Skip to main content

On some inequalities for relative semi-convex functions

Abstract

We consider and study a new class of convex functions that are called relative semi-convex functions. Some Hermite-Hadamard inequalities for the relative semi-convex function and its variant forms are derived. Several special cases are also discussed. Results proved in this paper may stimulate further research in this area.

MSC:26D15, 26A51, 49J40.

1 Introduction

Convexity plays a central and fundamental role in the fields of mathematical finance, economics, engineering, management sciences, and optimization theory. In recent years, the concept of convexity has been extended and generalized in several directions using the novel and innovative ideas; see, for example, [1–13] and the references therein. A significant generalization of a convex set and a convex function was the introduction of a relative convex (g-convex) set and a relative convex (g-convex) function by Youness [13]. Noor [14] showed that the optimality condition for a relative convex function on the relative convex set can be characterized by a class of variational inequalities known as general variational inequalities. Motivated by the work of Youness [13] and Noor [14], Chen [2] introduced and studied a new class of functions called relative semi-convex functions. Noor et al. [15] derived Hermite-Hadamard inequalities for differentiable relative semi-convex functions. For useful details on Hermite-Hadamard inequalities, see [1, 5–8, 10, 15–22].

Niculescu [7] introduced the concept of relative convexity and proved various properties and generalizations of classical results for relative convexity. Mercer [6] has also proved some useful results for relative convexity.

In this paper, we derive some Hermite-Hadamard inequalities for the relative semi-convex function and the logarithmic relative semi-convex function. The ideas of this paper may stimulate further research in this area.

2 Preliminaries

In this section, we recall some basic results and concepts, which are useful in proving our results. Let R n be a finite dimensional space, the inner product of which is denoted by 〈⋅,⋅〉.

Definition 2.1 [13]

A set M⊆ R n is said to be a relative convex (g-convex) set if and only if there exists an arbitrary function g: R n → R n such that

(1−t)g(x)+tg(y)∈M,∀x,y∈ R n :g(x),g(y)∈M,t∈[0,1].
(2.1)

It is known [23] that if M is a relative convex set, then it may not be a classical convex set. For example, for M=[−1,− 1 2 ]∪[0,1] and g(x)= x 2 , ∀x∈R. Clearly, this is a relative convex set but not a classical convex set.

Definition 2.2 [13]

A function f is said to be a relative convex (g-convex) function on the relative convex set M if and only if there exists a function g: R n → R n such that

f ( ( 1 − t ) g ( x ) + t g ( y ) ) ≤ ( 1 − t ) f ( g ( x ) ) + t f ( g ( y ) ) , ∀ x , y ∈ R n : g ( x ) , g ( y ) ∈ M , t ∈ [ 0 , 1 ] .
(2.2)

Every convex function f on a convex set is a relative convex function. However, the converse is not true. There are functions which are relative convex functions but may not be convex functions in the classical sense, see [13].

Definition 2.3 [2]

A function f is said to be a relative semi-convex function if and only if there exists an arbitrary function g: R n → R n such that

f ( ( 1 − t ) g ( x ) + t g ( y ) ) ≤(1−t)f(x)+tf(y),x,y∈M,t∈[0,1].
(2.3)

Remark 2.1 A relative semi-convex function on a relative convex set is not necessarily a relative convex function, see [2].

Definition 2.4 [3]

A function f:M→ R + is said to be relative logarithmic semi-convex on a relative convex set M if

f ( ( 1 − t ) g ( x ) + t g ( y ) ) ≤ [ f ( x ) ] 1 − t [ f ( y ) ] t ,∀x,y∈M,t∈[0,1].
(2.4)

From Definition 2.4 it follows that

f ( ( 1 − t ) g ( x ) + t g ( y ) ) ≤ [ f ( x ) ] 1 − t [ f ( y ) ] t ≤ ( 1 − t ) f ( x ) + t f ( y ) ,

which shows that every relative logarithmic semi-convex function is a relative semi-convex function, but the converse is not true.

Definition 2.5 [24]

Let f∈ L 1 [a,b]. The generalized Riemann-Liouville fractional integrals J a + α f and J b − α f of order α>0 with p≥0 are defined by

J p , a + α f(x)= ( p + 1 ) 1 − α Γ ( α ) ∫ a x ( x p + 1 − t p + 1 ) α − 1 t p f(t)dt,x>a,

and

J p , b − α f(x)= ( p + 1 ) 1 − α Γ ( α ) ∫ x b ( t p + 1 − x p + 1 ) α − 1 t p f(t)dt,x<b,

respectively, where Γ(α)= ∫ 0 ∞ e − t x α − 1 dx is the gamma function.

If p=0, then Definition 2.5 reduces to the definition for classical Riemann-Liouville integrals. See also [25, 26].

Definition 2.6 [20]

Two functions f and g are said to be similarly ordered on I⊆R if

〈 f ( x ) − f ( y ) , g ( x ) − g ( y ) 〉 ≥0,∀x,y∈I.

Let M=I=[g(a),g(b)] be a relative semi-convex set. We now define a relative semi-convex function on I, which appears to be a new one.

Definition 2.7 Let I=[g(a),g(b)], then f is called a relative semi-convex function if and only if

| 1 1 1 g ( a ) g ( x ) g ( b ) f ( a ) f ( g ( x ) ) f ( b ) | ≥0;g(a)≤g(x)≤g(b).

One can easily show that the following are equivalent:

  1. 1.

    f is a relative semi-convex function on a relative convex set.

  2. 2.

    f(g(x))≤f(a)+ f ( b ) − f ( a ) g ( b ) − g ( a ) (g(x)−g(a)).

  3. 3.

    f ( g ( x ) ) − f ( a ) g ( x ) − g ( a ) ≤ f ( b ) − f ( a ) g ( b ) − g ( a ) ≤ f ( b ) − f ( g ( x ) ) g ( b ) − g ( x ) .

