Skip to main content

On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals

Abstract

In this paper, three fundamental and important Riemann-Liouville fractional integral identities including a twice differentiable mapping are established. Secondly, some interesting Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for m-convexity and (s,m)-convexity functions, respectively, by virtue of the established integral identities are presented.

MSC:26A33, 26A51, 26D07.

1 Introduction

In 1881, Hermite found the famous Hermite-Hadamard inequality (see Mitrinović and Lacković [1])

f ( a + b 2 ) ≤ 1 b − a ∫ a b f(t)dt≤ f ( a ) + f ( b ) 2 ,

where f:I⊂R→R is a convex function on the interval I of real numbers and a,b∈I with a<b. For the contribution on the recent results which generalized, improved, and extended this classical Hermite-Hadamard inequality via convex functions, we refer the reader to [2–16] and references therein.

In addition to the classical convex functions, Toader [17], Hudzik and Maligranda [18] and Pinheiro [19] extended the concepts of classical convex functions to the concepts of m-convex function and (s,m)-convex function.

Definition 1.1 The function f:[0, b ∗ ]→R is said to be m-convex, where m∈[0,1] and b ∗ >0, if for every x,y∈[0, b ∗ ] and t∈[0,1], we have

f ( t x + m ( 1 − t ) y ) ≤tf(x)+m(1−t)f(y).

Definition 1.2 The function f:[0, b ∗ ]→R is said to be (s,m)-convex, where (s,m)∈ [ 0 , 1 ] 2 and b ∗ >0, if for every x,y∈[0, b ∗ ] and t∈[0,1], we have

f ( t x + m ( 1 − t ) y ) ≤ t s f(x)+m ( 1 − t s ) f(y).

Recently, Ödemir et al. [5, 6] applied the following two important integral identities, including second-order derivatives, to establish some interesting Hermite-Hadamard type inequalities for m-convexity and (s,m)-convexity functions, respectively.

Lemma 1.3 Let f:[a,b]→R be a twice differentiable mapping on (a,b) with a<b. If f ″ ∈L[a,b], then

f ( a ) + f ( b ) 2 − 1 b − a ∫ a b f(t)dt= ( b − a ) 2 2 ∫ 0 1 t(1−t) f ″ ( t a + ( 1 − t ) b ) dt.

Lemma 1.4 Let f:[a,b]→R be a twice differentiable mapping on (a,b) with a<b and m∈(0,1]. If f ″ ∈L[a,b], then

f ( a ) + f ( m b ) 2 − 1 m b − a ∫ a m b f(t)dt= ( m b − a ) 2 2 ∫ 0 1 t(1−t) f ″ ( t a + m ( 1 − t ) b ) dt.

For more recent interesting integral inequalities results for m-convexity and (s,m)-convexity functions, one can see [20–25].

On the other hand, fractional integrals and derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. For more recent development on fractional calculus, one can see the monographs [26–33] and the references therein.

Very recently, Sarikaya et al. [34] extended Lemma 1.3 and Lemma 1.4 to the case of Riemann-Liouville fractional integrals.

Lemma 1.5 (see Lemma 2, [34])

Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If f ′ ∈L[a,b], then the following equality for fractional integrals holds:

f ( a ) + f ( b ) 2 − Γ ( α + 1 ) 2 ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] = b − a 2 ∫ 0 1 [ ( 1 − t ) α − t α ] f ′ ( t a + ( 1 − t ) b ) d t ,

where the symbols J a + α R L f and J b − α R L f denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order α∈ R + that are defined by

( R L J a + α f)(x)= 1 Γ ( α ) ∫ a x ( x − t ) α − 1 f(t)dt(0≤a<x≤b),

and

( R L J b − α f)(x)= 1 Γ ( α ) ∫ x b ( t − x ) α − 1 f(t)dt(0≤a≤x<b),

respectively. Here Γ(⋅) is the gamma function.

Thereafter, Wang et al. [35, 36] extended Lemma 1.5 to the case of including a twice differentiable function involving Riemann-Liouville fractional integrals and the case of including a first differentiable function involving Hadamard fractional integrals, respectively.

Lemma 1.6 (see Lemma 2.1, [35])

Let f:[a,b]→R be a twice differentiable mapping on (a,b) with a<b. If f ″ ∈L[a,b], then the following equality for fractional integrals holds:

f ( a ) + f ( b ) 2 − Γ ( α + 1 ) 2 ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] = ( b − a ) 2 2 ∫ 0 1 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 f ″ ( t a + ( 1 − t ) b ) d t .
(1)

Lemma 1.7 (see Lemma 3.1, [36])

Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If f ′ ∈L[a,b], then

f ( a ) + f ( b ) 2 − Γ ( α + 1 ) 2 ( ln b − ln a ) α [ H J a + α f ( b ) + H J b − α f ( a ) ] = ln b − ln a 2 ∫ 0 1 [ ( 1 − t ) α − t α ] e t ln a + ( 1 − t ) ln b f ′ ( e t ln a + ( 1 − t ) ln b ) d t ,

where the symbols J a + α H f and J b − α H f denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order α∈ R + that are defined by

( H J a + α f)(x)= 1 Γ ( α ) ∫ a x ( ln x t ) α − 1 f(t) d t t (0≤a<x≤b),

and

( H J b − α f)(x)= 1 Γ ( α ) ∫ x b ( ln t x ) α − 1 f(t) d t t (0≤a≤x<b),

respectively.

Furthermore, Zhu et al. [37] established another important Riemann-Liouville fractional integral identity for a differentiable mapping.

Lemma 1.8 (see Lemma 2.1, [37])

Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If f ′ ∈L[a,b], then

Γ ( α + 1 ) 2 ( b − a ) α [ J a + α f ( b ) + J b − α f ( a ) ] − f ( a + b 2 ) = b − a 2 [ ∫ 0 1 ζ f ′ ( t a + ( 1 − t ) b ) d t − ∫ 0 1 [ ( 1 − t ) α − t α ] f ′ ( t a + ( 1 − t ) b ) d t ] ,

where

ζ= { 1 , 0 ≤ t < 1 2 , − 1 , 1 2 ≤ t < 1 .

Motivated by [5, 6, 34, 35, 37], we offer the following two basic questions:

  1. (i)

    Can we extend Lemma 1.8 to some possible cases of including a twice differentiable mapping? If we can, we must give the concrete form.

  2. (ii)

    Can we give other more interesting Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for m-convex or (s,m)-convex functions by virtue of our established integral identities?

The first aim of this paper is to establish three fundamental and important Riemann-Liouville fractional integral identities including a twice differentiable function (see Lemmas 2.1, 2.3 and 2.3). Next, we present some interesting Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals for m-convexity and (s,m)-convexity functions, respectively, by virtue of our established integral identities.

2 Some interesting Riemann-Liouville fractional integral identities

We firstly extend Lemma 1.8 to the following integral identity including a twice differentiable mapping.

Lemma 2.1 Let f:[a,b]→R be a twice differentiable mapping on (a,b) with a<b. If f ″ ∈L[a,b], then

Γ ( α + 1 ) 2 ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] − f ( a + b 2 ) = ( b − a ) 2 2 ∫ 0 1 m ( t ) f ″ ( t a + ( 1 − t ) b ) d t ,
(2)

where

m(t)= { t − 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 , t ∈ [ 0 , 1 2 ) , 1 − t − 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 , t ∈ [ 1 2 , 1 ) .

