Skip to main content

Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces

Abstract

Let 1 p 1 , p 2 <, 0< p 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Assume that ω 1 , ω 2 are slowly increasing functions.

We say that a bounded function m(ξ,η) defined on R n × R n is a bilinear multiplier on R n of type ( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 ) (shortly ( ω 1 , ω 2 , ω 3 )) if

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

is a bounded bilinear operator from L ω 1 p 1 ( R n )× L ω 2 p 2 ( R n ) to L ω 3 p 3 ( R n ). We denote by BM( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 ) (shortly BM( ω 1 , ω 2 , ω 3 )) the vector space of bilinear multipliers of type ( ω 1 , ω 2 , ω 3 ).

In this paper first we discuss some properties of the space BM( ω 1 , ω 2 , ω 3 ). Furthermore, we give some examples of bilinear multipliers.

At the end of this paper, by using variable exponent Lebesgue spaces L p 1 ( x ) ( R n ), L p 2 ( x ) ( R n ) and L p 3 ( x ) ( R n ), we define the space of bilinear multipliers from L p 1 ( x ) ( R n )× L p 2 ( x ) ( R n ) to L p 3 ( x ) ( R n ) and discuss some properties of this space.

MSC:42A45, 42B15, 42B35.

1 Introduction

Throughout this paper C c ( R n ), C c ( R n ) and S( R n ) denote the space of infinitely differentiable complex-valued functions with compact support on R n , the space of all continuous, complex-valued functions with compact support on R n and the space of infinitely differentiable complex-valued functions on R n rapidly decreasing at infinity, respectively. For 1p, L p ( R n ) denotes the usual Lebesgue space. A continuous function ω satisfying 1ω(x) and ω(x+y)ω(x)ω(y) for x,y R n will be called a weight function on R n . If ω 1 (x) ω 2 (x) for all x R n , we say that ω 1 ω 2 . We say that a weight function υ s is of polynomial type if υ s (x)= ( 1 + | x | ) s for s0. Let f be a measurable function on R n . If there exist C>0 and NN such that

|f(x)|C ( 1 + x 2 ) N

for all x R n , then f is said to be a slowly increasing function. It is easy to see that polynomial-type weight functions are slowly increasing.

For 1p, we set

L ω p ( R n ) = { f : f ω L p ( R n ) } .

It is known that L ω p ( R n ) is a Banach space under the norm

f p , ω = f ω p = { R n | f ( x ) ω ( x ) | p d x } 1 p ,1p<

or

f , ω = f ω = ess sup x R n |f(x)ω(x)|,p=,[1, 2].

The dual of the space L ω p ( R n ) is the space L ω 1 q ( R n ), where 1 p + 1 q =1 and ω 1 (x)= 1 ω ( x ) . For f L 1 ( R n ), the Fourier transform of f is denoted by f ˆ . We know that f ˆ is a continuous function on R n , which vanishes at infinity, and it has the inequality f ˆ f 1 [3, 4]. Let f be a measurable function on R n . The translation, character and dilation operators T x , M x and D s are defined by T x f(y)=f(yx), M x f(y)= e 2 π i x , y f(y) and D t p f(y)= t n p f( y t ) respectively for x,y R n , 0<p,t<. With this notation out of the way one has, for 1p and 1 p + 1 p =1,

( T x f)ˆ(ξ)= M x f ˆ (ξ),( M x f)ˆ(ξ)= T x f ˆ (ξ), ( D t p f ) ˆ(ξ)= D t 1 p f ˆ (ξ).

We denote by M( R n ) the space of bounded regular Borel measures, by M(ω) the space of μ in M( R n ) such that

μ ω = R n ωd|μ|<.

If μM( R n ), the Fourier-Stieltjes transform of μ is denoted by μ ˆ [5]. In this paper, P( R n ) denotes the family of all measurable functions p: R n [1,). We put

p = ess inf x R n p(x), p = ess  sup x R n p(x).

We shall also use the notation

Ω = { x R n : p ( x ) = } .

The generalized Lebesgue space (or the variable exponent Lebesgue space) L p ( x ) ( R n ) is defined to be a space of (equivalence classes) measurable functions f such that

ϱ p (λf)= R n Ω |λf(x) | p ( x ) dx+ ess  sup x Ω ( λ f ( x ) ) <

for some λ=λ(f)>0. If p <, then

ϱ p (λf)= R n Ω |λf(x) | p ( x ) dx,[6, 7].

It is known by Theorem 2.5 in [6] that L p ( x ) ( R n ) is a Banach space with the Luxemburg norm

f p ( x ) =inf { λ > 0 : ϱ p ( f λ ) 1 } .

If p <, then C c ( R n ) is dense in L p ( x ) ( R n ). Also, if p(x)=p is a constant function, then the above norm p ( x ) coincides with the usual norm p . The vector space of locally integrable functions on R n is denoted by L loc 1 ( R n ). The space L p ( x ) ( R n ) is a solid space, that is, if f L p ( x ) ( R n ) is given and g L loc 1 ( R n ) satisfies |g(x)||f(x)| a.e., then g L p ( x ) ( R n ) and g p ( x ) f p ( x ) by [8]. In this paper we assume that p <.

2 The bilinear multipliers space BM( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 )

Lemma 2.1 Let 1p< and let ω be a slowly increasing weight function. Then S( R n ) is dense in L ω p ( R n ).

Proof Let fS( R n ) be given. Since ω is a slowly increasing weight function, there exist C>0 and NN such that

|ω(x)|C ( 1 + x 2 ) N =m(x)
(2.1)

for all x R n . Also, since m is a polynomial, then by Proposition 19.2.2 in [9], we have S( R n ) L m p ( R n ). Hence, by (2.1), we obtain S( R n ) L m p ( R n ) L ω p ( R n ).

Now, we show that C c ( R n ) is dense L m p ( R n ). Let f L w p ( R n ) be given. Then fm L p ( R n ). Since C c ( R n ) is dense L p ( R n ) by [6], for given ε>0, there exists g C c ( R n ) such that

f m g p <ε.
(2.2)

Therefore, by using the inequality (2.2), we write

f m g p = f g m 1 p , m <ε.

Also, since m0 and m is a polynomial, we have g m 1 C c ( R n ). Thus, we have C c ( R n ) ¯ = L m p ( R n ). By using the inclusion C c ( R n )S( R n ) L m p ( R n ), we obtain S ( R n ) ¯ = L m p ( R n ).

Now, take any f L ω p ( R n ). Since C c ( R n ) ¯ = L m p ( R n ) ¯ = L ω p ( R n ), there exists g L m p ( R n ) such that

f g p , ω < ε 2 .
(2.3)

Furthermore, since S( R n ) is dense L m p ( R n ), there exists hS( R n ) such that

g h p , m < ε 2 .
(2.4)

Combining the inequalities (2.3) and (2.4), we have

f g p , ω f g p , ω + h g p , ω f g p , ω + h g p , m <ε,

which means S ( R n ) ¯ = L ω p ( R n ). □

Definition 2.1 Let 1 p 1 , p 2 <, 0< p 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Assume that ω 1 , ω 2 are slowly increasing functions and m(ξ,η) is a bounded function on R n × R n . Define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,gS( R n ).

m is said to be a bilinear multiplier on R n of type ( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 ) (shortly ( ω 1 , ω 2 , ω 3 )) if there exists C>0 such that

B m ( f , g ) p 3 , ω 3 C f p 1 , ω 1 g p 2 , ω 2

for all f,gS( R n ). That means B m extends to a bounded bilinear operator from L ω 1 p 1 ( R n )× L ω 2 p 2 ( R n ) to L ω 3 p 3 ( R n ).