  4. 4.

    − f ( a ) ( g ( x ) − g ( a ) ) ( g ( b ) − g ( a ) ) + f ( g ( x ) ) ( g ( b ) − g ( x ) ) ( g ( x ) − g ( a ) ) − f ( b ) ( g ( b ) − g ( a ) ) ( g ( b ) − g ( x ) ) ≥0.

  5. 5.

    (g(b)−g(x))f(a)−(g(b)−g(a))f(g(x))+(g(x)−g(a))f(b)≥0,

where g(x)=(1−t)g(a)+tg(b)∈M, t∈[0,1].

For the applications of the relative convex functions, see [27].

Remark 2.2 We note that if f is a differentiable relative semi-convex function, then

f ( g ( y ) ) −f(x)≥ 〈 f ′ ( x ) g ′ ( x ) , g ( y ) − g ( x ) 〉 ,∀g(y)∈ ( g ( a ) , g ( b ) ) .

3 Main results

In this section we discuss our main results.

Essentially using the techniques of [7], one can prove the following results for relative semi-convexity.

Lemma 3.1 Let f be a relative semi-convex function. If g is not a constant function, then

g(a)=g(x)impliesf(a)=f ( g ( x ) ) .

Lemma 3.2 Let f:I→R be a relative semi-convex function, where I=[g(a),g(b)]. If g(x)∉{g(a),g(b)}, then

f ( b ) − f ( g ( x ) ) g ( b ) − g ( x ) ≥ f ( a ) − f ( g ( x ) ) g ( a ) − g ( x ) .

Lemma 3.3 Let f be a relative semi-convex function. Consider g( x 1 ),g( x 2 ),…,g( x n )∈I, g( y 1 ),g( y 2 ),…,g( y n )∈I and weights ω 1 , ω 2 ,…, ω n ∈R such that:

  1. (i)

    g( x 1 )≥g( x 2 )≥⋯≥g( x n ) and g( y 1 )≥g( y 2 )≥⋯≥g( y n ),

  2. (ii)

    ∑ k = 1 r ω k g( x k )≤ ∑ k = 1 r ω k g( y k ), ∀r=1,…,n,

  3. (iii)

    ∑ k = 1 n ω k g( x k )= ∑ k = 1 n ω k g( y k ),

then we have

∑ k = 1 n ω k f ( g ( x k ) ) ≤ ∑ k = 1 n ω k f( y k ).

Lemma 3.4 Let f be a relative semi-convex function. Consider g( x 1 ),g( x 2 ),…,g( x n )∈I, g( y 1 ),g( y 2 ),…,g( y n )∈I and weights ω 1 , ω 2 ,…, ω n ∈R such that

  1. (i)

    g( x 1 )≥g( x 2 )≥⋯≥g( x n ) and g( y 1 )≥g( y 2 )≥⋯≥g( y n ),

  2. (ii)

    ∑ k = 1 r ω k g( x k )≤ ∑ k = 1 r ω k g( y k ), ∀r=1,…,n,

  3. (iii)

    〈f(x)−f(y),g(x)−g(y)〉≥0,

then we have

∑ k = 1 n ω k f ( g ( x k ) ) ≤ ∑ k = 1 n ω k f( y k ).

Lemma 3.5 Let f be a relative semi-convex function, then, for all g(a)<g(c)<g(d)<g(b), we have

f ( a ) + f ( b ) 2 −f ( g ( a ) + g ( b ) 2 ) ≥ f ( c ) + f ( d ) 2 −f ( g ( c ) + g ( d ) 2 ) .

Theorem 3.6 Let f and w be two relative semi-convex functions. Then the product of f and w will be a relative semi-convex function if f and w are similarly ordered functions.

Proof Since f and w are relative semi-convex functions, so we have

f ( ( 1 − t ) g ( a ) + t g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) ≤ [ ( 1 − t ) f ( a ) + t f ( b ) ] [ ( 1 − t ) w ( a ) + t w ( b ) ] = [ 1 − t ] 2 f ( a ) w ( a ) + t ( 1 − t ) f ( a ) w ( b ) + t ( 1 − t ) f ( b ) w ( a ) + [ t ] 2 f ( b ) w ( b ) = ( 1 − t ) f ( a ) w ( a ) + t f ( b ) w ( b ) − t ( 1 − t ) [ f ( a ) w ( a ) + f ( b ) w ( b ) − f ( b ) w ( a ) − f ( a ) w ( b ) ] ≤ ( 1 − t ) f ( a ) w ( a ) + t f ( b ) w ( b ) ,

where we have used the fact that f and w are similarly ordered. This completes the proof. □

We now obtain some Hermite-Hadamard inequalities for relative semi-convex functions.

Theorem 3.7 Let f:I⊆R→R be a relative semi-convex function on I=[g(a),g(b)] with g(a)<g(b), then we have

f ( g ( a ) + g ( b ) 2 ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) dg(x)≤ f ( a ) + f ( b ) 2 .
(3.1)

Proof Let f be relative semi-convex. Then

f ( g ( a ) + g ( b ) 2 ) = ∫ 0 1 f ( g ( a ) + g ( b ) 2 ) d t = ∫ 0 1 f ( ( 1 − t ) g ( a ) + t g ( b ) + t g ( a ) + ( 1 − t ) g ( b ) 2 ) d t ≤ 1 2 ∫ 0 1 [ f ( ( 1 − t ) g ( a ) + t g ( b ) ) + f ( t g ( a ) + ( 1 − t ) g ( b ) ) ] d t = 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) = ∫ 0 1 f ( ( 1 − t ) g ( a ) + t g ( b ) ) d t ≤ ∫ 0 1 ( ( 1 − t ) f ( a ) + t f ( b ) ) d t = f ( a ) + f ( b ) 2 .