Proof Denote

J= ∫ 0 1 2 t f ″ ( t a + ( 1 − t ) b ) dt+ ∫ 1 2 1 (1−t) f ″ ( t a + ( 1 − t ) b ) dt:= J 1 + J 2 .
(3)

Integrating by parts, we have

J 1 = ∫ 0 1 2 t f ″ ( t a + ( 1 − t ) b ) d t = 1 a − b t f ′ ( t a + ( 1 − t ) b ) | 0 1 2 − 1 a − b ∫ 0 1 2 f ′ ( t a + ( 1 − t ) b ) d t = 1 2 ( a − b ) f ′ ( a + b 2 ) − 1 ( a − b ) 2 [ f ( a + b 2 ) − f ( b ) ] ,
(4)

and

J 2 = ∫ 1 2 1 ( 1 − t ) f ″ ( t a + ( 1 − t ) b ) d t = 1 a − b ( 1 − t ) f ′ ( t a + ( 1 − t ) b ) | 1 2 1 + 1 a − b ∫ 1 2 1 f ′ ( t a + ( 1 − t ) b ) d t = − 1 2 ( a − b ) f ′ ( a + b 2 ) + 1 ( a − b ) 2 [ f ( a ) − f ( a + b 2 ) ] .
(5)

Submitting (4) and (5) to (3), it follows that

J= f ( a ) + f ( b ) ( b − a ) 2 − 2 f ( a + b 2 ) ( b − a ) 2 .
(6)

Thus, by multiplying both sides of (6) by ( b − a ) 2 2 , we have

( b − a ) 2 2 ∫ 0 1 m ( t ) f ″ ( t a + ( 1 − t ) b ) d t = f ( a ) + f ( b ) 2 − f ( a + b 2 ) − ( b − a ) 2 2 ∫ 0 1 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 f ″ ( t a + ( 1 − t ) b ) d t .
(7)

On the other hand, by (1) we obtain

( b − a ) 2 2 ∫ 0 1 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 f ″ ( t a + ( 1 − t ) b ) d t = f ( a ) + f ( b ) 2 − Γ ( α + 1 ) 2 ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] .
(8)

Combing (7) and (8), we obtain the conclusion (2). This completes the proof. □

Next, we establish the following results.

Lemma 2.2 Let f:[a,b]→R be a twice differentiable mapping on (a,b) with a<b. If f ″ ∈L[a,b], r>0, then

f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] = ( b − a ) 2 ∫ 0 1 k ( t ) f ″ ( t a + ( 1 − t ) b ) d t ,
(9)

where

k(t)= { 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) − t r + 1 , t ∈ [ 0 , 1 2 ) , 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) − 1 − t r + 1 , t ∈ [ 1 2 , 1 ) .
(10)

Proof By multiplying both sides of (1) by 1 r ( r + 1 ) , we have

f ( a ) + f ( b ) r ( r + 1 ) − Γ ( α + 1 ) r ( r + 1 ) ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] = ( b − a ) 2 r ( r + 1 ) ∫ 0 1 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 f ″ ( t a + ( 1 − t ) b ) d t .
(11)

By multiplying both sides of (2) by − 1 r + 1 , we have

2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) ( r + 1 ) ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] = − ( b − a ) 2 r + 1 ∫ 0 1 m ( t ) f ″ ( t a + m ( 1 − t ) b ) d t .
(12)

Hence, (11) and (12) yield

f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] = ( b − a ) 2 r ( r + 1 ) ∫ 0 1 1 − ( 1 − t ) α + 1 − t α + 1 α + 1 f ″ ( t a + ( 1 − t ) b ) d t − ( b − a ) 2 r + 1 ∫ 0 1 m ( t ) f ″ ( t a + m ( 1 − t ) b ) d t = ( b − a ) 2 ∫ 0 1 k ( t ) f ″ ( t a + ( 1 − t ) b ) d t ,

where k(t) is defined in (10). This completes the proof. □

Lemma 2.3 Let f:[a,b]→R be a twice differentiable mapping on (a,b) with a<mb≤b. If f ″ ∈ L 1 [a,b], r>0, then

f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] = ( m b − a ) 2 ∫ 0 1 k ( t ) f ″ ( t a + m ( 1 − t ) b ) d t ,

where k(t) is defined in (10).

Proof This is just Lemma 2.2 on the interval [a,mb]⊂[a,b]. □

3 Hermite-Hadamard type inequalities for m-convex functions

We start by stating the first theorem containing a Hermite-Hadamard type inequality.

Theorem 3.1 Let f:[0, b ∗ ]→R be a twice differentiable mapping with b ∗ >0. If | f ″ | q is measurable and m-convex on [a, b m ] for some fixed q≥1, 0≤a<b and m∈(0,1] with b m ≤ b ∗ , r>0, then

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q .

Proof Case 1: We suppose that q=1. From Lemma 2.2, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ∫ 0 1 | k ( t ) | | f ″ ( t a + ( 1 − t ) b ) | d t
(13)

due to ( 1 − t ) α + 1 + t α + 1 ≤1 for any t∈[0,1]. Since | f ″ | is m-convex on [a, b m ], we know that for any t∈[0,1],

| f ″ ( t a + ( 1 − t ) b ) | ≤t | f ″ ( a ) | +m(1−t)| f ″ ( b m ) |.

Therefore,

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ∫ 0 1 2 | k 1 ( t ) | ( t | f ″ ( a ) | + m ( 1 − t ) | f ″ ( b m ) | ) d t + ( b − a ) 2 ∫ 1 2 1 | k 2 ( t ) | ( t | f ″ ( a ) | + m ( 1 − t ) | f ″ ( b m ) | ) d t ,

where

k 1 (t)= 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) − t r + 1 , k 2 (t)= 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) − 1 − t r + 1 .

Denote

I 1 = ∫ 0 1 2 | k 1 ( t ) | ( t | f ″ ( a ) | + m ( 1 − t ) | f ″ ( b m ) | ) d t , I 2 = ∫ 1 2 1 | k 2 ( t ) | ( t | f ″ ( a ) | + m ( 1 − t ) | f ″ ( b m ) | ) d t .

Integrating the above equalities by parts, respectively we have

I 1 ≤ ∫ 0 1 2 [ 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + t r + 1 ] ( t | f ″ ( a ) | + m ( 1 − t ) | f ″ ( b m ) | ) d t = | f ″ ( a ) | r ( α + 1 ) ∫ 0 1 2 [ 1 − ( 1 − t ) α + 1 − t α + 1 ] t d t + | f ″ ( a ) | r + 1 ∫ 0 1 2 t 2 d t + m | f ″ ( b m ) | r ( α + 1 ) ∫ 0 1 2 [ 1 − ( 1 − t ) α + 1 − t α + 1 ] ( 1 − t ) d t + m | f ″ ( b m ) | r + 1 ∫ 0 1 2 t ( 1 − t ) d t = | f ″ ( a ) | r ( α + 1 ) [ 1 8 − 1 ( α + 2 ) ( α + 3 ) + 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + 1 24 | f ″ ( a ) | r + 1 + m | f ″ ( b m ) | r ( α + 1 ) [ 3 8 − 1 α + 3 − 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + 1 12 m | f ″ ( b m ) | r + 1 ,
(14)

and

I 2 ≤ ∫ 1 2 1 [ 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + 1 − t r + 1 ] ( t | f ″ ( a ) | + m ( 1 − t ) | f ″ ( b m ) | ) d t = | f ″ ( a ) | r ( α + 1 ) ∫ 1 2 1 [ 1 − ( 1 − t ) α + 1 − t α + 1 ] t d t + | f ″ ( a ) | r + 1 ∫ 1 2 1 ( 1 − t ) t d t + m | f ″ ( b m ) | r ( α + 1 ) ∫ 1 2 1 [ 1 − ( 1 − t ) α + 1 − t α + 1 ] ( 1 − t ) d t + m | f ″ ( b m ) | r + 1 ∫ 1 2 1 ( 1 − t ) 2 d t = | f ″ ( a ) | r ( α + 1 ) [ 3 8 − 1 α + 3 − 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + 1 12 | f ″ ( a ) | r + 1 + m | f ″ ( b m ) | r ( α + 1 ) [ 1 8 − 1 ( α + 2 ) ( α + 3 ) + 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + 1 24 m | f ″ ( b m ) | r + 1 .
(15)

