Hermite-Hadamard type inequalities for the m - and (α,m)-logarithmically convex functions. Filomat 2013, 27(1):1–7. Available online at 10.2298/FIL1301001B

    Article  MathSciNet  Google Scholar 

  8. Bai S-P, Qi F:Some inequalities for ( s 1 , m 1 )-( s 2 , m 2 )-convex functions on the co-ordinates. Glob. J. Math. Anal. 2013, 1(1):22–28.

    MathSciNet  Google Scholar 

  9. Bakula MK, Özdemir ME, Pečarić J: Hadamard type inequalities for m -convex and (α,m)-convex functions. J. Inequal. Pure Appl. Math. 2008., 9(4): Article ID 96. Available online at http://www.emis.de/journals/JIPAM/article1032.html

  10. Kavurmaci, H, Avci, M, Özdemir, ME: New inequalities of Hermite-Hadamard type for convex functions with applications. Available online at arXiv:1006.1593. e-printatarXiv.org

  11. Qi F, Wei Z-L, Yang Q: Generalizations and refinements of Hermite-Hadamard’s inequality. Rocky Mt. J. Math. 2005, 35(1):235–251. Available online at 10.1216/rmjm/1181069779

    Article  MathSciNet  Google Scholar 

  12. Shuang Y, Yin H-P, Qi F: Hermite-Hadamard type integral inequalities for geometric-arithmetically s -convex functions. Analysis 2013, 33(2):197–208. Available online at 10.1524/anly.2013.1192

    Article  MathSciNet  Google Scholar 

  13. Xi B-Y, Qi F: Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 2013, 42(3):243–257.

    MathSciNet  Google Scholar 

  14. Xi B-Y, Qi F: Hermite-Hadamard type inequalities for functions whose derivatives are of convexities. Nonlinear Funct. Anal. Appl. 2013, 18(2):163–176.

    Google Scholar 

  15. Xi B-Y, Qi F: Some inequalities of Hermite-Hadamard type for h -convex functions. Adv. Inequal. Appl. 2013, 2(1):1–15.

    MathSciNet  Google Scholar 

  16. Xi B-Y, Wang Y, Qi F:Some integral inequalities of Hermite-Hadamard type for extended (s,m)-convex functions. Transylv. J. Math. Mech. 2013, 5(1):69–84.

    MathSciNet  Google Scholar 

  17. Zhang T-Y, Ji A-P, Qi F: Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions. Proc. Jangjeon Math. Soc. 2013, 16(3):399–407.

    MathSciNet  Google Scholar 

  18. Zhang T-Y, Ji A-P, Qi F: On integral inequalities of Hermite-Hadamard type for s -geometrically convex functions. Abstr. Appl. Anal. 2013., 2013: Article ID 560586. Available online at 10.1155/2012/560586

    Google Scholar 

  19. Zhang T-Y, Ji A-P, Qi F: Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Matematiche 2013, 68(1):229–239. Available online at 10.4418/2013.68.1.17

    MathSciNet  Google Scholar 

  20. Dragomir SS, Pearce CEM RGMIA Monographs. In Selected Topics on Hermite-Hadamard Type Inequalities and Applications. Victoria University, Melbourne; 2000. Available online at http://rgmia.org/monographs/hermite_hadamard.html

    Google Scholar 

  21. Niculescu CP, Persson L-E: Convex functions and their applications. In CMS Books in Mathematics. Springer, Berlin; 2005.

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the editor and anonymous referees for their careful reading, helpful comments on, and valuable suggestions to the original version of this manuscript. This work was partially supported by the NNSF of China under Grant No. 11361038, by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZY13159, and by the Science Research Funding of the Inner Mongolia University for Nationalities under Grant No. NMD1225, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qi.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Chun, L., Qi, F. Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex. J Inequal Appl 2013, 451 (2013). https://doi.org/10.1186/1029-242X-2013-451

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-451

Keywords