 □

Using the technique of [21], we can prove the following result.

Lemma 3.8 Let f be a semi-relative convex function. Then, for any g(x)∈[g(a),g(b)], we have

f ( g ( a ) + g ( b ) − g ( x ) ) ≤f(a)+f(b)−f ( g ( x ) ) .

Theorem 3.9 Let f be a relative semi-convex function and let w:[g(a),g(b)]→R be nonnegative, integrable and symmetric about g ( a ) + g ( b ) 2 . Then

f ( g ( a ) + g ( b ) 2 ) ∫ g ( a ) g ( b ) w ( g ( x ) ) d g ( x ) ≤ ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) ≤ f ( a ) + f ( b ) 2 ∫ g ( a ) g ( b ) w ( g ( x ) ) d g ( x ) .
(3.2)

Proof Since f is a relative semi-convex function and w:[g(a),g(b)]→R is nonnegative, integrable and symmetric about g ( a ) + g ( b ) 2 , we have

f ( g ( a ) + g ( b ) 2 ) ∫ g ( a ) g ( b ) w ( g ( x ) ) d g ( x ) = ∫ g ( a ) g ( b ) f ( g ( a ) + g ( b ) 2 ) w ( g ( x ) ) d g ( x ) ≤ ∫ g ( a ) g ( b ) [ 1 2 ( f ( g ( a ) + g ( b ) − g ( x ) ) + f ( g ( x ) ) ) ] w ( g ( x ) ) d g ( x ) ≤ ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) = 1 2 ∫ g ( a ) g ( b ) f ( g ( a ) + g ( b ) − g ( x ) ) w ( g ( x ) ) d g ( x ) + 1 2 ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) ≤ 1 2 ∫ g ( a ) g ( b ) { f ( a ) + f ( b ) − f ( g ( x ) ) } w ( g ( x ) ) d g ( x ) + 1 2 ∫ a g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) = f ( a ) + f ( b ) 2 ∫ g ( a ) g ( b ) w ( g ( x ) ) d g ( x ) .

This completes the proof. □

Theorem 3.10 Let f,w:I⊆R→R be relative semi-convex functions on I with g(a)<g(b). Then, for all t∈[0,1], we have

2 f ( g ( a ) + g ( b ) 2 ) w ( g ( a ) + g ( b ) 2 ) − [ 1 6 M ( a , b ) + 1 2 N ( a , b ) ] ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) ≤ 1 3 M ( a , b ) + 1 6 N ( a , b ) ,

where

M(a,b)=f(a)w(a)+f(b)w(b),
(3.3)
N(a,b)=f(a)w(b)+f(b)w(a).
(3.4)

Proof Let f and w be relative semi-convex functions. Then

f ( g ( a ) + g ( b ) 2 ) w ( g ( a ) + g ( b ) 2 ) = f ( t g ( a ) + ( 1 − t ) g ( b ) + ( 1 − t ) g ( a ) + t g ( b ) 2 ) × w ( t g ( a ) + ( 1 − t ) g ( b ) + ( 1 − t ) g ( a ) + t g ( b ) 2 ) ≤ 1 2 [ f ( t g ( a ) + ( 1 − t ) g ( b ) ) + f ( ( 1 − t ) g ( a ) + t g ( b ) ) ] × 1 2 [ w ( t g ( a ) + ( 1 − t ) g ( b ) ) + w ( ( 1 − t ) g ( a ) + t g ( b ) ) ] = 1 4 [ f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) + f ( ( 1 − t ) g ( a ) + t g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) ] + 1 4 [ f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) + f ( ( 1 − t ) g ( a ) + t g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) ] ≤ 1 4 [ f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) + f ( ( 1 − t ) g ( a ) + t g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) ] + 1 4 [ 2 t ( 1 − t ) ( f ( a ) w ( a ) + f ( b ) w ( b ) ) + ( t 2 + ( 1 − t ) 2 ) ( f ( b ) w ( a ) + f ( a ) w ( b ) ) ] .

Integrating with respect to t on [0,1], we have

f ( g ( a ) + g ( b ) 2 ) w ( g ( a ) + g ( b ) 2 ) ≤ 1 4 [ 2 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) ] + 1 2 [ 1 6 M ( a , b ) + 1 3 N ( a , b ) ] .

This implies that

2 f ( g ( a ) + g ( b ) 2 ) w ( g ( a ) + g ( b ) 2 ) − [ 1 6 M ( a , b ) + 1 3 N ( a , b ) ] ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) = ∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) d t ≤ ∫ 0 1 [ t f ( a ) + ( 1 − t ) f ( b ) ] [ t w ( a ) + ( 1 − t ) w ( b ) ] d t = 1 3 M ( a , b ) + 1 6 N ( a , b ) .

This completes the proof. □

Theorem 3.11 Let f,w:I⊆R→R be relative semi-convex functions on I with g(a)<g(b). If w is symmetric about g ( a ) + g ( b ) 2 , then for all t∈[0,1] we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( a ) + g ( b ) − g ( x ) ) dg(x)≤ 1 6 M(a,b)+ 1 3 N(a,b),

where M(a,b) and N(a,b) are given by (3.3) and (3.4), Θ(a,b)= [ f ( a ) ] 2 + [ f ( b ) ] 2 + [ w ( a ) ] 2 + [ w ( b ) ] 2 .