Therefore,

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r ( α + 1 ) | f ″ ( a ) | ( 1 2 − 1 α + 2 ) + 1 8 ( b − a ) 2 r + 1 | f ″ ( a ) | + m ( b − a ) 2 r ( α + 1 ) | f ″ ( b m ) | ( 1 2 − 1 α + 2 ) + 1 8 m ( b − a ) 2 r + 1 | f ″ ( b m ) | = ( b − a ) 2 | f ″ ( a ) | ( α 2 r ( α + 1 ) ( α + 2 ) + 1 8 ( r + 1 ) ) + m ( b − a ) 2 | f ″ ( b m ) | ( α 2 r ( α + 1 ) ( α + 2 ) + 1 8 ( r + 1 ) ) = ( b − a ) 2 | f ″ ( a ) | + m | f ″ ( b m ) | 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) ,

which completes the proof for this case.

Case 2: We suppose that q>1. By (9) via the power mean inequality for q, it is easy to see

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( ∫ 0 1 | k ( t ) | d t ) 1 − 1 q × ( ∫ 0 1 | k ( t ) | | f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q = ( b − a ) 2 ( ∫ 0 1 2 | k 1 ( t ) | d t + ∫ 1 2 1 | k 2 ( t ) | d t ) 1 − 1 q × ( ∫ 0 1 2 | k 1 ( t ) | | f ″ ( t a + ( 1 − t ) b ) | q d t + ∫ 1 2 1 | k 2 ( t ) | | f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q .
(16)

Clearly,

∫ 0 1 2 | k 1 ( t ) | dt≤ α 2 r ( α + 1 ) ( α + 2 ) + 1 8 ( r + 1 ) ,
(17)
∫ 1 2 1 | k 2 ( t ) | dt≤ α 2 r ( α + 1 ) ( α + 2 ) + 1 8 ( r + 1 ) .
(18)

Since | f ″ | q is m-convex on [a, b m ], we know that for any t∈[0,1],

| f ″ ( t a + ( 1 − t ) b ) | q ≤t | f ″ ( a ) | q +m(1−t)| f ″ ( b m ) | q .
(19)

Thus,

∫ 0 1 2 | k 1 ( t ) | | f ″ ( t a + ( 1 − t ) b ) | q d t ≤ ∫ 0 1 2 ( 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + t r + 1 ) ( t | f ″ ( a ) | q + m ( 1 − t ) | f ″ ( b m ) | q ) d t = | f ″ ( a ) | q r ( α + 1 ) [ 1 8 − 1 ( α + 2 ) ( α + 3 ) + 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + | f ″ ( a ) | q 24 ( r + 1 ) + m | f ″ ( b m ) | q r ( α + 1 ) [ 3 8 − 1 α + 3 − 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + m | f ″ ( b m ) | q 12 ( r + 1 )

and

∫ 1 2 1 | k 2 ( t ) | | f ″ ( t a + ( 1 − t ) b ) | q d t ≤ | f ″ ( a ) | q r ( α + 1 ) [ 3 8 − 1 α + 3 − 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + | f ″ ( a ) | q 12 ( r + 1 ) + m | f ″ ( b m ) | q r ( α + 1 ) [ 1 8 − 1 ( α + 2 ) ( α + 3 ) + 1 ( α + 2 ) ( α + 3 ) 2 α + 2 ] + m | f ″ ( b m ) | q 24 ( r + 1 ) .

Therefore,

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q .

The proof of this case is completed. □

Remark 3.2 With the same assumptions as in Theorem 3.1, if | f ″ (x)|≤M on [a, b m ], we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ M ( b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) ( 1 + m 2 ) 1 q , q ≥ 1 .

Now, we begin by stating the second theorem in this section.

Theorem 3.3 Let f:[0, b ∗ ]→R be a twice differentiable mapping with b ∗ >0. If | f ″ | q is measurable and m-convex on [a, b m ] for some fixed q>1, 0≤a<b and m∈(0,1] with b m ≤ b ∗ , r>0, then

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q ,

where 1 p + 1 q =1.

Proof From Lemma 2.2 and using the well-known Hölder inequality, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( ∫ 0 1 | k ( t ) | p d t ) 1 p ( ∫ 0 1 | f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q .
(20)

On the one hand,

∫ 0 1 2 | k 1 ( t ) | p d t ≤ ∫ 0 1 2 ( 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) ) p d t = 1 r p ( α + 1 ) p ∫ 0 1 2 ( 1 − ( 1 − t ) α + 1 − t α + 1 ) p d t ≤ 1 r p ( α + 1 ) p ∫ 0 1 2 ( 1 − ( 1 − t ) p ( α + 1 ) − t p ( α + 1 ) ) d t = 1 r p ( α + 1 ) p ( 1 2 − 1 p ( α + 1 ) + 1 ) ,
(21)

and

∫ 1 2 1 | k 2 ( t ) | p dt≤ 1 r p ( α + 1 ) p ( 1 2 − 1 p ( α + 1 ) + 1 ) ,
(22)

where we use the fact

( 1 − ( 1 − t ) α + 1 − t α + 1 ) q ≤1− ( 1 − t ) q ( α + 1 ) − t q ( α + 1 ) ,
(23)

for any t∈[0,1], which follows from ( A − B ) q ≤ A q − B q for any A>B≥0 and q≥1.

On the other hand,

∫ 0 1 | f ″ ( t a + ( 1 − t ) b | q d t ≤ ∫ 0 1 [ | f ″ ( a ) | q t + m ( 1 − t ) | f ″ ( b m ) | q ] d t = | f ″ ( a ) | q ∫ 0 1 t d t + m | f ″ ( b m ) | q ∫ 0 1 ( 1 − t ) d t = | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 .
(24)

Finally, submitting (21), (22) and (24) to (20), one can obtain the result immediately. □

Remark 3.4 With the same assumptions as in Theorem 3.3, if | f ″ (x)|≤M on [a, b m ], we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ M ( b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p ( 1 + m 2 ) 1 q ,

where 1 p + 1 q =1.

Another Hermite-Hadamard type inequality for powers in terms of the second derivatives is obtained as follows.

Theorem 3.5 Let f:[0, b ∗ ]→R be a twice differentiable mapping with b ∗ >0. If | f ″ | q is measurable and m-convex on [a, b m ] for some fixed q>1, 0≤a<b and m∈(0,1] with b m ≤ b ∗ , r>0, then

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r ( α + 1 ) ( q ( α + 1 ) − 1 q ( α + 1 ) + 1 ) 1 q ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q .