We denote by BM( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 ) (shortly BM( ω 1 , ω 2 , ω 3 )) the space of all bilinear multipliers of type ( ω 1 , ω 2 , ω 3 ) and m ( ω 1 , ω 2 , ω 3 ) = B m .

Theorem 2.1 Let 1 p 1 + 1 p 2 = 1 p 3 and ω 3 ω 1 . If K L ω 3 1 ( R n ), then m(ξ,η)= K ˆ (ξη) defines a bilinear multiplier and m ( ω 1 , ω 2 , ω 3 ) K 1 , ω 3 .

Proof For f,gS( R n ), we have f(xy)= R n f ˆ (ξ) e 2 π i x y , ξ dξ and g(x+y)= R n g ˆ (η) e 2 π i x + y , η dη. Thus, by the Fubini theorem, we write

B m ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) K ˆ ( ξ η ) e 2 π i ξ + η , x d ξ d η = R n R n f ˆ ( ξ ) g ˆ ( η ) ( R n K ( y ) e 2 π i ξ η , y d y ) e 2 π i ξ + η , x d ξ d η = R n R n R n f ˆ ( ξ ) g ˆ ( η ) K ( y ) e 2 π i ξ η , y e 2 π i ξ + η , x d ξ d η d y .
(2.5)

Since f,gS( R n ), we have f ˆ , g ˆ S( R n ) L 1 ( R n ). Hence, by (2.5), we obtain

B m ( f , g ) ( x ) = R n ( R n f ˆ ( ξ ) e 2 π i x y , ξ ) ( R n g ˆ ( η ) e 2 π i x + y , η d η ) K ( y ) d y = R n f ( x y ) g ( x + y ) K ( y ) d y .
(2.6)

Since ω 3 ω 1 , then

f ( x y ) ω 3 p 1 ω 3 (y) f p 1 , ω 1
(2.7)

and hence f(xy) ω 3 L p 1 ( R n ). Therefore from (2.6) and the Minkowski inequality, we write

B m ( f , g ) p 3 , ω 3 R n R n f ( x y ) g ( x + y ) p 3 , ω 3 | K ( y ) | d y = R n R n f ( x y ) g ( x + y ) ω 3 p 3 | K ( y ) | d y .
(2.8)

Hence, using the generalized Hölder inequality and combining (2.7), (2.8), we have

B m ( f , g ) p 3 , ω 3 R n f ( x y ) ω 3 p 1 g ( x + y ) p 2 ω 3 ( y ) | K ( y ) | d y R n f p 1 g p 2 ω 3 ( y ) | K ( y ) | d y R n f p 1 , ω 1 g p 2 , ω 2 ω 3 ( y ) | K ( y ) | d y = f p 1 , ω 1 g p 2 , ω 2 K 1 , ω 3 .
(2.9)

If we set C= K 1 , ω 3 , we obtain

B m ( f , g ) p 3 , ω 3 C f p 1 , ω 1 g p 2 , ω 2 .

Then mBM( ω 1 , ω 2 , ω 3 ). Consequently, using (2.9), we have

m ( ω 1 , ω 2 , ω 3 ) = sup { B m ( f , g ) p 3 , ω 3 f p 1 , ω 1 g p 2 , ω 2 : f p 1 , ω 1 1 , g p 2 , ω 2 1 } K 1 , ω 3 .

 □

Definition 2.2 Let 1 p 1 , p 2 <, 0< p 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Suppose that ω 1 , ω 2 are slowly increasing functions. We denote by M ˜ ( ω 1 , ω 2 , ω 3 ) the space of measurable functions M: R n C such that m(ξ,η)=M(ξη)BM( ω 1 , ω 2 , ω 3 ), that is to say,

B M (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)M(ξη) e 2 π i ξ + η , x dξdη

extends to a bounded bilinear map from L ω 1 p 1 ( R n )× L ω 2 p 2 ( R n ) to L ω 3 p 3 ( R n ). We denote M ( ω 1 , ω 2 , ω 3 ) = B M .

Theorem 2.2 Let p 3 1 and ω 3 (x)= ω 3 (x). Then mBM( ω 1 , ω 2 , ω 3 ) if and only if there exists C>0 such that

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f p 1 , ω 1 g p 2 , ω 2 h p 3 , ω 3 1

for all f,g,hS( R n ), where 1 p 3 + 1 p 3 =1.

Proof Let mBM( ω 1 , ω 2 , ω 3 ). We take any f,g,hS( R n ). From the Fubini theorem, we write

(2.10)

where B ˜ m (f,g)(y)= B m (f,g)(y). On the other hand, since mBM( ω 1 , ω 2 , ω 3 ), then B m (f,g) L ω 3 p 3 ( R n ). Thus we obtain B ˜ m (f,g) L ω 3 p 3 ( R n ). Also, hS( R n ) L p 3 ( R n ) L ω 3 1 p 3 ( R n ). Hence, using the Hölder inequality and the inequality (2.10), we write

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | R n | h ( y ) ω 3 1 ( y ) | | B ˜ m ( f , g ) ( y ) ω 3 ( y ) | d y B ˜ m ( f , g ) p 3 , ω 3 h p 3 , ω 3 1 .
(2.11)

Moreover, since mBM( ω 1 , ω 2 , ω 3 ), there exists C>0 such that

B m ( f , g ) p 3 , ω 3 C f p 1 , ω 1 g p 2 , ω 2 .
(2.12)

If we combine (2.11) and (2.12), we write

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f p 1 , ω 1 g p 2 , ω 2 h p 3 , ω 3 1 .

For the proof of converse, assume that there exists a constant C>0 such that

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f p 1 , ω 1 g p 2 , ω 2 h p 3 , ω 3 1

for all f,g,hS( R n ). From the assumption and (2.10), we write

| R n h(y) B ˜ m (f,g)(y)dy|C f p 1 , ω 1 g p 2 , ω 2 h p 3 , ω 3 1 .
(2.13)

Define a function l from S( R n ) L ω 3 1 p 3 ( R n ) to such that

(h)= R n h(y) B ˜ m (f,g)(y)dy.

It is clear that the function is linear and bounded by (2.13). By using C c ( R n ) ¯ = L ω 3 1 p 3 ( R n ) in [10], it is easy to show that C c ( R n ) ¯ = L ω 3 1 p 3 ( R n ). So, by the inclusion C c ( R n )S( R n ) L ω 3 1 p 3 ( R n ), we have S ( R n ) ¯ = L ω 3 1 p 3 ( R n ). Thus extends to a bounded function from L ω 3 1 p 3 ( R n ) to . Then ( L ω 3 1 p 3 ( R n ) ) = L ω 3 p 3 ( R n ) and by (2.13), we have

B m ( f , g ) p 3 , ω 3 = B ˜ m ( f , g ) p 3 , ω 3 = = sup h p 3 , ω 3 1 1 | l ( h ) | h p 3 , ω 3 1 sup h p 3 , ω 3 1 1 C f p 1 , ω 1 g p 2 , ω 2 h p 3 , ω 3 1 h p 3 , ω 3 1 C f p 1 , ω 1 g p 2 , ω 2 .