Proof Since f and w are relative semi-convex functions, then we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( a ) + g ( b ) − g ( x ) ) d g ( x ) = ∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) d t ≤ 1 2 ∫ 0 1 { [ f ( t g ( a ) + ( 1 − t ) g ( b ) ) ] 2 + [ w ( ( 1 − t ) g ( a ) + t g ( b ) ) ] 2 } d t ≤ 1 2 ∫ 0 1 { [ t f ( a ) + ( 1 − t ) f ( b ) ] 2 + [ ( 1 − t ) w ( a ) + t w ( b ) ] 2 } d t = 1 6 { [ f ( a ) ] 2 + [ f ( b ) ] 2 + f ( a ) f ( b ) + [ w ( a ) ] 2 + [ w ( b ) ] 2 + w ( a ) w ( b ) } ≤ 1 4 { [ f ( a ) ] 2 + [ f ( b ) ] 2 + [ w ( a ) ] 2 + [ w ( b ) ] 2 } = 1 4 Θ ( a , b ) ≤ ∫ 0 1 ( t f ( a ) + ( 1 − t ) f ( b ) ) ( ( 1 − t ) w ( a ) + t w ( b ) ) d t = 1 6 f ( a ) w ( a ) + 1 3 f ( a ) w ( b ) + 1 3 f ( b ) w ( a ) + 1 6 f ( b ) w ( b ) = 1 6 M ( a , b ) + 1 3 N ( a , b ) .

The desired result. □

Theorem 3.12 Let f,w:I⊆R→R be similarly ordered and relative semi-convex functions on I with g(a)<g(b). Then, for all t∈[0,1], we have

2 f ( g ( a ) + g ( b ) 2 ) w ( g ( a ) + g ( b ) 2 ) − 1 4 M ( a , b ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) ≤ f ( a ) w ( a ) + f ( b ) w ( b ) 2 ,

where M(a,b) is given by (3.3).

Proof Since f and w are similarly ordered functions, the proof follows from Theorem 3.10. □

Theorem 3.13 Let f be a relative semi-convex function, then for all λ∈(0,1) we have

f ( g ( a ) + g ( b ) 2 ) ≤ Δ 1 ( λ ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) ≤ Δ 2 ( λ ) ≤ f ( a ) + f ( b ) 2 ,
(3.5)

where

Δ 1 (λ)=λf ( ( 2 − λ ) g ( a ) + λ g ( b ) 2 ) +(1−λ)f ( ( 1 − λ ) g ( a ) + ( 1 + λ ) g ( b ) 2 )

and

Δ 2 (λ)= f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + λ f ( a ) + ( 1 − λ ) f ( b ) 2 .

Proof We divide the interval [g(a),g(b)] into [g(a),(1−λ)g(a)+λg(b)] and [(1−λ)g(a)+λg(b),g(b)]. Using the left-hand side of (3.1), we have

f ( ( 2 − λ ) g ( a ) + λ g ( b ) 2 ) ≤ 1 λ ( g ( b ) − g ( a ) ) ∫ g ( a ) ( 1 − λ ) g ( a ) + λ g ( b ) f ( g ( x ) ) dg(x),
(3.6)
f ( ( 1 − λ ) g ( a ) + ( 1 + λ g ( b ) ) 2 ) ≤ 1 ( 1 − λ ) ( g ( b ) − g ( a ) ) ∫ ( 1 − λ ) g ( a ) + λ g ( b ) g ( b ) f ( g ( x ) ) dg(x).
(3.7)

Multiplying (3.6) by λ and (3.7) by (1−λ), and then adding the resultant, we have

Δ 1 ( λ ) = λ f ( ( 2 − λ ) g ( a ) + λ g ( b ) 2 ) + ( 1 − λ ) f ( ( 1 − λ ) g ( a ) + ( 1 + λ g ( b ) ) 2 ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) .
(3.8)

Now, using the right-hand side of (3.1), we have

1 λ ( g ( b ) − g ( a ) ) ∫ g ( a ) ( 1 − λ ) g ( a ) + λ g ( b ) f ( g ( x ) ) d g ( x ) ≤ f ( g ( a ) ) + f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) 2 1 λ ( g ( b ) − g ( a ) ) ∫ g ( a ) ( 1 − λ ) g ( a ) + λ g ( b ) f ( g ( x ) ) d g ( x ) ≤ f ( a ) + f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) 2 ,
(3.9)
1 ( 1 − λ ) ( g ( b ) − g ( a ) ) ∫ ( 1 − λ ) g ( a ) + λ g ( b ) g ( b ) f ( g ( x ) ) d g ( x ) ≤ f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + f ( g ( b ) ) 2 1 ( 1 − λ ) ( g ( b ) − g ( a ) ) ∫ ( 1 − λ ) g ( a ) + λ g ( b ) g ( b ) f ( g ( x ) ) d g ( x ) ≤ f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + f ( b ) 2 .
(3.10)

Multiplying (3.9) by λ and (3.10) by (1−λ) and adding the resultant, we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) ≤ f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + λ f ( a ) + ( 1 − λ ) f ( b ) 2 = Δ 2 ( λ ) .
(3.11)

Now, using the fact that f is a relative semi-convex function, and also every convex function is a relative semi-convex function, we have

f ( g ( a ) + g ( b ) 2 ) = f ( λ ( 2 − λ ) g ( a ) + λ g ( b ) 2 + ( 1 − λ ) ( 1 − λ ) g ( a ) + ( 1 + λ ) g ( b ) 2 ) ≤ λ f ( ( 2 − λ ) g ( a ) + λ g ( b ) 2 ) + ( 1 − λ ) f ( ( 1 − λ ) g ( a ) + ( 1 + λ ) g ( b ) 2 ) = Δ 1 ( λ ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) ≤ 1 2 [ λ f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + λ f ( a ) + ( 1 − λ ) f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + ( 1 − λ ) f ( b ) ] = 1 2 [ f ( ( 1 − λ ) g ( a ) + λ g ( b ) ) + λ f ( a ) + ( 1 − λ ) f ( b ) ] = Δ 2 ( λ ) ≤ 1 2 [ ( 1 − λ ) f ( a ) + λ f ( b ) + λ f ( a ) + ( 1 − λ ) f ( b ) ] = f ( a ) + f ( b ) 2 ,
(3.12)

the required result. □

Remark 3.1 For suitable and different choices of λ∈(0,1) and g=I in Theorem 3.13, one can obtain several new and previously known results for various classes of convex functions.