Proof From Lemma 2.2 and using the well-known Hölder inequality, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( ∫ 0 1 1 d t ) 1 p ( ∫ 0 1 | k ( t ) f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q ≤ ( b − a ) 2 ( | f ″ ( a ) | q ∫ 0 1 t | k ( t ) | q d t + m | f ″ ( b m ) | q ∫ 0 1 ( 1 − t ) | k ( t ) | q d t ) 1 q .
(25)

Calculating by parts, we have

∫ 0 1 t | k ( t ) | q d t = ∫ 0 1 2 t | k 1 ( t ) | q d t + ∫ 1 2 1 t | k 2 ( t ) | q d t ≤ 1 r q ( α + 1 ) q [ 1 2 − 1 q ( α + 1 ) + 1 ] ,
(26)
∫ 0 1 ( 1 − t ) | k ( t ) | q d t = ∫ 0 1 2 ( 1 − t ) | k 1 ( t ) | q d t + ∫ 1 2 1 ( 1 − t ) | k 2 ( t ) | q d t ≤ 1 r q ( α + 1 ) q [ 1 2 − 1 q ( α + 1 ) + 1 ] .
(27)

Submitting (26) and (27) to (25) via (23), one can obtain the result. The proof is completed. □

Remark 3.6 With the same assumptions as in Theorem 3.5, if | f ″ (x)|≤M on [a, b m ], we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ M ( b − a ) 2 r ( α + 1 ) ( q ( α + 1 ) − 1 q ( α + 1 ) + 1 ) 1 q ( 1 + m 2 ) 1 q ,

where 1 p + 1 q =1.

Remark 3.7 From Theorems 3.1, 3.3 and 3.5, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f(b) + R L J b − α f(a)]|≤min{ K 1 , K 2 , K 3 },

where

K 1 = ( b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q , K 2 = ( b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q , K 3 = ( b − a ) 2 r ( α + 1 ) ( q ( α + 1 ) − 1 q ( α + 1 ) + 1 ) 1 q ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q .

From Theorem 3.3 and Theorem 3.5, we use one skill of shrinking about inequality, then we now use another skill of shrinking.

Theorem 3.8 Let f:[0, b ∗ ]→R be a twice differentiable mapping with b ∗ >0. If | f ″ | q is measurable and m-convex on [a, b m ] for some fixed q>1, 0≤a<b and m∈(0,1] with b m ≤ b ∗ , r>0, then

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( 2 p + 1 ) 1 p ( b − a ) 2 r + 1 [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p × ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q ,

where 1 p + 1 q =1.

Proof From Lemma 2.2 and using the well-known Hölder inequality, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( ∫ 0 1 | k ( t ) | p d t ) 1 p ( ∫ 0 1 | f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q .
(28)

Note that ( 1 − t ) α + 1 + t α + 1 ≤1 for any t∈[0,1]. Calculating by parts, we find

∫ 0 1 2 | k 1 ( t ) | p d t ≤ ∫ 0 1 2 ( 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + t r + 1 ) p d t ≤ ∫ 0 1 2 ( 1 r ( α + 1 ) + t r + 1 ) p d t = 1 ( r + 1 ) p ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) p d t , ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) p d t = 1 p + 1 ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − 1 p + 1 ( r + 1 r ( α + 1 ) ) p + 1 ,

and

∫ 1 2 1 | k 2 ( t ) | p d t ≤ ∫ 1 2 1 ( 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + 1 − t r + 1 ) p d t ≤ ∫ 1 2 1 ( 1 r ( α + 1 ) + 1 − t r + 1 ) p d t = 1 ( r + 1 ) p ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) p d t , ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) p d t = 1 p + 1 ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − 1 p + 1 ( r + 1 r ( α + 1 ) ) p + 1 .

Thus,

∫ 0 1 | k ( t ) | p dt≤ 2 ( r + 1 ) p ( p + 1 ) [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] .
(29)

Moreover,

∫ 0 1 | f ″ ( t a + ( 1 − t ) b ) | q d t ≤ ∫ 0 1 ( | f ″ ( a ) | q t + m ( 1 − t ) | f ″ ( b m ) | q ) d t = | f ″ ( a ) | q ∫ 0 1 t d t + m | f ″ ( b m ) | q ∫ 0 1 ( 1 − t ) d t = | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 .
(30)

Now submitting (29) and (30) to (28), one can derive the desired result. □

Remark 3.9 With the same assumptions as in Theorem 3.8, if | f ″ (x)|≤M on [a, b m ], we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ M ( b − a ) 2 r + 1 ( 2 p + 1 ) 1 p [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p ( 1 + m 2 ) 1 q ,

where 1 p + 1 q =1.

Another Hermite-Hadamard type inequality for powers in terms of the second derivatives is obtained as follows.

Theorem 3.10 Let f:[0, b ∗ ]→R be a twice differentiable mapping with b ∗ >0. If | f ″ | q is measurable and m-convex on [a, b m ] for some fixed q>1, 0≤a<b and m∈(0,1] with b m ≤ b ∗ , r>0, then

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( 2 q + 1 ) 1 q ( b − a ) 2 r + 1 [ ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − ( r + 1 r ( α + 1 ) ) q + 1 ] 1 q × ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q .

Proof From Lemma 2.2 and using the well-known Hölder inequality, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( ∫ 0 1 1 d t ) 1 p ( ∫ 0 1 | k ( t ) f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q ≤ ( b − a ) 2 ( | f ″ ( a ) | q ∫ 0 1 t | k ( t ) | q d t + m | f ″ ( b m ) | q ∫ 0 1 ( 1 − t ) | k ( t ) | q d t ) 1 q .
(31)

Calculating by parts, we have

∫ 0 1 t | k ( t ) | q dt= ∫ 0 1 2 t | k 1 ( t ) | q dt+ ∫ 1 2 1 t | k 2 ( t ) | q dt

with

∫ 0 1 2 t | k 1 ( t ) | q d t ≤ ∫ 0 1 2 ( 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + t r + 1 ) q t d t ≤ ∫ 0 1 2 ( 1 r ( α + 1 ) + t r + 1 ) q t d t = 1 ( r + 1 ) p ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) q t d t ,

and

∫ 1 2 1 t | k 2 ( t ) | q d t ≤ ∫ 1 2 1 ( 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + 1 − t r + 1 ) q t d t ≤ ∫ 1 2 1 ( 1 r ( α + 1 ) + 1 − t r + 1 ) q t d t = 1 ( r + 1 ) q ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) q t d t ,

where

∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) q t d t = 1 2 ( q + 1 ) ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − 1 ( q + 1 ) ( q + 2 ) ( 1 2 + r + 1 r ( α + 1 ) ) q + 2 + 1 ( q + 1 ) ( q + 2 ) ( r + 1 r ( α + 1 ) ) q + 2 ,

and

∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) q t d t = − 1 q + 1 ( r + 1 r ( α + 1 ) ) q + 1 − 1 ( q + 1 ) ( q + 2 ) ( r + 1 r ( α + 1 ) ) q + 2 + 1 2 ( q + 1 ) ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 + 1 ( q + 1 ) ( q + 2 ) ( 1 2 + r + 1 r ( α + 1 ) ) q + 2 .

Thus,

∫ 0 1 t | k ( t ) | q dt= 1 ( q + 1 ) ( r + 1 ) q [ ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − ( r + 1 r ( α + 1 ) ) q + 1 ] .
(32)

Clearly,

∫ 0 1 ( 1 − t ) | k ( t ) | q d t = ∫ 0 1 2 ( 1 − t ) | k 1 ( t ) | q d t + ∫ 1 2 1 ( 1 − t ) | k 2 ( t ) | q d t ≤ 1 ( q + 1 ) ( r + 1 ) q [ ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − ( r + 1 r ( α + 1 ) ) q + 1 ] .
(33)

Now, submitting (32) and (33) to (31), one can obtain the result. The proof is completed. □

Remark 3.11 With the same assumptions as in Theorem 3.10, if | f ″ (x)|≤M on [a, b m ], we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( 2 q + 1 ) 1 q M ( b − a ) 2 r + 1 [ ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − ( r + 1 r ( α + 1 ) ) q + 1 ] 1 q ( 1 + m 2 ) 1 q ,

where 1 p + 1 q =1.