Hence, we obtain mBM( ω 1 , ω 2 , ω 3 ). □

Theorem 2.3 Let 1 p 1 + 1 p 2 = 1 p 3 , p 3 1 and υ s (x)= ( 1 + | x | ) s , s0 be a weight function of polynomial type such that υ s ω 1 . If μM( υ s ) and m(ξ,η)= μ ˆ (αξ+βη) for α,βR, then mBM( ω 1 , ω 2 , υ s ). Moreover,

m ( ω 1 , ω 2 , υ s ) μ υ s if | α | 1 , m ( ω 1 , ω 2 , υ s ) | α | s μ υ s if | α | > 1 .

Proof Let f,g,S( R n ). Then

B m ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) μ ˆ ( α ξ + β η ) e 2 π i ξ + η , x d ξ d η = R n R n f ˆ ( ξ ) g ˆ ( η ) { R n e 2 π i α ξ + β η , t d μ ( t ) } e 2 π i ξ + η , x d ξ d η = R n { R n f ˆ ( ξ ) e 2 π i x α t , ξ d ξ } { R n g ˆ ( η ) e 2 π i x β t , η d η } d μ ( t ) = R n f ( x α t ) g ( x β t ) d μ ( t ) .
(2.14)

On the other hand, by the assumption υ s ω 1 , it is easy to see that f(xαt) υ s L p 1 ( R n ) and

f ( x α t ) υ s p 1 υ s (αt) f p 1 , ω 1 .
(2.15)

Also, g(xβt) L p 2 ( R n ). Then, by (2.14), (2.15) and the generalized Hölder inequality, we have

B m ( f , g ) p 3 , υ s R n f ( x α t ) g ( x β t ) p 3 , υ s d | μ | ( t ) R n f ( x α t ) υ s p 1 g ( x β t ) p 2 d | μ | ( t ) R n υ s ( α t ) f p 1 , ω 1 g p 2 d | μ | ( t ) f p 1 , ω 1 g p 2 , ω 2 R n υ s ( α t ) d | μ | ( t ) .
(2.16)

Now, suppose that |α|1. Then we write

R n υ s ( α t ) d | μ | ( t ) = R n ( 1 + | α t | ) s d | μ | ( t ) R n ( 1 + | t | ) s d | μ | ( t ) = μ υ s .

Hence by (2.16)

B m ( f , g ) p 3 , υ s f p 1 , ω 1 g p 2 , ω 2 μ υ s .
(2.17)

Thus mBM( ω 1 , ω 2 , υ s ) and by (2.17), we have

m ( ω 1 , ω 2 , υ s ) =sup { B m ( f , g ) p 3 , υ s f p 1 , ω 1 g p 2 , ω 2 : f p 1 , ω 1 1 , g p 2 , ω 2 1 } μ υ s .

Similarly, if |α|>1, then we write

R n υ s ( α t ) d | μ | ( t ) < R n ( | α | + | α | | t | ) s d | μ | ( t ) = | α | s R n υ s ( t ) d | μ | ( t ) = | α | s μ υ s .

Again, by (2.16) we have

B m ( f , g ) p 3 , υ s |α | s f p 1 , ω 1 g p 2 , ω 2 μ υ s .
(2.18)

Hence, we obtain mBM( ω 1 , ω 2 , υ s ) and by (2.18)

m ( ω 1 , ω 2 , υ s ) =sup { B m ( f , g ) p 3 , υ s f p 1 , ω 1 g p 2 , ω 2 : f p 1 , ω 1 1 , g p 2 , ω 2 1 } |α | s μ υ s .

 □

Theorem 2.4 Let mBM( ω 1 , ω 2 , ω 3 ).

  1. (a)

    T ( ξ 0 , η 0 ) mBM( ω 1 , ω 2 , ω 3 ) for each ( ξ 0 , η 0 ) R 2 n and

    T ( ξ 0 , η 0 ) m ( ω 1 , ω 2 , ω 3 ) = m ( ω 1 , ω 2 , ω 3 ) .
  2. (b)

    M ( ξ 0 , η 0 ) mBM( ω 1 , ω 2 , ω 3 ) for each ( ξ 0 , η 0 ) R 2 n and

    M ( ξ 0 , η 0 ) m ( ω 1 , ω 2 , ω 3 ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) m ( ω 1 , ω 2 , ω 3 ) .

Proof (a) Let us take any f L ω 1 p 1 ( R n ) and g L ω 2 p 2 ( R n ). If we say that ξ ξ 0 =u and η η 0 =v, then

B T ( ξ 0 , η 0 ) m ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) T ( ξ 0 , η 0 ) m ( ξ , η ) e 2 π i ξ + η , x d ξ d η = R n R n f ˆ ( u + ξ 0 ) g ˆ ( v + η 0 ) m ( u , v ) e 2 π i u + ξ 0 , x e 2 π i v + η 0 , x d u d v = R n R n T ξ 0 f ˆ ( u ) T η 0 g ˆ ( v ) m ( u , v ) e 2 π i ξ 0 + η 0 , x e 2 π i u + v , x d u d v .
(2.19)

By (2.19), we have

B T ( ξ 0 , η 0 ) m ( f , g ) ( x ) = R n R n T ξ 0 f ˆ ( u ) T η 0 g ˆ ( v ) e 2 π i ξ 0 + η 0 , x e 2 π i u + v , x m ( u , v ) d u d v = e 2 π i ξ 0 + η 0 , x R n R n ( M ξ 0 f ) ˆ ( u ) ( M η 0 g ) ˆ ( v ) m ( u , v ) e 2 π i u + v , x d u d v = e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f , M η 0 g ) ( x ) .
(2.20)

Since mBM( ω 1 , ω 2 , ω 3 ), M ξ 0 f p 1 , ω 1 = f p 1 , ω 1 and M η 0 g p 2 , ω 2 = g p 2 , ω 2 are satisfied for all f L ω 1 p 1 ( R n ) and g L ω 2 p 2 ( R n ). Hence, by (2.20), we have

B T ( ξ 0 , η 0 ) m ( f , g ) p 3 , ω 3 = e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f , M η 0 g ) p 3 , ω 3 C f p 1 , ω 1 g p 2 , ω 2

for some C>0. Thus T ( ξ 0 , η 0 ) m BM( ω 1 , ω 2 , ω 3 ). Also, we obtain

T ( ξ 0 , η 0 ) m ( ω 1 , ω 2 , ω 3 ) = B T ( ξ 0 , η 0 ) m = sup { B T ( ξ 0 , η 0 ) m ( f , g ) p 3 , ω 3 f p 1 , ω 1 g p 2 , ω 2 : f p 1 , ω 1 1 , g p 2 , ω 2 1 } = sup { B m ( M ξ 0 f , M η 0 g ) p 3 , ω 3 M ξ 0 f p 1 , ω 1 M η 0 g p 2 , ω 2 : M ξ 0 f p 1 , ω 1 1 , M η 0 g p 2 , ω 2 1 } = B m = m ( ω 1 , ω 2 , ω 3 ) .
  1. (b)