We now prove the Hermite-Hadamard type inequalities for relative semi-convex functions via fractional integrals.

Theorem 3.14 Let f be a relative semi-convex function. Then

J p , g ( a ) + α f ( g ( b ) ) + J p , g ( b ) − α f ( g ( a ) ) ≤ [ f ( a ) + f ( b ) ] [ J p , g ( a ) + α ( 1 ) + J p , g ( b ) − α ( 1 ) ] ,α>0,p≥0.

Proof Since f is a relative semi-convex function on M, so

( p + 1 ) 1 − α Γ ( α ) ∫ 0 1 ( [ g ( b ) ] p + 1 − [ ( 1 − t ) g ( a ) + t g ( b ) ] p + 1 ) α − 1 × [ ( 1 − t ) g ( a ) + t g ( b ) ] p f ( ( 1 − t ) g ( a ) + t g ( b ) ) d t ≤ ( p + 1 ) 1 − α Γ ( α ) f ( a ) ∫ 0 1 ( [ g ( b ) ] p + 1 − [ ( 1 − t ) g ( a ) + t g ( b ) ] p + 1 ) α − 1 × [ ( 1 − t ) g ( a ) + t g ( b ) ] p ( 1 − t ) d t + ( p + 1 ) 1 − α Γ ( α ) f ( b ) ∫ 0 1 ( [ g ( b ) ] p + 1 − [ ( 1 − t ) g ( a ) + t g ( b ) ] p + 1 ) α − 1 × [ ( 1 − t ) g ( a ) + t g ( b ) ] p ( t ) d t .

Let g(x)=(1−t)g(a)+tg(b), then dt= d g ( x ) g ( b ) − g ( a ) . Take t= g ( x ) − g ( a ) g ( b ) − g ( a ) , 1−t= g ( b ) − g ( x ) g ( b ) − g ( a ) . Then we have

( p + 1 ) 1 − α Γ ( α ) ( g ( b ) − g ( a ) ) ∫ g ( a ) g ( b ) ( [ g ( b ) ] p + 1 − [ g ( x ) ] p + 1 ) α − 1 [ g ( x ) ] p f ( g ( x ) ) d g ( x ) ≤ ( p + 1 ) 1 − α Γ ( α ) f ( a ) g ( b ) − g ( a ) ∫ g ( a ) g ( b ) ( [ g ( b ) ] p + 1 − [ g ( x ) ] p + 1 ) α − 1 [ g ( x ) ] p g ( b ) − g ( x ) g ( b ) − g ( a ) d g ( x ) + ( p + 1 ) 1 − α Γ ( α ) f ( b ) g ( b ) − g ( a ) × ∫ g ( a ) g ( b ) ( [ g ( b ) ] p + 1 − [ g ( x ) ] p + 1 ) α − 1 [ g ( x ) ] p g ( x ) − g ( a ) g ( b ) − g ( a ) d g ( x ) ≤ [ f ( a ) + f ( b ) ] ( p + 1 ) 1 − α Γ ( α ) ∫ g ( a ) g ( b ) ( [ g ( b ) ] p + 1 − [ g ( x ) ] p + 1 ) α − 1 [ g ( x ) ] p d g ( x ) .

This implies that

J p , g ( a ) + α f ( g ( b ) ) ≤ [ f ( a ) + f ( b ) ] J p , g ( a ) + α (1).
(3.13)

Also

( p + 1 ) 1 − α Γ ( α ) ∫ 0 1 ( [ ( 1 − t ) g ( a ) + t g ( b ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 × [ ( 1 − t ) g ( a ) + t g ( b ) ] p f ( ( 1 − t ) g ( a ) + t g ( b ) ) d t ≤ ( p + 1 ) 1 − α Γ ( α ) f ( a ) ∫ 0 1 ( [ ( 1 − t ) g ( a ) + t g ( b ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 × [ ( 1 − t ) g ( a ) + t g ( b ) ] p ( 1 − t ) d t + ( p + 1 ) 1 − α Γ ( α ) f ( b ) ∫ 0 1 ( [ ( 1 − t ) g ( a ) + t g ( b ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 × [ ( 1 − t ) g ( a ) + t g ( b ) ] p ( t ) d t .

This implies that

( p + 1 ) 1 − α Γ ( α ) ( g ( b ) − g ( a ) ) ∫ g ( a ) g ( b ) ( [ g ( x ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 [ g ( x ) ] p f ( g ( x ) ) d g ( x ) ≤ ( p + 1 ) 1 − α Γ ( α ) f ( a ) g ( b ) − g ( a ) ∫ g ( a ) g ( b ) ( [ g ( x ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 [ g ( x ) ] p g ( b ) − g ( x ) g ( b ) − g ( a ) d g ( x ) + ( p + 1 ) 1 − α Γ ( α ) f ( b ) g ( b ) − g ( a ) ∫ g ( a ) g ( b ) ( [ g ( x ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 [ g ( x ) ] p g ( x ) − g ( a ) g ( b ) − g ( a ) d g ( x ) ≤ [ f ( a ) + f ( b ) ] ( p + 1 ) 1 − α Γ ( α ) ∫ g ( a ) g ( b ) ( [ g ( x ) ] p + 1 − [ g ( a ) ] p + 1 ) α − 1 [ g ( x ) ] p d g ( x ) .