Remark 3.12 From Theorems 3.8 and 3.10, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f(b) + R L J b − α f(a)]|≤min{ N 1 , N 2 },

where

N 1 = ( 2 p + 1 ) 1 p ( b − a ) 2 r + 1 [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p N 1 = × ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q , N 2 = ( 2 q + 1 ) 1 q ( b − a ) 2 r + 1 [ ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − ( r + 1 r ( α + 1 ) ) q + 1 ] 1 q N 1 = × ( | f ″ ( a ) | q + m | f ″ ( b m ) | q 2 ) 1 q .

4 Hermite-Hadamard type inequalities for (s,m)-convex functions

Theorem 4.1 Let f:[a,b]→R be a twice differentiable mapping with a<b. If | f ″ | q is measurable and (s,m)-convex on [a,b] for some fixed q≥1 and (s,m)∈ ( 0 , 1 ] 2 , r>0, then

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) 1 − 1 q × [ | f ″ ( a ) | q I + m | f ″ ( b ) | q ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) − I ) ] 1 q ,
(34)

where

I = 1 r ( s + 1 ) ( s + α + 2 ) − 1 r ( α + 1 ) B ( s + 1 , α + 2 ) + 1 ( r + 1 ) ( s + 1 ) ( s + 2 ) ( 1 − ( 1 2 ) s + 1 ) .
(35)

Proof Case 1: We suppose that q=1. From Lemma 2.3, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( m b − a ) 2 ∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | d t .
(36)

Since | f ″ | is (s,m)-convex on [a,b], we know that for any t∈[0,1],

| f ″ ( t a + m ( 1 − t ) b ) | ≤ t s | f ″ ( a ) | +m ( 1 − t s ) | f ″ ( b ) | .

Therefore (36) turns to

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( m b − a ) 2 ( I 1 + I 2 ) ,

where

I 1 = ∫ 0 1 2 | k 1 ( t ) | ( t s | f ″ ( a ) | + m ( 1 − t s ) | f ″ ( b ) | ) d t , I 2 = ∫ 1 2 1 | k 2 ( t ) | ( t s | f ″ ( a ) | + m ( 1 − t s ) | f ″ ( b ) | ) d t .

Calculating by parts, we have

I 1 ≤ ∫ 0 1 2 [ 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + t r + 1 ] ( t s | f ″ ( a ) | + m ( 1 − t s ) | f ″ ( b ) | ) d t ≤ | f ″ ( a ) | r ( α + 1 ) [ 1 s + 1 ( 1 2 ) s + 1 − 1 s + α + 2 ( 1 2 ) s + α + 2 − ∫ 0 1 2 t s ( 1 − t ) α + 1 d t ] + | f ″ ( a ) | r + 1 1 s + 2 ( 1 2 ) s + 2 + m | f ″ ( b ) | r ( α + 1 ) [ 1 2 − 1 α + 2 ( 1 2 ) α + 2 − 1 s + 1 ( 1 2 ) s + 1 + 1 α + s + 2 ( 1 2 ) α + s + 2 + 1 α + 2 ( 1 2 ) α + 2 − 1 α + 2 + ∫ 0 1 2 ( 1 − t ) α + 1 t s d t ] + m | f ″ ( b ) | r + 1 [ 1 8 − 1 s + 2 ( 1 2 ) s + 2 ]

and

I 2 ≤ ∫ 1 2 1 [ 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + 1 − t r + 1 ] ( t s | f ″ ( a ) | + m ( 1 − t s ) | f ″ ( b ) | ) d t ≤ | f ″ ( a ) | r ( α + 1 ) [ 1 s + 1 − 1 s + α + 2 − 1 s + 1 ( 1 2 ) s + 1 + 1 s + α + 2 ( 1 2 ) s + α + 2 − ∫ 1 2 1 t s ( 1 − t ) α + 1 d t ] + | f ″ ( a ) | r + 1 [ 1 s + 1 − 1 s + 2 − 1 s + 1 ( 1 2 ) s + 1 + 1 s + 2 ( 1 2 ) s + 2 ] + m | f ″ ( b ) | r ( α + 1 ) [ 1 2 − 1 α + 2 − 1 s + 1 + 1 α + s + 2 + 1 α + 2 ( 1 2 ) α + 2 + 1 s + 1 ( 1 2 ) s + 1 − 1 α + s + 2 ( 1 2 ) α + s + 2 − 1 α + 2 ( 1 2 ) α + 2 + ∫ 1 2 1 ( 1 − t ) α + 1 t s d t ] + m | f ″ ( b ) | r + 1 [ 1 8 − 1 s + 1 + 1 s + 2 + 1 s + 1 ( 1 2 ) s + 1 − 1 s + 2 ( 1 2 ) s + 2 ] .

Therefore

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 [ | f ″ ( a ) | r ( α + 1 ) ( α + 1 ( s + 1 ) ( s + α + 2 ) − ∫ 0 1 t s ( 1 − t ) α + 1 d t ) ] + ( m b − a ) 2 [ | f ″ ( a ) | r + 1 ( 1 ( s + 1 ) ( s + 2 ) − 1 ( s + 1 ) ( s + 2 ) ( 1 2 ) s + 1 ) ] + ( m b − a ) 2 [ m | f ″ ( b ) | r ( α + 1 ) ( 1 − 2 α + 2 − 1 s + 1 + 1 α + s + 2 + ∫ 0 1 ( 1 − t ) α + 1 t s d t ) ] + ( m b − a ) 2 [ m | f ″ ( b ) | r + 1 ( 1 4 − 1 ( s + 1 ) ( s + 2 ) + 1 ( s + 1 ) ( s + 2 ) ( 1 2 ) s + 1 ) ] = ( m b − a ) 2 [ | f ″ ( a ) | ( 1 r ( s + 1 ) ( s + α + 2 ) − 1 r ( α + 1 ) ∫ 0 1 t s ( 1 − t ) α + 1 d t + 1 ( r + 1 ) ( s + 1 ) ( s + 2 ) ( 1 − ( 1 2 ) s + 1 ) ) ] + ( m b − a ) 2 [ m | f ″ ( b ) | ( 1 r ( α + 1 ) − 2 r ( α + 1 ) ( α + 2 ) − 1 r ( s + 1 ) ( α + s + 2 ) + 1 r ( α + 1 ) ∫ 0 1 t s ( 1 − t ) α + 1 d t + 1 4 ( r + 1 ) − 1 ( r + 1 ) ( s + 1 ) ( s + 2 ) ( 1 − ( 1 2 ) s + 1 ) ) ]

because ∫ 0 1 t s ( 1 − t ) α + 1 dt=B(s+1,α+2).

Note that (35), one can derive

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 [ | f ″ ( a ) | I + m | f ″ ( b ) | ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) − I ) ] ,

which completes the proof for this case.

Case 2: We suppose that q>1. Using Lemma 2.3 and the power mean inequality for q, we obtain

∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | d t ≤ ( ∫ 0 1 | k ( t ) | d t ) 1 − 1 q × ( ∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | q d t ) 1 q .
(37)

Since | f ″ | is (s,m)-convex on [a,b], we know that for any t∈[0,1],

| f ″ ( t a + ( 1 − t ) b ) | q ≤ t s | f ″ ( a ) | q +m ( 1 − t s ) | f ″ ( b ) | q .
(38)

Hence, from (37) and (38), we obtain

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 ( ∫ 0 1 | k ( t ) | d t ) 1 − 1 q × ( ∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | q d t ) 1 q = ( m b − a ) 2 ( ∫ 0 1 | k ( t ) | d t ) 1 − 1 q × ( ∫ 0 1 2 | k 1 ( t ) | | f ″ ( t a + m ( 1 − t ) b ) | q d t + ∫ 1 2 1 | k 2 ( t ) | | f ″ ( t a + m ( 1 − t ) b ) | q d t ) 1 q .