    Let us rewrite the value B m (f,g) as follows:

    B M ( ξ 0 , η 0 ) m ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) M ( ξ 0 , η 0 ) m ( ξ , η ) e 2 π i ξ + η , x d ξ d η = R n R n f ˆ ( ξ ) g ˆ ( η ) e 2 π i ( ξ 0 , η 0 ) , ( ξ , η ) m ( ξ , η ) e 2 π i ξ + η , x d ξ d η = R n R n M ξ 0 f ˆ ( ξ ) M η 0 g ˆ ( η ) m ( ξ , η ) e 2 π i ξ + η , x d ξ d η = R n R n ( T ξ 0 f ) ˆ ( ξ ) ( T η 0 g ) ˆ ( η ) m ( ξ , η ) e 2 π i ξ + η , x d ξ d η = B m ( T ξ 0 f , T η 0 g ) ( x ) .
    (2.21)

Also, the inequalities T ξ 0 f p 1 , ω 1 ω 1 ( ξ 0 ) f p 1 , ω 1 and T η 0 g p 2 , ω 2 ω 2 ( η 0 ) g p 2 , ω 2 are satisfied for all f L ω 1 p 1 ( R n ), g L ω 2 p 2 ( R n ). Hence, since mBM( ω 1 , ω 2 , ω 3 ), by (2.21) we have

B M ( ξ 0 , η 0 ) m ( f , g ) p 3 , ω 3 = B m ( T ξ 0 f , T η 0 g ) p 3 , ω 3 B m T ξ 0 f p 1 , ω 1 T η 0 g p 2 , ω 2 ω 1 ( ξ 0 ) ω 2 ( η 0 ) B m f p 1 , ω 1 g p 2 , ω 2 .
(2.22)

Then M ( ξ 0 , η 0 ) mBM( ω 1 , ω 2 , ω 3 ), and by (2.22) we obtain

M ( ξ 0 , η 0 ) m ( ω 1 , ω 2 , ω 3 ) = sup { B M ( ξ 0 , η 0 ) m ( f , g ) p 3 , ω 3 f p 1 , ω 1 g p 2 , ω 2 : f p 1 , ω 1 1 , g p 2 , ω 2 1 } ω 1 ( ξ 0 ) ω 2 ( η 0 ) m ( ω 1 , ω 2 , ω 3 ) .

 □

Lemma 2.2 If υ s is a polynomial-type weight function and f L υ s p ( R n ), then D t p f L υ s p ( R n ). Moreover,

D t p f p , υ s f p , υ s if t 1 , D t p f p , υ s < t s f p , υ s if t > 1 .

Proof Let υ s be a polynomial-type weight function and f L υ s p ( R n ). Assume that t1. If we get x t =u,

D t p f p , υ s = { R n | D t p f ( x ) | p υ s ( x ) p d x } 1 p = { R n | t n p f ( x t ) | p ( 1 + | x | ) s p d x } 1 p = { R n | f ( u ) | p ( 1 + | u t | ) s p d u } 1 p { R n | f ( u ) | p ( 1 + | u | ) s p d u } 1 p = f p , υ s < .
(2.23)

Thus we have D t p f L υ s p ( R n ) and D t p f p , υ s f p , υ s .

Now, assume that t>1. Similarly by (2.23)

D t p f p , υ s = { R n | f ( u ) | p ( 1 + | u t | ) s p d u } 1 p < { R n | f ( u ) | p ( t + | u t | ) s p d u } 1 p = t s { R n | f ( u ) | p ( 1 + | u | ) s p d u } 1 p = t s f p , υ s < .

Hence D t p f L υ s p ( R n ), and we also have D t p f p , υ s < t s f p , υ s . □

Theorem 2.5 Let υ s 1 , υ s 2 , υ s 3 be weight functions of polynomial type and let mBM( υ s 1 , υ s 2 , υ s 3 ). If 2 q = 1 p 1 + 1 p 2 1 p 3 and 0<t<, then D t q mBM( υ s 1 , υ s 2 , υ s 3 ). Moreover, then

D t q m ( υ s 1 , υ s 2 , υ s 3 ) ( 1 t ) s 3 m ( υ s 1 , υ s 2 , υ s 3 ) if t 1 , D t q m ( υ s 1 , υ s 2 , υ s 3 ) < t s 1 + s 2 m ( υ s 1 , υ s 2 , υ s 3 ) if t > 1 .

Proof Let f L υ s 1 p 1 ( R n ) and g L υ s 2 p 2 ( R n ) be given. We know by Lemma 2.2 that D t p 1 f L υ s 1 p 1 ( R n ) and D t p 2 g L υ s 2 p 2 ( R n ). If we get ξ t =u and η t =v, we obtain

B D t q m ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) D t q m ( ξ , η ) e 2 π i ξ + η , x d ξ d η = R n R n f ˆ ( t u ) g ˆ ( t v ) t 2 n q m ( u , v ) e 2 π i u + v , t x t 2 n d u d v .

Hence, from the equality 2 q = 1 p 1 + 1 p 2 1 p 3 , we have

B D t q m ( f , g ) ( x ) = R n R n f ˆ ( t u ) g ˆ ( t v ) t n ( 1 p 1 + 1 p 2 1 p 3 ) m ( u , v ) e 2 π i u + v , t x t 2 n d u d v = R n R n t n ( 1 1 p 1 ) f ˆ ( t u ) t n ( 1 1 p 1 ) g ˆ ( t v ) t n p 3 m ( u , v ) e 2 π i u + v , t x t 2 n d u d v = t n p 3 R n R n D t 1 p 1 f ˆ ( u ) D t 1 p 2 g ˆ ( v ) m ( u , v ) e 2 π i u + v , t x d u d v = t n p 3 R n R n ( D t p 1 f ) ˆ ( u ) ( D t p 2 g ) ˆ ( v ) m ( u , v ) e 2 π i u + v , t x d u d v = D t 1 p 3 B m ( D t p 1 f , D t p 2 g ) ( x ) .
(2.24)

Assume that t1. Since m B m ( υ s 1 , υ s 2 , υ s 3 ), by Lemma 2.2 and using equality (2.24), we obtain

B D t q m ( f , g ) p 3 , υ s 3 = D t 1 p 3 B m ( D t p 1 f , D t p 2 g ) ( x ) p 3 , υ s 3 ( 1 t ) s 3 B m ( D t p 1 f , D t p 2 g ) ( x ) p 3 , υ s 3 ( 1 t ) s 3 B m D t p 1 f p , υ s 1 D t p 2 g p , υ s 2 ( 1 t ) s 3 m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 .
(2.25)

Then D t q mBM( υ s 1 , υ s 2 , υ s 3 ), and by (2.25)

D t q m ( υ s 1 , υ s 2 , υ s 3 ) ( 1 t ) s 3 m ( υ s 1 , υ s 2 , υ s 3 ) .