This implies that

J p , g ( b ) − α f ( g ( a ) ) ≤ [ f ( a ) + f ( b ) ] J p , g ( b ) − α (1).
(3.14)

Combining (3.13) and (3.14), we have the required result. □

Remark 3.2 We can prove the Hermite-Hadamard inequality for the classical Riemann-Liouville integrals as follows:

f ( g ( a ) + g ( b ) 2 ) ≤ Γ ( α + 1 ) 2 ( g ( b ) − g ( a ) ) α [ J g ( a ) + α f ( g ( b ) ) + J g ( b ) − α f ( g ( a ) ) ] ≤ f ( a ) + f ( b ) 2 .

We now derive the Hermite-Hadamard inequalities for the class of relative logarithmic semi-convex functions.

Theorem 3.15 Let f:I⊆R→R be a relative logarithmic semi-convex function, then for all t∈[0,1] we have

f ( g ( a ) + g ( b ) 2 ) ≤exp [ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log f ( g ( x ) ) d g ( x ) ] ≤ f ( a ) f ( b ) .

Theorem 3.16 Let f:I⊆R→R be a relative logarithmic semi-convex function, then for all t∈[0,1],

f ( g ( a ) + g ( b ) 2 ) ≤ exp [ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log f ( g ( x ) ) d g ( x ) ] ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) G ( f ( g ( x ) ) , f ( g ( a ) + g ( b ) − g ( x ) ) ) d g ( x ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) ≤ L [ f ( b ) , f ( a ) ] ≤ f ( a ) + f ( b ) 2 ,

where L[f(b),f(a)]= f ( b ) − f ( a ) log f ( b ) − log f ( a ) , and G[f(a),f(b)]= f ( a ) f ( b ) .

Proof The proof of the first inequality follows directly from Theorem 3.15. For the second inequality, we consider

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) G ( f ( g ( x ) ) , f ( g ( a ) + g ( b ) − g ( x ) ) ) d g ( x ) = 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) exp [ log G ( f ( g ( x ) ) , f ( g ( a ) + g ( b ) − g ( x ) ) ) ] d g ( x ) ≥ exp [ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log G ( f ( g ( x ) ) , f ( g ( a ) + g ( b ) − g ( x ) ) ) d g ( x ) ] = exp [ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log f ( g ( x ) ) + log f ( g ( a ) + g ( b ) − g ( x ) ) 2 d g ( x ) ] = exp [ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log f ( g ( x ) ) d g ( x ) ] .

Using the AM-GM inequality, we have

G ( f ( g ( x ) ) , f ( g ( a ) + g ( b ) − g ( x ) ) ) ≤ f ( g ( x ) ) + f ( g ( a ) + g ( b ) − g ( x ) ) 2 .

Integrating the above inequality with respect to x on [g(a),g(b)], we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) G ( f ( g ( x ) ) , f ( g ( a ) + g ( b ) − g ( x ) ) ) d g ( x ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) .

Now, using the fact that f is a relative semi-convex function and applying the change of variable technique on the right-hand side of the above inequality completes the proof. □

Theorem 3.17 Let f,w:I⊆R→R be relative logarithmic semi-convex functions, then we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) ≤ L [ f ( a ) w ( b ) , f ( a ) w ( a ) ] ≤ f ( a ) w ( a ) + f ( b ) w ( b ) 2 ≤ 1 4 Θ ( a , b ) ,

where Θ(a,b)= [ f ( a ) ] 2 + [ f ( b ) ] 2 + [ w ( a ) ] 2 + [ w ( b ) ] 2 .

Proof Let f and w be relative logarithmic semi-convex functions. Then

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) = ∫ 0 1 f ( ( 1 − t ) g ( a ) + t g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) ≤ ∫ 0 1 [ f ( a ) w ( a ) ] 1 − t [ f ( b ) w ( b ) ] t d t = f ( b ) w ( b ) − f ( a ) w ( a ) log f ( b ) w ( b ) − log f ( a ) w ( a ) = L [ f ( b ) w ( b ) , f ( a ) w ( a ) ] ≤ f ( a ) w ( a ) + f ( b ) w ( b ) 2 ≤ 1 2 ∫ 0 1 [ { f ( ( 1 − t ) g ( a ) + t g ( b ) ) } 2 + { w ( ( 1 − t ) g ( a ) + t g ( b ) ) } 2 ] d t ≤ 1 2 ∫ 0 1 [ { [ f ( a ) ] 1 − t [ f ( b ) ] t } 2 + { [ w ( a ) ] 1 − t [ w ( b ) ] t } 2 ] d t = 1 4 [ [ f ( a ) + f ( b ) ] [ f ( b ) − f ( a ) ] log f ( b ) − log f ( a ) + [ w ( a ) + w ( b ) ] [ w ( b ) − w ( a ) ] log w ( b ) − log w ( a ) ] ≤ 1 8 [ [ f ( a ) + f ( b ) ] 2 + [ w ( a ) + w ( b ) ] 2 ] ≤ 1 4 Θ ( a , b ) .

 □

Theorem 3.18 Let f,w:I⊆R→R be relative logarithmic semi-convex functions, then

log w ( g ( a ) + g ( b ) 2 ) − 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log w ( g ( x ) ) d g ( x ) ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) log f ( g ( x ) ) d g ( x ) − log f ( g ( a ) + g ( b ) 2 ) .

Proof Let f and w be relative logarithmic semi-convex functions. Then

log f ( g ( a ) + g ( b ) 2 ) w ( g ( a ) + g ( b ) 2 ) = log [ f ( ( 1 − t ) g ( a ) + t g ( b ) + t g ( a ) + ( 1 − t ) g ( b ) 2 ) × w ( ( 1 − t ) g ( a ) + t g ( b ) + t g ( a ) + ( 1 − t ) g ( b ) 2 ) ] ≤ log [ [ f ( ( 1 − t ) g ( a ) + t g ( b ) ) f ( t g ( a ) + ( 1 − t ) g ( b ) ) ] 1 2 × [ w ( ( 1 − t ) g ( a ) + t g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) ] 1 2 ] = 1 2 [ log f ( ( 1 − t ) g ( a ) + t g ( b ) ) + log f ( t g ( a ) + ( 1 − t ) g ( b ) ) ] + 1 2 [ log w ( ( 1 − t ) g ( a ) + t g ( b ) ) + log w ( t g ( a ) + ( 1 − t ) g ( b ) ) ] .

