- Research
- Open access
- Published:
Strict global minimizers and higher-order generalized strong invexity in multiobjective optimization
Journal of Inequalities and Applications volume 2013, Article number: 31 (2013)
Abstract
Higher-order strict minimizers with respect to a nonlinear function for a multiobjective optimization problem are introduced and are characterized via sufficient optimality conditions and higher-order mixed saddle points of a vector-valued partial Lagrangian. To this aim, we present certain generalizations of higher-order strong invexity. A mixed dual is proposed and corresponding duality results are obtained. An equivalent optimization problem for the given multiobjective optimization problem is introduced. It is shown that the problem of finding higher-order strict minimizers with respect to a nonlinear function for the given problem reduces to that of finding strict minimizers in the ordinary sense for an equivalent problem.
MSC:26A51, 90C29, 90C46.
1 Introduction
Multiobjective optimization problems occupy an important place in the theory of optimization. Several solution concepts for multiobjective optimization problem have appeared in the literature viz. efficiency, weak efficiency and proper efficiency [1, 2]. The concept of higher-order local minimizer plays an important role in the convergence analysis of iterative numerical methods [3] and in stability results [4]. For a scalar optimization problem, Auslender [5] derived necessary and sufficient optimality conditions for isolated local minima of order 1 and 2, and Ward [6] presented the notion of strict local minimum of order m. Jimenez [7] extended the idea of Ward [6] to define the notion of a strict local efficient solution of order m for a vector minimization problem. Bhatia [8] extended the notion of Ward to define the higher-order global strict minimizer for a multiobjective optimization problem. Sahay and Bhatia [9] introduced the notion of a strict minimizer of order m with respect to a nonlinear function for a scalar optimization problem.
In this paper, we move a step ahead in this direction and introduce the concept of a higher-order strict minimizer with respect to a nonlinear function for a multiobjective optimization problem. For the purpose of studying this new solution concept, we present certain generalizations of higher-order strong invexity [9]. Sufficient optimality conditions characterizing this solution concept are obtained. A mixed dual is proposed and well-known duality results are established. A partial vector-valued Lagrangian for the multiobjective optimization problem is introduced. Higher-order mixed saddle points for the partial Lagrangian with respect to a nonlinear function are shown to be equivalent to the higher-order strict minimizers with respect to the same function. Further, an equivalent optimization problem that enables one to find the higher-order strict minimizers for a given multiobjective optimization problem in a simpler manner is presented.
2 Higher-order global strict minimizers
In this paper, we study the following multiobjective optimization problem:
where , , are real-valued differentiable functions and X is a non-empty open subset of endowed with the Euclidean norm .
We denote by the set of all feasible solutions for (MOP) and let be the set of indices corresponding to active constraints. Let denote an open ball with centre and radius ε.
Definition 2.1 ([7])
A point is a strict local minimizer for (MOP) if there exists an such that
that is, there exists no such that
Definition 2.2 ([8])
Let be an integer. A point is a local strict minimizer of order m for (MOP) if there exists an and a constant such that
The notion of a local strict minimizer reduces to the global sense if the ball is replaced by the whole space .
The following example illustrates that in some cases may fail to be a strict minimizer in the sense of the above definition.
Example 2.1 Let and , then is not a strict minimizer of order 1 in the sense of Definition 2.2, since for any , there exists an x satisfying , such that .
The above example motivates us to introduce a new notion of a strict minimizer of order m with respect to a nonlinear function for the multiobjective optimization problem (MOP).
Definition 2.3 Let be an integer. A point is a local strict minimizer of order m for (MOP) with respect to a nonlinear function , if there exists an and a constant such that
Definition 2.4 Let be an integer. A point is a strict minimizer of order m for (MOP) with respect to a nonlinear function if there exists a constant such that
Remark 2.1 The function ψ plays an important role in the notion of a strict minimizer defined above. For the problem considered in Example 2.1, failed to be a strict minimizer of order 1 in the usual sense; however, it is important to observe here that is a strict minimizer of order 1 with respect to for .
Remark 2.2 The study of higher-order minimizers is pertinent as these minimizers play an important role in the convergence analysis of iterative numerical methods and in stability results. These minimizers are often exactly those satisfying an m th derivative test [6, 7]. It is clear that any strict minimizer of order m is also a strict minimizer for (MOP). Converse of this statement may not be true. If is a strict minimizer of order m with respect to a nonlinear function ψ, then it is also a strict minimizer of order j with respect to the same ψ for all .