Now let t>1. Again, since mBM( υ s 1 , υ s 2 , υ s 3 ), by Lemma 2.2 and using equality (2.24), we obtain

B D t q m ( f , g ) p 3 , υ s 3 < B m ( D t p 1 f , D t p 2 g ) p 3 , υ s 3 B m D t p 1 f p , υ s 1 D t p 2 g p , υ s 2 < t s 1 + s 2 B m f p 1 , υ s 1 g p 2 , υ s 2 = t s 1 + s 2 m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 .
(2.26)

Thus D t q mBM( υ s 1 , υ s 2 , υ s 3 ) and by (2.26)

D t q m ( υ s 1 , υ s 2 , υ s 3 ) < t s 1 + s 2 m ( υ s 1 , υ s 2 , υ s 3 ) .

 □

Theorem 2.6 Let υ s 1 , υ s 2 , υ s 3 be weight functions of polynomial type and let mBM( υ s 1 , υ s 2 , υ s 3 ) such that m(tξ,tη)=m(ξ,η) for any t>0, where 2 q = 1 p 1 + 1 p 2 1 p 3 . Then

2 q < s 3 n if t < 1 , 2 q > s 1 + s 2 n if t > 1 .

Proof Take any f L υ s 1 p 1 ( R n ), g L υ s 2 p 2 ( R n ). It is known by Theorem 2.5 that

B D t q m (f,g)(x)= D t 1 p 3 B m ( D t p 1 f , D t p 2 g ) (x),x R n .
(2.27)

On the other hand, using m(tξ,tη)=m(ξ,η) and changing the variables tu=ξ, tv=η, we note that

(2.28)

Hence by (2.27) and (2.28), we have

B m (f,g)(x)= t n ( 1 p 3 1 p 1 1 p 2 ) B D t q m (f,g)(x).

Since D t q m=m for t=1, we let t1. Assume first that t<1. Also, since mBM( υ s 1 , υ s 2 , υ s 3 ), by Theorem 2.5 we have D t q mBM( υ s 1 , υ s 2 , υ s 3 ) and D t q m ( υ s 1 , υ s 2 , υ s 3 ) < ( 1 t ) s 3 m ( υ s 1 , υ s 2 , υ s 3 ) . Then by (2.28)

B m ( f , g ) ( x ) p 3 , υ s 3 = t n ( 1 p 3 1 p 1 1 p 2 ) B D t q ( f , g ) ( x ) p 3 , υ s 3 t n ( 1 p 3 1 p 1 1 p 2 ) D t q m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 < t n ( 1 p 3 1 p 1 1 p 2 ) s 3 m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 = t n ( 1 p 3 1 p 1 1 p 2 ) s 3 B m f p 1 , υ s 1 g p 2 , υ s 2 .

Thus,

B m < t n ( 1 p 3 1 p 1 1 p 2 ) s 3 B m = t 2 n q s 3 B m .

Hence 1< t 2 n q s 3 . Since t<1, we have 2 n q s 3 <0. Thus, we write 2 q < s 3 n .

Assume now that t>1. Again, by Theorem 2.5, we have D t q mBM( υ s 1 , υ s 2 , υ s 3 ) and D t q m ( υ s 1 , υ s 2 , υ s 3 ) < t s 1 + s 2 m ( υ s 1 , υ s 2 , υ s 3 ) . Similarly,

B m ( f , g ) ( x ) p 3 , υ s 3 < t n ( 1 p 3 1 p 1 1 p 2 ) + s 1 + s 2 B m f p 1 , υ s 1 g p 2 , υ s 2 .

Thus, we have

B m < t n ( 1 p 3 1 p 1 1 p 2 ) + s 1 + s 2 B m = t 2 n q + s 1 + s 2 B m .

Hence 1< t 2 n q + s 1 + s 2 Since t>1, we have 2 n q + s 1 + s 2 >0. Thus, we write 2 q > s 1 + s 2 n . □

Theorem 2.7 Let mBM( ω 1 , ω 2 , ω 3 ) and p 3 1.

  1. (a)

    If Φ L 1 ( R n ), then ΦmBM( ω 1 , ω 2 , ω 3 ) and

    Φ m ( ω 1 , ω 2 , ω 3 ) Φ 1 m ( ω 1 , ω 2 , ω 3 ) .
  2. (b)

    If Φ L ω 1 ( R n ) such that ω(u,υ)= ω 1 (u) ω 2 (υ), then Φ ˆ mBM( ω 1 , ω 2 , ω 3 ) and

    Φ ˆ m ( ω 1 , ω 2 , ω 3 ) Φ 1 , ω m ( ω 1 , ω 2 , ω 3 ) .

Proof (a) Let f L ω 1 p 1 ( R n ) and g L ω 2 p 2 ( R n ). Since L ω 1 p 1 ( R n ) L p 1 ( R n ) and L ω 2 p 2 ( R n ) L p 2 ( R n ), then by Proposition 2.5 in [11]

B Φ m (f,g)(x)= R n R n Φ(u,v) B T ( u , v ) m (f,g)(x)dudv.

Also, since mBM( ω 1 , ω 2 , ω 3 ), we have T ( u , v ) mBM( ω 1 , ω 2 , ω 3 ) by Theorem 2.4. So, we write

B Φ m ( f , g ) p 3 , ω 3 R n R n Φ ( u , v ) B T ( u , v ) m ( f , g ) p 3 , ω 3 d u d v R n R n | Φ ( u , v ) | T ( u , v ) m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 d u d v = m ( ω 1 , ω 2 , ω 3 ) Φ 1 f p 1 , ω 1 g p 2 , ω 2 < .
(2.29)

Hence ΦmBM( ω 1 , ω 2 , ω 3 ). Finally, by (2.29), we obtain

Φ m ( ω 1 , ω 2 , ω 3 ) Φ 1 m ( ω 1 , ω 2 , ω 3 ) .
  1. (b)

    Let Φ L ω 1 ( R n ). Take any f L ω 1 p 1 ( R n ) and g L ω 2 p 2 ( R n ). It is known by Proposition 2.5 in [11] that the equality

    B Φ ˆ m (f,g)(x)= R n R n Φ(u,v) B M ( u , v ) m (f,g)(x)dudv.

Since mBM( ω 1 , ω 2 , ω 3 ), by Theorem 2.4 we have M ( u , v ) mBM( ω 1 , ω 2 , ω 3 ) and

M ( u , v ) m ( ω 1 , ω 2 , ω 3 ) ω 1 (u) ω 2 (υ) m ( ω 1 , ω 2 , ω 3 ) .

Then we write

B Φ ˆ m ( f , g ) p 3 , ω 3 R n R n Φ ( u , v ) B M ( u , v ) m ( f , g ) p 3 , ω 3 d u d v R n R n | Φ ( u , v ) | M ( u , v ) m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 d u d v R n R n | Φ ( u , v ) | ω 1 ( u ) ω 2 ( υ ) m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 d u d v = m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 Φ 1 , ω .
(2.30)

Thus from (2.30), we obtain Φ ˆ mBM( ω 1 , ω 2 , ω 3 ) and

Φ ˆ m ( ω 1 , ω 2 , ω 3 ) Φ 1 , ω m ( ω 1 , ω 2 , ω 3 ) .