Calculating by parts, we have

∫ 0 1 | k ( t ) | dt≤ α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 )

and

∫ 0 1 2 | k 1 ( t ) | | f ″ ( t a + m ( 1 − t ) b ) | q d t ≤ ∫ 0 1 2 [ 1 − ( 1 − t ) α + 1 − t α + 1 r ( α + 1 ) + t r + 1 ] ( t s | f ″ ( a ) | q + m ( 1 − t s ) | f ″ ( b ) | q ) d t = | f ″ ( a ) | q r ( α + 1 ) [ 1 s + 1 ( 1 2 ) s + 1 − 1 s + α + 2 ( 1 2 ) s + α + 2 − ∫ 0 1 2 t s ( 1 − t ) α + 1 d t ] + | f ″ ( a ) | q r + 1 1 s + 2 ( 1 2 ) s + 2 + m | f ″ ( b ) | q r ( α + 1 ) [ 1 2 − 1 α + 2 ( 1 2 ) α + 2 − 1 s + 1 ( 1 2 ) s + 1 + 1 α + s + 2 ( 1 2 ) α + s + 2 + 1 α + 2 ( 1 2 ) α + 2 − 1 α + 2 + ∫ 0 1 2 ( 1 − t ) α + 1 t s d t ] + m | f ″ ( b ) | q r + 1 [ 1 8 − 1 s + 2 ( 1 2 ) s + 2 ] ,

and

∫ 1 2 1 | k 2 ( t ) | | f ″ ( t a + m ( 1 − t ) b ) | q d t d t ≤ | f ″ ( a ) | q r ( α + 1 ) [ 1 s + 1 − 1 s + α + 2 − 1 s + 1 ( 1 2 ) s + 1 + 1 s + α + 2 ( 1 2 ) s + α + 2 − ∫ 1 2 1 t s ( 1 − t ) α + 1 d t ] + | f ″ ( a ) | q r + 1 [ 1 s + 1 − 1 s + 2 − 1 s + 1 ( 1 2 ) s + 1 + 1 s + 2 ( 1 2 ) s + 2 ] + m | f ″ ( b ) | q r ( α + 1 ) [ 1 2 − 1 α + 2 − 1 s + 1 + 1 α + s + 2 + 1 α + 2 ( 1 2 ) α + 2 + 1 s + 1 ( 1 2 ) s + 1 − 1 α + s + 2 ( 1 2 ) α + s + 2 − 1 α + 2 ( 1 2 ) α + 2 + ∫ 1 2 1 ( 1 − t ) α + 1 t s d t ] + m | f ″ ( b ) | q r + 1 [ 1 8 − 1 s + 1 + 1 s + 2 + 1 s + 1 ( 1 2 ) s + 1 − 1 s + 2 ( 1 2 ) s + 2 ] .

Therefore, using the above facts, one can obtain (34), which completes the proof. □

Remark 4.2 In Theorem 4.1, if we choose s=m=1, we have

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) 1 − 1 q × [ | f ″ ( a ) | q I ′ + | f ″ ( b ) | q ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) − I ′ ) ] 1 q ,

where

I ′ = 1 2 r ( α + 3 ) − 1 r ( α + 1 ) B(2,α+2)+ 1 8 ( r + 1 ) .

Theorem 4.3 Let f:[a,b]→R be a twice differentiable mapping with a<b. If | f ″ | q is measurable and (s,m)-convex on [a,b] for some fixed q>1 and (s,m)∈ ( 0 , 1 ] 2 , r>0, then

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p × ( 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q ) 1 q ,

where 1 p + 1 q =1.

Proof From Lemma 2.3 and using the well-known Hölder inequality, we have

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 ∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | d t ≤ ( m b − a ) 2 ( ∫ 0 1 | k ( t ) | p d t ) 1 p ( ∫ 0 1 | f ″ ( t a + m ( 1 − t ) b ) | q d t ) 1 q .

Note that

∫ 0 1 | k ( t ) | p dt≤ 1 r p ( α + 1 ) p ( 1 − 2 p ( α + 1 ) + 1 ) ,

where we use ( 1 − ( 1 − t ) α + 1 − t α + 1 ) q ≤1− ( 1 − t ) q ( α + 1 ) − t q ( α + 1 ) for any t∈[0,1].

Moreover,

∫ 0 1 | f ″ ( t a + m ( 1 − t ) b ) | q d t ≤ | f ″ ( a ) | q ∫ 0 1 t s d t + m | f ″ ( b ) | q ∫ 0 1 ( 1 − t s ) d t = 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q .

Therefore,

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p ( 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q ) 1 q ,

which completes the proof. □

Remark 4.4 In Theorem 4.3, if we choose s=m=1, we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p ( | f ″ ( a ) | q + | f ″ ( b ) | q 2 ) 1 q .

Theorem 4.5 Let f:[a,b]→R be a twice differentiable mapping a<b. If | f ″ | q is measurable and (s,m)-convex on [a,b] for some fixed q>1 and (s,m)∈ ( 0 , 1 ] 2 , r>0, then

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 r ( α + 1 ) [ | f ″ ( a ) | q ( 1 s + 1 − 1 q ( α + 1 ) + s + 1 − B ( s + 1 , q ( α + 1 ) + 1 ) ) + m | f ″ ( b ) | q ( s s + 1 − 2 q ( α + 1 ) + 1 + 1 q ( α + 1 ) + s + 1 + B ( s + 1 , q ( α + 1 ) + 1 ) ) ] .
(39)

Proof From Lemma 2.3 and using the well-known Hölder inequality, we have

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 ( ∫ 0 1 1 d t ) 1 p ( ∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | q d t ) 1 q ≤ ( m b − a ) 2 ( | f ″ ( a ) | q ∫ 0 1 | k ( t ) | q t s + m | f ″ ( b ) | q ∫ 0 1 | k ( t ) | q ( 1 − t s ) d t ) 1 q .

Calculating by parts, we have

∫ 0 1 t s | k ( t ) | q dt≤ 1 r q ( α + 1 ) q [ 1 s + 1 − 1 q ( α + 1 ) + s + 1 − ∫ 0 1 t s ( 1 − t ) q ( α + 1 ) d t ]

and

∫ 0 1 ( 1 − t s ) | k ( t ) | q d t ≤ 1 r q ( α + 1 ) q [ 1 − 1 s + 1 − 2 q ( α + 1 ) + 1 + 1 q ( α + 1 ) + s + 1 + ∫ 0 1 t s ( 1 − t ) q ( α + 1 ) d t ] .

Therefore, using the above facts via ( 1 − ( 1 − t ) α + 1 − t α + 1 ) q ≤1− ( 1 − t ) q ( α + 1 ) − t q ( α + 1 ) for any t∈[0,1], one can derive (39). The proof is completed. □

Remark 4.6 In Theorem 4.5, if we choose s=m=1, we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r ( α + 1 ) [ | f ″ ( a ) | q ( 1 2 − 1 q ( α + 1 ) + 2 − B ( 2 , q ( α + 1 ) + 1 ) ) + | f ″ ( b ) | q ( 1 2 − 2 q ( α + 1 ) + 1 + 1 q ( α + 1 ) + 2 + B ( 2 , q ( α + 1 ) + 1 ) ) ] .