We recall that [1] a set is invex with respect to η if there exists such that for all and all , . Throughout this paper, we assume to be an invex set.
Definition 2.5 ([9])
A differentiable function is said to be strongly invex of order with respect to η, ψ on S if there exists a constant such that for all ,
If , then the above definition reduces to the notion of invexity. If , , the definition reduces to the definition of strong convexity of order m [10].
Remark 2.3 It is important to observe that there exist functions which are strongly invex of order m but are not strongly convex of any order. For example, let , , , and , where and . Then, for all and , we have , thus S is an invex set with respect to η. Clearly, f is strongly invex of order with respect to η and ψ as defined above for . However, on choosing and , it is evident that f is not strongly convex of any order for any .
Remark 2.4 Every strongly invex function of order m with respect to η and ψ is invex. However, converse of this statement may not be true [9].
We now present the following generalizations of higher-order strong invexity.
Definition 2.6 A differentiable function is said to be strongly pseudoinvex type I of order m with respect to η, ψ on S if there exists a constant such that for all ,
or equivalently, implies .
Remark 2.5 Strong invexity of order m with respect to η and ψ implies strong pseudoinvexity type I of order m with respect to the same η and ψ. However, converse is not true in general. For example, let , , , and , then for , f is strongly pseudoinvex type I of order with respect to η and ψ on S but is not strongly invex of any order m with respect to these η and ψ.
Definition 2.7 A differentiable function is said to be strongly pseudoinvex type II of order m with respect to η, ψ on S if there exists a constant such that for all ,
Definition 2.8 A differentiable function is said to be strongly quasiinvex type I of order m with respect to η, ψ on S if there exists a constant such that for all ,
Definition 2.9 A differentiable function is said to be strongly quasiinvex type II of order m with respect to η, ψ on S if there exists a constant such that for all ,
The relations between these classes of functions and some related classes are summarized in Figure 1 (note: it is important to observe that there is no relation between type II functions and corresponding notions of type I functions presented in Figure 1).
3 Local-global property and optimality conditions
Theorem 3.1 Suppose is a strict local minimizer of order m with respect to ψ for (MOP) and the functions , are strongly pseudoinvex type I of order m with respect to the same η and ψ on S. Then is a strict minimizer of order m with respect to the same ψ for (MOP).
Proof Since is a local strict minimizer of order m with respect to ψ for (MOP), therefore there exists an and a constant such that
Let us suppose that is not a strict minimizer of order m with respect to ψ for (MOP), then for all , , there exists some such that
For and sufficiently small and , we have .
As , are strongly pseudoinvex type I of order m on S with respect to η and ψ for , it follows from the set of above inequalities that
Thus, there exists such that for , , , which implies that for all , and for every nonlinear function ψ, we have
This contradicts (3.1). □
Theorem 3.2 (Fritz John type necessary optimality conditions)
Suppose is a strict minimizer of order m with respect to a nonlinear function for (MOP) and the functions , , , are differentiable at . Then there exists , , , such that
Definition 3.1 (MOP) is said to satisfy Slater’s constraint qualification (SCQ) at if there exists such that , .
Theorem 3.3 (Karush-Kuhn-Tucker type necessary optimality conditions)
Suppose is a strict minimizer of order m with respect to a nonlinear function for (MOP) and the functions , , , are differentiable at . Assume that (SCQ) holds at , then there exist , , , such that
Theorem 3.4 (Sufficient optimality conditions)
Let the conditions (3.2)-(3.4) be satisfied at . Suppose , are strongly pseudoinvex type I of order m and , are strongly quasiinvex type I of order m with respect to the same η and ψ on S. Then is a strict minimizer of order m with respect to ψ for (MOP).
Proof On the contrary, suppose that is not a strict minimizer of order m with respect to ψ for (MOP). Then, for , , there exists some such that
As , are strongly pseudoinvex type I of order m with respect to η and ψ on S, therefore, from (3.5), we have
As , , and , the above system of inequalities reduces to
Now, for , , . As , , is strongly quasiinvex type I of order m with respect to the same η and ψ on S, it follows that there exist constants , such that
Further, since , , it follows from the above relation that
As , for , we have
Adding (3.6) and (3.7), we obtain
On using (3.2), we have , which is not possible. □
Remark 3.1 The result of the above theorem also holds under the conditions that , are strongly invex of order m with respect to the same η and ψ and , are strongly quasiinvex type II of order m with respect to the same η and ψ on S.