 □

Theorem 2.8 Let υ s 1 , υ s 2 , υ s 3 be weight functions of polynomial type and let mBM( υ s 1 , υ s 2 , υ s 3 ). If Ψ L 1 ( R + , t 2 n q dt) such that 2 q = 1 p 1 + 1 p 2 1 p 3 , then m Ψ (ξ,η)= 0 m(tξ,tη)Ψ(t)dtBM( υ s 1 , υ s 2 , υ s 3 ). Moreover,

m Ψ ( υ s 1 , υ s 2 , υ s 3 ) < Ψ L 1 ( R + , t 2 n q d t ) m ( υ s 1 , υ s 2 , υ s 3 ) .

Proof Let us take f,gS( R n ). Then

B m Ψ ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) m Ψ ( ξ , η ) e 2 π i u + v , x d ξ d η = R n R n f ˆ ( ξ ) g ˆ ( η ) { 0 m ( t ξ , t η ) Ψ ( t ) d t } e 2 π i u + v , x d ξ d η = R n R n f ˆ ( ξ ) g ˆ ( η ) { 0 D t 1 q m ( ξ , η ) Ψ ( t ) t 2 n q d t } e 2 π i u + v , x d ξ d η = 0 B D t 1 q m ( f , g ) Ψ ( t ) t 2 n q d t .

Since mBM( υ s 1 , υ s 2 , υ s 3 ), D t 1 q mBM( υ s 1 , υ s 2 , υ s 3 ) by Theorem 2.5, thus we observe that

B m Ψ ( f , g ) ( x ) p 3 , υ s 3 0 B D t 1 q m ( f , g ) p 3 , υ s 3 | Ψ ( t ) | t 2 n q d t 0 B D t 1 q m f p 1 , υ s 1 g p 2 , υ s 2 | Ψ ( t ) | t 2 n q d t = 0 D t 1 q m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 | Ψ ( t ) | t 2 n q d t < 0 1 t s 3 m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 | Ψ ( t ) | t 2 n q d t + 1 t s 1 s 2 m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 | Ψ ( t ) | t 2 n q d t = m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 × { 0 1 t s 3 | Ψ ( t ) | t 2 n q d t + 1 t s 1 s 2 | Ψ ( t ) | t 2 n q d t } .
(2.31)

Also, since t s 3 1 for s 3 0, t1 and t s 1 s 2 <1 for s 1 s 2 0, t>1, by (2.31)

B m Ψ ( f , g ) ( x ) p 3 , υ s 3 < Ψ L 1 ( R + , t 2 n q d t ) m ( υ s 1 , υ s 2 , υ s 3 ) f p 1 , υ s 1 g p 2 , υ s 2 .

Hence, m Ψ BM( υ s 1 , υ s 2 , υ s 3 ) and

m Ψ ( υ s 1 , υ s 2 , υ s 3 ) < Ψ L 1 ( R + , t 2 n q d t ) m ( υ s 1 , υ s 2 , υ s 3 ) .

 □

Theorem 2.9 Let p 3 1 and mBM( ω 1 , ω 2 , ω 3 ). If Q 1 , Q 2 are bounded measurable sets in R n , then

h(ξ,η)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 m(ξ+u,η+v)dudvBM( ω 1 , ω 2 , ω 3 ).

Proof Take any f,gS( R n ). Then we write

B h ( f , g ) ( x ) = R n R n f ˆ ( ξ ) g ˆ ( η ) h ( ξ , η ) e 2 π i ξ + η , x d ξ d η = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 { R n R n f ˆ ( ξ ) g ˆ ( η ) m ( ξ + u , η + v ) e 2 π i ξ + η , x d ξ d η } d u d v = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) ( x ) d u d v .

By using Theorem 2.4, we have

B h ( f , g ) p 3 , ω 3 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) p 3 , ω 3 d u d v 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 T ( u , v ) m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 d u d v = 1 μ ( Q 1 × Q 2 ) m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 μ ( Q 1 × Q 2 ) = m ( ω 1 , ω 2 , ω 3 ) f p 1 , ω 1 g p 2 , ω 2 .

Hence, we obtain h(ξ,η)BM( ω 1 , ω 2 , ω 3 ). □

Theorem 2.10 Let ω(u,v)= ω 1 (u) ω 2 (v), ω 3 ω 1 , ω 3 (u)= ω 3 (u) and 1 p 1 + 1 p 2 = 1 p 3 1. Assume that Φ L ω 1 ( R 2 n ), Ψ 1 L ω 1 p 1 ( R n ) and Ψ 2 L ω 2 p 2 ( R n ). If m(ξ,η)= Ψ ˆ 1 (ξ) Φ ˆ (ξ,η) Ψ ˆ 2 (η), then mBM(1, ω 1 ;1, ω 2 ; p 3 , ω 3 ).

Proof For the proof we will use Theorem 2.2. Take any f,g,hS( R n ). Then

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = | R n h ( y ) { R n R n f ˆ ( ξ ) g ˆ ( η ) Ψ ˆ 1 ( ξ ) Φ ˆ ( ξ , η ) Ψ ˆ 2 ( η ) e 2 π i ξ + η , x d ξ d η } d y | R n | h ( y ) ω 3 1 ( y ) B Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( y ) ω 3 ( y ) | d y .
(2.32)

Since the spaces L ω 1 p 1 ( R n ) and L ω 2 p 2 ( R n ) are Banach convolution module over the spaces L ω 1 1 ( R n ), L ω 2 1 ( R n ) respectively, we write f Ψ 1 L ω 1 p 1 ( R n ) and g Ψ 2 L ω 2 p 2 ( R n ). Also, by Theorem 2.7, Φ ˆ BM( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 ). Therefore we obtain B Φ ˆ (f Ψ 1 ,g Ψ 2 ) L ω 3 p 3 ( R n ). By using the Hölder inequality and the inequality (2.32), we find

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | h p 3 1 , ω 3 1 B Φ ˆ ( f Ψ 1 , g Ψ 2 ) p 3 , ω 3 h p 3 1 , ω 3 1 B Φ ˆ f 1 , ω 1 Ψ 1 p 1 , ω 1 g 1 , ω 2 Ψ 2 p 2 , ω 2 .

If we say C= B Φ ˆ Ψ 1 p 1 , ω 1 Ψ 2 p 2 , ω 2 , then we obtain

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f 1 , ω g 1 , ω 2 h p 3 1 , ω 3 1 ,

which means mBM(1, ω 1 ;1, ω 2 ; p 3 , ω 3 ). □

The following theorem can be proved easily by using the technique of the proof in Theorem 2.10.

Theorem 2.11 Let ω(u,v)= ω 1 (u) ω 2 (v), ω 3 ω 1 , ω 3 (u)= ω 3 (u) and 1 p 1 + 1 p 2 = 1 p 3 1. If m(ξ,η)= Ψ ˆ 1 (ξ) Φ ˆ (ξ,η) Ψ ˆ 2 (η) such that Φ L ω 1 ( R 2 n ), Ψ 1 L ω 1 1 ( R n ) and Ψ 2 L ω 2 1 ( R n ), then mBM( p 1 , ω 1 ; p 2 , ω 2 ; p 3 , ω 3 ).