Integrating both sides of the above inequality with respect to t on [0,1], we have the required result. □

Theorem 3.19 Let f,w:I⊆R→R be relative logarithmic semi-convex functions, then

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( a ) + g ( b ) − g ( x ) ) d g ( x ) ≤ f ( a ) w ( b ) − f ( b ) w ( a ) log f ( a ) w ( b ) − log f ( b ) w ( a ) ≤ 1 4 Θ ( a , b ) ,

where Θ(a,b)= [ f ( a ) ] 2 + [ f ( b ) ] 2 + [ w ( a ) ] 2 + [ w ( b ) ] 2 .

Proof Since f, w are relative logarithmic semi-convex functions, then we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( a ) + g ( b ) − g ( x ) ) d g ( x ) = ∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( ( 1 − t ) g ( a ) + t g ( b ) ) d t ≤ ∫ 0 1 [ f ( a ) ] t [ f ( b ) ] 1 − t [ w ( a ) ] 1 − t [ w ( b ) ] t d t = f ( a ) w ( b ) − f ( b ) w ( a ) log f ( a ) w ( b ) − log f ( b ) w ( a ) = L [ f ( a ) w ( b ) , f ( b ) w ( a ) ] ≤ f ( a ) w ( b ) + f ( b ) w ( a ) 2 ≤ 1 2 ∫ 0 1 { [ f ( t g ( a ) + ( 1 − t ) g ( b ) ) ] 2 + [ w ( ( 1 − t ) g ( a ) + t g ( b ) ) ] 2 } d t ≤ 1 2 ∫ 0 1 { [ f ( a ) ] t [ f ( b ) ] 1 − t } 2 d t + 1 2 ∫ 0 1 { [ w ( a ) ] 1 − t [ w ( b ) ] t } 2 d t = 1 4 [ f ( a ) ] 2 − [ f ( b ) ] 2 log f ( a ) − log f ( b ) + 1 4 [ w ( a ) ] 2 − [ w ( b ) ] 2 log w ( a ) − log w ( b ) = 1 2 [ f ( a ) + f ( b ) 2 f ( a ) − f ( b ) log f ( a ) − log f ( b ) ] + 1 2 [ w ( a ) + w ( b ) 2 w ( a ) − w ( b ) log w ( a ) − log w ( b ) ] ≤ 1 2 [ f ( a ) + f ( b ) 2 f ( a ) + f ( b ) 2 ] + 1 2 [ w ( a ) + w ( b ) 2 w ( a ) + w ( b ) 2 ] ≤ 1 4 Θ ( a , b ) ,

which is the required result. □

Theorem 3.20 Let f,w:I→(0,∞) be increasing and relative logarithmic semi-convex functions on I with g(a),g(b)∈I. Then we have

f ( g ( a ) + g ( b ) 2 ) L [ w ( a ) , w ( b ) ] + w ( g ( a ) + g ( b ) 2 ) L [ f ( a ) , f ( b ) ] ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) + L [ f ( a ) w ( a ) , f ( b ) w ( b ) ] .

Proof Let f and w be relative logarithmic semi-convex functions. Then

f ( t g ( a ) + ( 1 − t ) g ( b ) ) ≤ [ f ( a ) ] t [ f ( b ) ] 1 − t , w ( t g ( a ) + ( 1 − t ) g ( b ) ) ≤ [ w ( a ) ] t [ w ( b ) ] 1 − t .

Now, using 〈 x 1 − x 2 , x 3 − x 4 〉≥0 ( x 1 , x 2 , x 3 , x 4 ∈R) and x 1 < x 2 < x 3 < x 4 , we have

f ( t g ( a ) + ( 1 − t ) g ( b ) ) [ w ( a ) ] t [ w ( b ) ] 1 − t + w ( t g ( a ) + ( 1 − t ) g ( b ) ) [ f ( a ) ] t [ f ( b ) ] 1 − t ≤ f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) + [ f ( a ) ] t [ f ( b ) ] 1 − t [ w ( a ) ] t [ w ( b ) ] 1 − t .

Integrating the above inequalities with respect to t on [0,1], we have

∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) [ w ( a ) ] t [ w ( b ) ] 1 − t d t + ∫ 0 1 w ( t g ( a ) + ( 1 − t ) g ( b ) ) [ f ( a ) ] t [ f ( b ) ] 1 − t d t ≤ ∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) d t + ∫ 0 1 [ f ( a ) ] t [ f ( b ) ] 1 − t [ w ( a ) ] t [ w ( b ) ] 1 − t d t .

Now, since f and w are increasing, using Chebyshev inequalities [28], we have

∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) d t ∫ 0 1 [ w ( a ) ] t [ w ( b ) ] 1 − t d t + ∫ 0 1 w ( t g ( a ) + ( 1 − t ) g ( b ) ) d t ∫ 0 1 [ f ( a ) ] t [ f ( b ) ] 1 − t d t ≤ ∫ 0 1 f ( t g ( a ) + ( 1 − t ) g ( b ) ) w ( t g ( a ) + ( 1 − t ) g ( b ) ) d t + ∫ 0 1 [ f ( a ) ] t [ f ( b ) ] 1 − t [ w ( a ) ] t [ w ( b ) ] 1 − t d t .

Now calculating the simple integration, we have

1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) d g ( x ) L [ w ( a ) , w ( b ) ] + 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) w ( g ( x ) ) d g ( x ) L [ f ( a ) , f ( b ) ] ≤ 1 g ( b ) − g ( a ) ∫ g ( a ) g ( b ) f ( g ( x ) ) w ( g ( x ) ) d g ( x ) + L [ f ( a ) w ( a ) , f ( b ) , w ( b ) ] .