4 Duality
In this section, we develop duality relationship between (MOP) and its mixed dual (MD) under the assumption of generalized strong invexity of order m with respect to a nonlinear function.
Let the index set be partitioned into two disjoint subsets J and K such that . The mixed dual for (MOP) is given by
Theorem 4.1 (Weak duality)
Let x and be feasible for (MOP) and (MD) respectively. Suppose , are strongly pseudoinvex type I of order m and , is strongly quasiinvex type II of order m with respect to the same η and ψ, then there exists such that
Proof Suppose on the contrary, for every , we have
or
Since x is feasible for (MOP) and , therefore for , we have
Using strong pseudoinvexity type I of order m for , , with respect to η and ψ, we have
The above set of inequalities along with , and (4.3) yields
Now, for , , and since , we have , . Moreover, is feasible for (MD), therefore
or
Since , is strongly quasiinvex type II of order m with respect to η and ψ, therefore
which further implies that
Adding (4.4) and (4.5), we have
This contradicts (4.1). □
Theorem 4.2 (Strong duality)
Suppose is a strict minimizer of order m with respect to a nonlinear function for (MOP). Assume that (SCQ) holds at , then there exist , and , such that is feasible for (MD). Further, if the conditions of Theorem 4.1 hold, then is a strict maximizer of order m for (MD).
Proof The proof follows from Theorem 3.3 and Theorem 4.1. □
5 Partial vector Lagrangian and mixed saddle point
The saddle point of the Lagrangian is always a global minimizer for the inequality constrained minimization problem. Due to the significance of this result in economics and optimization theory, several researchers [1, 2, 11] have obtained the equivalence between the saddle point and optimal solutions of an optimization problem under various conditions on the functions involved. In this section, we define higher-order mixed saddle points with respect to a nonlinear function for a partial vector-valued Lagrangian of a multiobjective optimization problem. The equivalence of these saddle points and the higher-order strict minimizers with respect to the same function ψ for (MOP) is established under generalized higher-order strong invexity conditions on the functions involved.
Let , and , denote the cardinality of index set .
Definition 5.1 Vector-valued partial Lagrangian function for (MOP) is defined as
where , , , .
We now introduce the notion of mixed saddle points of order m with respect to a nonlinear function for (MOP) as follows.
Definition 5.2 A vector is said to be a mixed saddle point of order m with respect to a nonlinear function ψ for the partial vector-valued Lagrangian L for (MOP) if there exists such that
Theorem 5.1 Suppose that is a strict minimizer of order m with respect to a nonlinear function ψ for (MOP) and (SCQ) holds at . Further, if , are strongly pseudoinvex type I of order m and , is strongly quasiinvex type I of order m with respect to η and ψ on S, then is a mixed saddle point of order m with respect to ψ for the partial Lagrangian.
Proof Suppose is a strict minimizer of order m with respect to ψ for (MOP) and the constraint qualification holds at . Therefore, by Theorem 3.3, there exist , and , such that conditions (3.2)-(3.4) hold at .
On the contrary, suppose that is not a mixed saddle point of any order for the partial vector Lagrangian function L for (MOP). Then, for all , there exists some such that
that is,
or
Since , are strongly pseudoinvex type I of order m with respect to η and ψ, it follows from the above inequalities that
Now, for and , , it follows that . On using (3.3), we have
Since , is strongly quasiinvex type I of order m on S with respect to η and ψ, there exist constants , such that
As ,it follows that
Adding (5.3) and (5.4) and using , , , we obtain
which contradicts (3.2). Therefore,
Again, since (3.3) holds and , we have
This implies .
Thus, is a mixed saddle point of order m with respect to a nonlinear function ψ for the partial vector Lagrangian. □
Theorem 5.2 If is a mixed saddle point of order m with respect to a nonlinear function ψ for the partial vector Lagrangian, then is a strict minimizer of order m with respect to the same ψ for (MOP).
Proof From the hypothesis , we have
Taking , in the above inequality, we obtain
For and the fact that , we have
From above two inequalities, we have
Contrary to the result of the theorem, assume that is not a strict minimizer of order m with respect to ψ for (MOP). Then, for every , there exists an such that
For any and , we have .