3 The bilinear multipliers space BM( p 1 (x), p 2 (x), p 3 (x))

Definition 3.1 Let p 1 (x), p 2 (x), p 3 (x)P( R n ) and let p 1 <, p 2 <, p 3 <. Assume that m(ξ,η) is a bounded function on R n × R n . Define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,g C c ( R n ).

m is said to be a bilinear multiplier on R n of type ( p 1 (x), p 2 (x), p 3 (x)) if there exists C>0 such that

B m ( f , g ) p 3 ( x ) C f p 1 ( x ) g p 2 ( x )

for all f,g C c ( R n ), i.e., B m extends to a bounded bilinear operator from L p 1 ( x ) ( R n )× L p 2 ( x ) ( R n ) to L p 3 ( x ) ( R n ). We denote by BM( p 1 (x), p 2 (x), p 3 (x)) the space of bilinear multipliers of type ( p 1 (x), p 2 (x), p 3 (x)) and m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) = B m .

The following theorem can be proved easily by using the technique of the proof in Theorem 2.2.

Theorem 3.1 Let p 3 (x)= p 3 (x) and 1 p 3 ( x ) + 1 q ( x ) =1 for all x R n . Then mBM( p 1 (x), p 2 (x), p 3 (x)) if and only if there exists C>0 such that

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f p 1 ( x ) g p 2 ( x ) h q ( x )

for all f,g,h C c ( R n ).

Theorem 3.2 Let 1 p ( x ) + 1 q ( x ) = 1 r . If Φ L 1 ( R n ), then m(ξ,η)= Φ ˆ (ξ+η)BM(p(x),q(x),r).

Proof Take any f,g,h C c ( R n ). Then

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) Φ ˆ ( ξ + η ) d ξ d η | = | R n R n f ˆ ( ξ ) g ˆ ( η ) ( h Φ ) ˆ ( ξ + η ) d ξ d η | = | R n ( h Φ ) ( x ) { R n R n f ˆ ( ξ ) g ˆ ( η ) e 2 π i ξ + η , x d ξ d η } d x | R n | ( h Φ ) ( x ) | | B ˜ 1 ( f , g ) ( x ) | d x .
(3.1)

Since the space L r ( R n ) is the Banach convolution module over L 1 ( R n ) such that 1 r + 1 r =1, we write hΦ L r ( R n ). Also, we have 1BM(p(x),q(x),r). Then by (3.1), we find C 1 >0 such that

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η) Φ ˆ (ξ+η)dξdη| C 1 h r Φ 1 f p ( x ) g q ( x ) .

If we set C= C 1 Φ 1 , we obtain

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η) Φ ˆ (ξ+η)dξdη|C f p ( x ) g q ( x ) h r

and m(ξ,η)= Φ ˆ (ξ+η)BM(p(x),q(x),r). □

Theorem 3.3 If mBM( p 1 (x), p 2 (x), p 3 (x)), then T ( ξ 0 , η 0 ) mBM( p 1 (x), p 2 (x), p 3 (x)) and

T ( ξ 0 , η 0 ) m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) = m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) )

for all ( ξ 0 , η 0 ) R 2 n .

Proof Let us take any f,g C c ( R n ). By the proof of (a) Theorem 2.4, we know that

B T ( ξ 0 , η 0 ) m (f,g)(x)= e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f, M η 0 g)(x),x R n .
(3.2)

By Lemma 5 in [8], we know M ξ 0 f p 1 ( x ) = f p 1 ( x ) and M η 0 g p 2 ( x ) = g p 2 ( x ) . Since mBM( p 1 (x), p 2 (x), p 3 (x)), by (3.2), there exists C>0 such that

B T ( ξ 0 , η 0 ) m ( f , g ) p 3 ( x ) = B m ( M ξ 0 f , M η 0 g ) p 3 ( x ) C f p 1 ( x ) g p 2 ( x ) .

Thus T ( ξ 0 , η 0 ) mBM( p 1 (x), p 2 (x), p 3 (x)). Moreover, by using the same technique as in the proof of Theorem 2.4, we obtain

T ( ξ 0 , η 0 ) m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) = m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) .

 □

Theorem 3.4 Let 1 p ( x ) + 1 q ( x ) = 1 r ( x ) . If mBM(p(x),q(x),r(x)), then ΦmBM(p(x),q(x),r(x)) and there exists C>0 such that

Φ m ( p ( x ) , q ( x ) , r ( x ) ) C Φ 1 m ( p ( x ) , q ( x ) , r ( x ) )

for all Φ L 1 ( R 2 n ).

Proof Take any f,g C c ( R n ). By Proposition 2.5 in [11], we know that

B Φ m (f,g)(x)= R n R n Φ(u,v) B T ( ξ 0 , η 0 ) m (f,g)(x)dudv.
(3.3)

Since mBM(p(x),q(x),r(x)), then T ( ξ 0 , η 0 ) mBM(p(x),q(x),r(x)) and

T ( ξ 0 , η 0 ) m ( p ( x ) , q ( x ) , r ( x ) ) = m ( p ( x ) , q ( x ) , r ( x ) )

by Theorem 3.3. Using (3.3) and the Minkowski inequality for a variable exponent Lebesgue space [12], we find C>0 such that

B Φ m ( f , g ) r ( x ) C R n R n | Φ ( u , v ) | B T ( ξ 0 , η 0 ) m ( f , g ) r ( x ) d u d v C R n R n | Φ ( u , v ) | B T ( ξ 0 , η 0 ) m f p ( x ) g q ( x ) d u d v = C R n R n | Φ ( u , v ) | m ( p ( x ) , q ( x ) , r ( x ) ) f p ( x ) g q ( x ) d u d v = C m ( p ( x ) , q ( x ) , r ( x ) ) f p ( x ) g q ( x ) Φ 1 .
(3.4)

Hence ΦmBM(p(x),q(x),r(x)) and by (3.4), we have

Φ m ( p ( x ) , q ( x ) , r ( x ) ) C Φ 1 m ( p ( x ) , q ( x ) , r ( x ) ) .

 □

Theorem 3.5 Let r(x)=r(x).

  1. (a)

    If Ψ 1 L p ( R n ), Ψ 2 L q ( R n ) and mBM(p,q,r(x)), then Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM(1,1,r(x)).

  2. (b)

    If Ψ 1 , Ψ 2 L 1 ( R n ) and mBM(p,q,r(x)), then Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM(p,q,r(x)).

  3. (c)

    If Ψ 1 L p ( R n ) and mBM(p,q,r(x)), then Ψ ˆ 1 (ξ)m(ξ,η)BM(1,q(x),r(x)).

  4. (d)

    If Ψ 1 L 1 ( R n ) and mBM(p,q,r(x)), then Ψ ˆ 1 (ξ)m(ξ,η)BM(p,q(x),r(x)).

Proof (a) Let f,g,h C c ( R n ) be given. Then

(3.5)

Since the spaces L p ( R n ) and L q ( R n ) are Banach convolution module over L 1 ( R n ), we have f Ψ 1 L p ( R n ) and g Ψ 2 L q ( R n ). Also, since mBM(p,q,r(x)), we write B m (f Ψ 1 ,g Ψ 2 )(y) L r ( x ) ( R n ). Then, by the equality

B ˜ m ( f Ψ 1 , g Ψ 2 ) ( y ) r ( x ) = B m ( f Ψ 1 , g Ψ 2 ) ( y ) r ( x ) ,

the Hölder inequality and the inequality (3.5), we have

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) Ψ ˆ 1 ( ξ ) m ( ξ , η ) Ψ ˆ 2 ( η ) d ξ d η | h r ( x ) B m ( f Ψ 1 , g Ψ 2 ) ( y ) r ( x ) h r ( x ) B m f 1 Ψ 1 p g 1 Ψ 2 q .