Remark 4.7 From Theorems 4.1, 4.3 and 4.5, we have

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ min { K 1 , K 2 , K 3 } ,

where

K 1 = ( m b − a ) 2 ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) ) 1 − 1 q × [ | f ″ ( a ) | q I + m | f ″ ( b ) | q ( α r ( α + 1 ) ( α + 2 ) + 1 4 ( r + 1 ) − I ) ] 1 q , K 2 = ( m b − a ) 2 r ( α + 1 ) ( 1 − 2 p ( α + 1 ) + 1 ) 1 p ( 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q ) 1 q , K 3 = ( m b − a ) 2 r ( α + 1 ) [ | f ″ ( a ) | q ( 1 s + 1 − 1 q ( α + 1 ) + s + 1 − B ( s + 1 , q ( α + 1 ) + 1 ) ) + m | f ″ ( b ) | q ( s s + 1 − 2 q ( α + 1 ) + 1 + 1 q ( α + 1 ) + s + 1 + B ( s + 1 , q ( α + 1 ) + 1 ) ) ] ,

where I is defined in (35).

From Theorem 4.3 and Theorem 4.5, we use one skill of shrinking about inequality, then we now use another skill of shrinking.

Theorem 4.8 Let f:[a,b]→R be a twice differentiable mapping with a<b. If | f ″ | q is measurable and (s,m)-convex on [a,b] for some fixed q>1and (s,m)∈ ( 0 , 1 ] 2 , r>0, then

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 r + 1 ( 2 p + 1 ) 1 p [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p × ( 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q ) 1 q

where 1 p + 1 q =1.

Proof From Lemma 2.3 and using the well-known Hölder inequality, we have

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 ∫ 0 1 | k ( t ) f ″ ( t a + ( 1 − t ) b ) | d t ≤ ( m b − a ) 2 ( ∫ 0 1 | k ( t ) | p d t ) 1 p ( ∫ 0 1 | f ″ ( t a + ( 1 − t ) b ) | q d t ) 1 q ≤ ( m b − a ) 2 r + 1 ( 2 p + 1 ) 1 p [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p × ( 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q ) 1 q

because ( 1 − t ) α + 1 + t α + 1 ≤1 for any t∈[0,1], which completes the proof. □

Remark 4.9 With the same assumptions as in Theorem 4.8, if we choose s=m=1, we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r + 1 ( 2 p + 1 ) 1 p [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p × ( | f ″ ( a ) | q + | f ″ ( b ) | q 2 ) 1 q ,

where 1 p + 1 q =1.

Another Hermite-Hadamard type inequality for powers in terms of the second derivatives is obtained as follows.

Theorem 4.10 Let f:[a,b]→R be a twice differentiable mapping a<b. If | f ″ | q is measurable and (s,m)-convex on [a,b] for some fixed q>1 and (s,m)∈ ( 0 , 1 ] 2 , r>0, then the following inequality for fractional integrals holds:

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 r + 1 [ | f ″ ( a ) | q H + m | f ″ ( b ) | q ( 2 q + 1 ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − 2 q + 1 ( r + 1 r ( α + 1 ) ) q + 1 − H ) ] ,
(40)

where

H= ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) q t s dt+ ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) q t s dt.

Proof From Lemma 2.3 and using the well-known Hölder inequality, we have

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | ≤ ( m b − a ) 2 ∫ 0 1 | k ( t ) f ″ ( t a + ( 1 − t ) b ) | d t ≤ ( m b − a ) 2 ( ∫ 0 1 1 d t ) 1 p ( ∫ 0 1 | k ( t ) f ″ ( t a + m ( 1 − t ) b ) | q d t ) 1 q ≤ ( m b − a ) 2 ( | f ″ ( a ) | q ∫ 0 1 t s | k ( t ) | q d t + m | f ″ ( b ) | q ∫ 0 1 ( 1 − t s ) | k ( t ) | q d t ) 1 q .

Calculating by parts, we have

∫ 0 1 t s | k ( t ) | q dt= ∫ 0 1 2 t s | k 1 ( t ) | q dt+ ∫ 1 2 1 t s | k 2 ( t ) | q dt,

where

∫ 0 1 2 t s | k 1 ( t ) | q d t ≤ ∫ 0 1 2 ( 1 r ( α + 1 ) + t r + 1 ) q t s d t = 1 ( r + 1 ) q ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) q t s d t , ∫ 1 2 1 | k 2 ( t ) | q t s d t ≤ ∫ 1 2 1 ( 1 r ( α + 1 ) + 1 − t r + 1 ) q t s d t ≤ 1 ( r + 1 ) q ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) q t s d t .

Thus,

∫ 0 1 t s | k ( t ) | q dt= 1 ( r + 1 ) q [ ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) q t s d t + ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) q t s d t ] .

Similarly,

∫ 0 1 ( 1 − t s ) | k ( t ) | q d t = ∫ 0 1 2 ( 1 − t s ) | k 1 ( t ) | q d t + ∫ 1 2 1 ( 1 − t s ) | k 2 ( t ) | q d t ≤ 1 ( r + 1 ) q [ 2 q + 1 ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − 2 q + 1 ( r + 1 r ( α + 1 ) ) q + 1 − ∫ 0 1 2 ( r + 1 r ( α + 1 ) + t ) q t s d t − ∫ 1 2 1 ( r + 1 r ( α + 1 ) + 1 − t ) q t s d t ] .

Now using the above facts, one can obtain (40). The proof is completed. □

Remark 4.11 With the same assumptions as in Theorem 4.10, if we choose s=m=1, we obtain

| f ( a ) + f ( b ) r ( r + 1 ) + 2 r + 1 f ( a + b 2 ) − Γ ( α + 1 ) r ( b − a ) α [ R L J a + α f ( b ) + R L J b − α f ( a ) ] | ≤ ( b − a ) 2 r + 1 [ | f ″ ( a ) | q H ′ + | f ″ ( b ) | q ( 2 q + 1 ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − 2 q + 1 ( r + 1 r ( α + 1 ) ) q + 1 − H ′ ) ] ,

where 1 p + 1 q =1, and

H ′ = 1 q + 1 [ ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − ( r + 1 r ( α + 1 ) ) q + 1 ] .

Remark 4.12 From Theorems 4.8 and 4.10, we have

| f ( a ) + f ( m b ) r ( r + 1 ) + 2 r + 1 f ( a + m b 2 ) − Γ ( α + 1 ) r ( m b − a ) α [ R L J a + α f ( m b ) + R L J m b − α f ( a ) ] | , ≤ min { N 1 , N 2 }

where

N 1 = ( m b − a ) 2 r + 1 ( 2 p + 1 ) 1 p [ ( 1 2 + r + 1 r ( α + 1 ) ) p + 1 − ( r + 1 r ( α + 1 ) ) p + 1 ] 1 p × ( 1 s + 1 | f ″ ( a ) | q + m s s + 1 | f ″ ( b ) | q ) 1 q , N 2 = ( m b − a ) 2 r + 1 [ | f ″ ( a ) | q H + m | f ″ ( b ) | q ( 2 q + 1 ( 1 2 + r + 1 r ( α + 1 ) ) q + 1 − 2 q + 1 ( r + 1 r ( α + 1 ) ) q + 1 − H ) ] ,

where H is defined in Theorem 4.10.