Now,
Therefore, , which contradicts (5.2). □
6 An equivalent vector optimization problem
In this section, we introduce an equivalent vector optimization problem (EVP) corresponding to (MOP) and prove that the problem of finding strict minimizers of order m with respect to a nonlinear function for (MOP) reduces simply to the problem of finding strict minimizers for (EVP).
Let be any given feasible solution in (MOP). We consider the following equivalent vector optimization problem (EVP) given by
where , and , are defined as in (MOP). satisfies Assumption C [12].
Let denote the set of all feasible solutions of (EVP).
Theorem 6.1 Let be a strict minimizer of order m with respect to a nonlinear function for (MOP). Assume that Slater’s constraint qualification (SCQ) holds at , then is a strict minimizer in the equivalent vector optimization problem (EVP).
Proof Assume is a strict minimizer of order m with respect to a nonlinear function for (MOP) and (SCQ) is satisfied at ; therefore, necessary optimality conditions (3.2)-(3.4) hold. Suppose is not a strict minimizer in (EVP). Then there exists feasible for (EVP) such that for ,
Since η satisfies Assumption C, therefore for , the above set of inequalities reduces to
Using , , we have
Since , , therefore for , it follows that
Using (3.3), we have
Adding (6.2) and (6.3), we get a contradiction to (3.2). □
Theorem 6.2 Let be a strict minimizer in the equivalent vector optimization problem (EVP). Further assume that , are strongly pseudoinvex type I of order m and , are strongly invex of order m with respect to the same η and ψ, then is a strict minimizer of order m in the original vector optimization problem (MOP).
Proof Clearly, is feasible for (MOP). First, we will show that any feasible point in (MOP) is also a feasible point in (EVP), that is, we will show that . Let and , be strongly invex of order m with respect to η and ψ on X. Therefore, for some , , we have
As and , , the above inequalities lead to
that is, . Hence, .
Now, suppose that is not a strict minimizer of order m in (MOP). Then, for , , there exists some such that
Since , are strongly pseudoinvex type I of order m with respect to η and ψ on S, we have
Since , we can rewrite the above set of inequalities as
which contradicts that is a strict minimizer for (EVP). □
References
Weir T, Mond B: Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136: 29–38. 10.1016/0022-247X(88)90113-8
Sawaragi Y, Nakayama H, Tanino T: Theory of Multiobjective Optimization. Academic Press, Orlando; 1985.
Cromme L: Strong uniqueness: a far reaching criterion for the convergence of iterative procedures. Numer. Math. 1978, 29: 179–193. 10.1007/BF01390337
Studniarski M: Sufficient conditions for the stability of local minimum points in nonsmooth optimization. Optimization 1989, 20: 27–35. 10.1080/02331938908843409
Auslender A: Stability in mathematical programming with non-differentiable data. SIAM J. Control Optim. 1984, 22: 239–254. 10.1137/0322017
Ward DE: Characterization of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 1994, 80: 551–571. 10.1007/BF02207780
Jimenez B: Strict efficiency in vector optimization. J. Math. Anal. Appl. 2002, 265: 264–284. 10.1006/jmaa.2001.7588
Bhatia G: Optimality and mixed saddle point criteria in multiobjective optimization. J. Math. Anal. Appl. 2008, 342(1):135–145. 10.1016/j.jmaa.2007.11.042
Sahay, RR, Bhatia, G: Characterizations for the set of higher order global strict minimizers. J. Nonlinear Convex Anal. (to appear)
Lin GH, Fukushima M: Some exact penalty results for non-linear programs and mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 2003, 118: 67–80. 10.1023/A:1024787424532
Mangasarian OL Classical Appl. Math. 10. In Nonlinear Programming. SIAM, Philadelphia; 1994. (corrected reprint of the 1969 original)
Mohan SR, Neogy SK: On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189: 901–908. 10.1006/jmaa.1995.1057
Acknowledgements
The authors would like to thank Prof. Davinder Bhatia (Retd.) and Dr. Pankaj Gupta, Department of Operational Research, University of Delhi, for their keen interest and continuous help throughout the preparation of this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Bhatia, G., Sahay, R.R. Strict global minimizers and higher-order generalized strong invexity in multiobjective optimization. J Inequal Appl 2013, 31 (2013). https://doi.org/10.1186/1029-242X-2013-31
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1029-242X-2013-31