Now, using the left-hand side of Hermite-Hadamard’s inequality for relative logarithmic semi-convex functions, we have the required result. □

References

  1. Awan, MU: Some studies in nonconvex optimization. MS thesis, COMSATS Institute of Information Technology, Islamabad, Pakistan (2012)

    Google Scholar 

  2. Chen X: Some properties of semi- E -convex functions. J. Math. Anal. Appl. 2002, 275: 251–262. 10.1016/S0022-247X(02)00325-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen X: Some properties of semi- E -convex function and semi- E -convex programming. The Eighth International Symposium on Operations Research and Its Applications Zhangjiajie, China 20-22 September 2009.

    Google Scholar 

  4. Cristescu G, Lupsa L: Non-Connected Convexities and Applications. Kluwer Academic, Dordrecht; 2002.

    Book  MATH  Google Scholar 

  5. Dragomir SS, Mond B: Integral inequalities of Hadamard’s type for log-convex functions. Demonstr. Math. 1998, 31(2):354–364.

    MathSciNet  MATH  Google Scholar 

  6. Mercer PR: Relative convexity and quadrature rules for the Riemann-Stieltjes integral. J. Math. Inequal. 2012, 6(1):65–68.

    Article  MathSciNet  MATH  Google Scholar 

  7. Niculescu C, Persson LE CMS Books in Mathematics. In Convex Functions and Their Applications. Springer, New York; 2006.

    Chapter  Google Scholar 

  8. Noor, MA: Advanced convex analysis. Lecture notes, Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan (2010)

    Google Scholar 

  9. Noor MA, Noor KI, Al-Said E: Iterative methods for solving nonconvex equilibrium variational inequalities. Appl. Math. Inf. Sci. 2012, 6(1):65–69.

    MathSciNet  MATH  Google Scholar 

  10. Noor MA, Noor KI, Ashraf MA, Awan MU, Bashir B:Hermite-Hadamard inequalities for h φ -convex functions. Nonlinear Anal. Forum 2013, 18: 65–76.

    MathSciNet  MATH  Google Scholar 

  11. Noor MA, Noor KI, Khan AG: Some iterative schemes for solving extended general variational inequalities. Appl. Math. Inf. Sci. 2013, 7(3):917–925. 10.12785/amis/070309

    Article  MathSciNet  MATH  Google Scholar 

  12. Varosanec S: On h -convexity. J. Math. Anal. Appl. 2007, 326: 303–311. 10.1016/j.jmaa.2006.02.086

    Article  MathSciNet  MATH  Google Scholar 

  13. Youness EA: E -convex sets, E -convex functions, and E -convex programming. J. Optim. Theory Appl. 1999, 102: 439–450. 10.1023/A:1021792726715

    Article  MathSciNet  MATH  Google Scholar 

  14. Noor MA: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251: 217–229. 10.1006/jmaa.2000.7042

    Article  MathSciNet  MATH  Google Scholar 

  15. Noor, MA, Noor, KI, Awan, MU: Hermite-Hadamard inequalities for relative semi-convex functions and applications. Filomat 27 (2013)

    Google Scholar 

  16. Dragomir SS, Pearce CEM: Selected Topics on Hermite-Hadamard Inequalities and Applications. Victoria University, Melbourne; 2000.

    Google Scholar 

  17. Farissi AE: Simple proof and refinement of Hermite-Hadamard inequality. J. Math. Inequal. 2010, 4(3):365–369.

    Article  MathSciNet  MATH  Google Scholar 

  18. Khattri SK:Three proofs of the inequality e< ( 1 + 1 n ) n + 0.5 . Am. Math. Mon. 2010, 117(3):273–277. 10.4169/000298910X480126

    Article  MathSciNet  MATH  Google Scholar 

  19. Pachpatte BG: On some inequalities for convex functions. RGMIA Res. Rep. Coll. 2003, 6(E):1–8.

    Google Scholar 

  20. Pecaric JE, Proschan F, Tong YL: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, New York; 1992.

    MATH  Google Scholar 

  21. Sarikaya MZ, Set E, Özdemir ME: On some new inequalities of Hadamard type involving h -convex functions. Acta Math. Univ. Comen. 2010, 2: 265–272.

    MathSciNet  MATH  Google Scholar 

  22. Sarikaya MZ, Set E, Yaldiz H, Basak N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57: 2403–2407. 10.1016/j.mcm.2011.12.048

    Article  MATH  Google Scholar 

  23. Duca DI, Lupsa L: Saddle points for vector valued functions: existence, necessary and sufficient theorems. J. Glob. Optim. 2012, 53: 431–440. 10.1007/s10898-011-9721-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Katugampola UN: New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218(3):860–865. 10.1016/j.amc.2011.03.062

    Article  MathSciNet  MATH  Google Scholar 

  25. Kilbas A, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    MATH  Google Scholar 

  26. Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.

    MATH  Google Scholar 

  27. Noor MA: Some developments in general variational inequalities. Appl. Math. Comput. 2004, 152: 199–277. 10.1016/S0096-3003(03)00558-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Chebyshev PL: Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites. Proc. Math. Soc. Charkov 1882, 2: 93–98.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. SM Junaid Zaidi, Rector of COMSATS Institute of Information Technology, Pakistan, for providing excellent research and academic environment. We are grateful to the referees and the editor for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam Noor.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MAN, MUA and KIN worked jointly. All the authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Noor, M.A., Awan, M.U. & Noor, K.I. On some inequalities for relative semi-convex functions. J Inequal Appl 2013, 332 (2013). https://doi.org/10.1186/1029-242X-2013-332

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-332

Keywords