References

  1. Mitrinović DS, Lacković IB: Hermite and convexity. Aequ. Math. 1985, 28: 229–232. 10.1007/BF02189414

    Article  Google Scholar 

  2. Noor MA: Hermite-Hadamard inequality for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2: 126–131.

    MathSciNet  Google Scholar 

  3. Abramovich S, Barić J, Pec̆arić J: Fejer and Hermite-Hadamard type inequalities for superquadratic functions. J. Math. Anal. Appl. 2008, 344: 1048–1056. 10.1016/j.jmaa.2008.03.051

    Article  MathSciNet  Google Scholar 

  4. Cal J, Carcamob J, Escauriaza L: A general multidimensional Hermite-Hadamard type inequality. J. Math. Anal. Appl. 2009, 356: 659–663. 10.1016/j.jmaa.2009.03.044

    Article  MathSciNet  Google Scholar 

  5. Ödemir ME, Avci M, Set E: On some inequalities of Hermite-Hadamard type via m -convexity. Appl. Math. Lett. 2010, 23: 1065–1070. 10.1016/j.aml.2010.04.037

    Article  MathSciNet  Google Scholar 

  6. Ödemir ME, Avci M, Kavurmaci H:Hermite-Hadamard-type inequalities via (α,m)-convexity. Comput. Math. Appl. 2011, 61: 2614–2620. 10.1016/j.camwa.2011.02.053

    Article  MathSciNet  Google Scholar 

  7. Dragomir SS: Hermite-Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 2011, 218: 766–772. 10.1016/j.amc.2011.01.056

    Article  MathSciNet  Google Scholar 

  8. Dragomir SS: Hermite-Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces. Linear Algebra Appl. 2012, 436: 1503–1515. 10.1016/j.laa.2011.08.050

    Article  MathSciNet  Google Scholar 

  9. Sarikaya MZ, Aktan N: On the generalization of some integral inequalities and their applications. Math. Comput. Model. 2011, 54: 2175–2182. 10.1016/j.mcm.2011.05.026

    Article  MathSciNet  Google Scholar 

  10. Xiao Z, Zhang Z, Wu Y: On weighted Hermite-Hadamard inequalities. Appl. Math. Comput. 2011, 218: 1147–1152. 10.1016/j.amc.2011.03.081

    Article  MathSciNet  Google Scholar 

  11. Barani A, Ghazanfari AG, Dragomir SS: Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. RGMIA Research Report Collection (Online) 2011., 14: Article ID 64

    Google Scholar 

  12. Bessenyei M: The Hermite-Hadamard inequality in Beckenbach’s setting. J. Math. Anal. Appl. 2010, 364: 366–383. 10.1016/j.jmaa.2009.11.015

    Article  MathSciNet  Google Scholar 

  13. Tseng K, Hwang S, Hsu K: Hadamard-type and Bullen-type inequalities for Lipschitzian functions and their applications. Comput. Math. Appl. 2012, 64: 651–660. 10.1016/j.camwa.2011.12.076

    Article  MathSciNet  Google Scholar 

  14. Niculescu CP: The Hermite-Hadamard inequality for log-convex functions. Nonlinear Anal. TMA 2012, 75: 662–669. 10.1016/j.na.2011.08.066

    Article  MathSciNet  Google Scholar 

  15. Wang, J, Deng, J, Fec̆kan, M: Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Solvaca (2012, in press)

  16. Wang, J, Deng, J, Fec̆kan, M: Hermite-Hadamard type inequalities for r-convex functions via Riemann-Liouville fractional integrals. Ukrainian Math. J. (2013, in press)

  17. Toader GH: Some generalisations of the convexity. Proc. Colloq. Approx. Optim. 1984, 329–338.

    Google Scholar 

  18. Hudzik H, Maligranda L: Some remarks on s -convex functions. Aequ. Math. 1994, 48: 100–111. 10.1007/BF01837981

    Article  MathSciNet  Google Scholar 

  19. Pinheiro MR: Exploring the concept of s -convexity. Aequ. Math. 2007, 74: 201–209. 10.1007/s00010-007-2891-9

    Article  MathSciNet  Google Scholar 

  20. Bakula MK, Ödemir ME, Pec̆rić J: Hadamard type inequalities for m -convex and (α,m) -convex functions. J. Inequal. Pure Appl. Math. 2008., 9: Article ID 96

    Google Scholar 

  21. Bakula MK, Pec̆rić J, Ribic̆ić M: Companion inequalities to Jensen’s inequality for m -convex and (α,m) -convex functions. J. Inequal. Pure Appl. Math. 2006., 7: Article ID 194

    Google Scholar 

  22. Özdemir ME, Kavurmaci H, Set E:Ostrowski’s type inequalities for (α,m)-convex functions. Kyungpook Math. J. 2010, 50: 371–378. 10.5666/KMJ.2010.50.3.371

    Article  MathSciNet  Google Scholar 

  23. Ödemir ME, Set E, Sarikaya MZ: Some new Hadamard’s type inequalities for co-ordinated m -convex and (α,m) -convex functions. Hacet. J. Math. Stat. 2011, 40: 219–229.

    MathSciNet  Google Scholar 

  24. Set E, Sardari M, Ozdemir ME, Rooin J:On generalizations of the Hadamard inequality for (α,m)-convex functions. RGMIA Research Report Collection (Online) 2009., 12: Article ID 4

    Google Scholar 

  25. Xi B, Bai R, Qi F: Hermite-Hadamard type inequalities for the m - and (α,m) -geometrically convex functions. Aequ. Math. 2012, 84: 261–269. 10.1007/s00010-011-0114-x

    Article  MathSciNet  Google Scholar 

  26. Baleanu D, Machado JAT, Luo AC-J: Fractional Dynamics and Control. Springer, Berlin; 2012.

    Book  Google Scholar 

  27. Diethelm K Lecture Notes in Mathematics. The Analysis of Fractional Differential Equations 2010.

    Chapter  Google Scholar 

  28. Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  29. Lakshmikantham V, Leela S, Devi JV: Theory of fractional dynamic systems. Cambridge Scientific Publishers, Cambridge; 2009.

    Google Scholar 

  30. Miller KS, Ross B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York; 1993.

    Google Scholar 

  31. Michalski MW Dissertationes Mathematicae CCCXXVIII. In Derivatives of Noninteger Order and Their Applications. Inst. Math., Polish Acad. Sci., Warsaw; 1993.

    Google Scholar 

  32. Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

    Google Scholar 

  33. Tarasov VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin; 2011.

    Google Scholar 

  34. Sarikaya MZ, Set E, Yaldiz H, Başak N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57: 2403–2407. 10.1016/j.mcm.2011.12.048

    Article  Google Scholar 

  35. Wang J, Li X, Fec̆kan M, Zhou Y: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2012. doi:10.1080/00036811.2012.727986

    Google Scholar 

  36. Wang, J, Li, X, Zhu, C: Refinements of Hermite-Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. Simon Stevin 20 (2013, in press)

  37. Zhu C, Fec̆kan M, Wang J: Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inf. 2012, 8: 21–28.

    Google Scholar 

Download references

Acknowledgements

Dedicated to Professor Hari M Srivastava.

The authors thank the referees for their careful reading of the manuscript and insightful comments, which helped to improve the quality of the paper. We would also like to acknowledge the valuable comments and suggestions from the editors, which vastly contributed to improving the presentation of the paper. This work was supported by the National Natural Science Foundation of China (11201091), Key Projects of Science and Technology Research in the Chinese Ministry of Education (211169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

This work was carried out in collaboration between all authors. JRW raised these interesting problems in this research. YZ and JRW proved the theorems, interpreted the results and wrote the article. All authors defined the research theme, read and approved the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, J. On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J Inequal Appl 2013, 220 (2013). https://doi.org/10.1186/1029-242X-2013-220

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-220

Keywords