If we say C= B m Ψ 1 p Ψ 2 q , we obtain

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η) Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)dξdη|C f 1 g 1 h r ( x ) .

Hence, Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM(1,1,r(x)).

  1. (b)

    Take any f,g,h C c ( R n ). By (a), we know that

    | R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) Ψ ˆ 1 ( ξ ) m ( ξ , η ) Ψ ˆ 2 ( η ) d ξ d η | R n | h ( y ) | | B ˜ m ( f Ψ 1 , g Ψ 2 ) ( y ) | d x .

Similarly, if we say C= B m Ψ 1 1 Ψ 2 1 , we obtain

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η) Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)dξdη|C f p g q h r ( x ) ,

which means Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM(p,q,r(x)).

In this theorem, (c) and (d) can be proved easily by using the technique of the proof in (a) and (b), respectively. □

Theorem 3.6 Let mBM( p 1 (x), p 2 (x), p 3 (x)). If Q 1 , Q 2 R n are bounded sets, then

h(ξ,η)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 m(ξ+u,η+v)dudvBM ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) .

Proof Let f,g,h C c ( R n ) be given. By using the Fubini theorem, we can easily prove the following equality:

B h (f,g)(x)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m (f,g)(x)dudv.

Also, by the Minkowski inequality and Theorem 3.3, we find C 0 >0 such that

B h ( f , g ) p 3 ( x ) 1 μ ( Q 1 × Q 2 ) C 0 Q 1 × Q 2 B T ( u , v ) m ( f , g ) p 3 ( x ) d u d v 1 μ ( Q 1 × Q 2 ) C 0 Q 1 × Q 2 T ( u , v ) m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) f p 1 ( x ) g p 2 ( x ) d u d v = 1 μ ( Q 1 × Q 2 ) C 0 m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) f p 1 ( x ) g p 2 ( x ) μ ( Q 1 × Q 2 ) = C 0 m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) f p 1 ( x ) g p 2 ( x ) .

If we say C= C 0 m ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) , we obtain

B h ( p 1 ( x ) , p 2 ( x ) , p 3 ( x ) ) C f p 1 ( x ) g p 2 ( x ) .

Hence h(ξ,η)BM( p 1 (x), p 2 (x), p 3 (x)). □

Theorem 3.7

  1. (a)

    If L s ( x ) ( R n ) L r ( x ) ( R n ) and mBM(p(x),q(x),s(x)), then mBM(p(x),q(x),r(x)).

  2. (b)

    If L s ( x ) ( R n ) L r ( x ) ( R n ), L p ( x ) ( R n ) L k ( x ) ( R n ), L q ( x ) ( R n ) L t ( x ) ( R n ) and mBM(k(x),t(x),s(x)), then mBM(p(x),q(x),r(x)).

Proof (a) Take any f,g C c ( R n ). Since mBM(p(x),q(x),s(x)), there exists C 1 >0 such that

B m ( f , g ) s ( x ) C 1 f p ( x ) g q ( x ) .
(3.6)

Also, since L s ( x ) ( R n ) L r ( x ) ( R n ), there exists C 2 >0 such that

B m ( f , g ) r ( x ) C 2 B m ( f , g ) s ( x ) .
(3.7)

If we set C= C 1 C 2 and combine the inequalities (3.6) and (3.7), we have

B m ( f , g ) r ( x ) C f p ( x ) g q ( x ) .

Therefore mBM(p(x),q(x),r(x)).

  1. (b)

    Let us take any f,g C c ( R n ). Since mBM(k(x),t(x),s(x)), there exists C 3 >0 such that

    B m ( f , g ) s ( x ) C 3 f k ( x ) g t ( x ) .
    (3.8)

By using the inclusions L s ( x ) ( R n ) L r ( x ) ( R n ), L p ( x ) ( R n ) L k ( x ) ( R n ) and L q ( x ) ( R n ) L t ( x ) ( R n ), we find C 4 , C 5 , C 6 >0 such that

(3.9)
(3.10)

and

g t ( x ) C 6 g q ( x ) .
(3.11)

If we set C= C 3 C 4 C 5 C 6 and combine the inequalities (3.8), (3.9), (3.10) and (3.11), we have

B m ( f , g ) r ( x ) C f p ( x ) g q ( x ) .

Then mBM(p(x),q(x),r(x)). □

References

  1. Feichtinger H, Gürkanlı AT: On a family of weighted convolution algebras. Int. J. Math. Math. Sci. 1990, 13(3):517–526. 10.1155/S0161171290000758

    Article  MathSciNet  MATH  Google Scholar 

  2. Fischer RH, Gürkanlı AT, Liu TS: On a family of weighted spaces. Math. Slovaca 1996, 46(1):71–82.

    MathSciNet  MATH  Google Scholar 

  3. Katznelson Y: An Introduction to Harmonic Analysis. Dover, New York; 1968.

    MATH  Google Scholar 

  4. Reiter H: Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, Oxford; 1968.

    MATH  Google Scholar 

  5. Rudin W: Fourier Analysis on Groups. Interscience, New York; 1962.

    MATH  Google Scholar 

  6. Kovacik O, Rakosnik J:On spaces L p ( x ) and W k , p ( x ) . Czechoslov. Math. J. 1991, 41(116):592–618.

    MathSciNet  MATH  Google Scholar 

  7. Aydın İ, Gürkanlı AT: Weighted variable exponent amalgam spaces. Glas. Mat. 2012, 47(67):165–174.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aydın İ, Gürkanlı AT:On some properties of the spaces A ω p ( x ) ( R n ). Proc. Jangjeon Math. Soc. 2009, 12(2):141–155.

    MathSciNet  MATH  Google Scholar 

  9. Gasquet C, Witomski P: Fourier Analysis and Applications. Springer, New York; 1999.

    Book  MATH  Google Scholar 

  10. Murthy GNK, Unni KR: Multipliers on weighted Spaces. Lecture Notes in Mathematics 399. In Functional Analysis and Its Applications. Springer, Berlin; 1973:272–291.

    Google Scholar 

  11. Blasco O: Notes on the spaces of bilinear multipliers. Rev. Unión Mat. Argent. 2009, 50(2):23–37.

    MathSciNet  MATH  Google Scholar 

  12. Samko SG:Convolution type operators in L p ( x ) . Integral Transforms Spec. Funct. 1998, 7: 123–144. 10.1080/10652469808819191

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Dedicated to Professor Hari M Srivastava.

This research was supported by the Ondokuz Mayıs University (PYO.FEN.1904.13.002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Öznur Kulak.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors completed the paper together. They also read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kulak, Ö., Gürkanlı, A.T. Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces. J Inequal Appl 2013, 259 (2013). https://doi.org/10.1186/1029-242X-2013-259

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-259

Keywords