Skip to main content

A class of analytic functions involving in the Dziok-Srivastava operator

Abstract

Let A be a class of functions f(z) of the form

f(z)=z+ n = 2 a n z n
(0.1)

which are analytic in the open unit disk U. By means of the Dziok-Srivastava operator, we introduce a new subclass

S m l ( α 1 ,α,μ) ( l m + 1 , l , m N { 0 } , π 2 < α < π 2 , μ > cos α )

of A. In particular, S 0 1 (2,0,0) coincides with the class of uniformly convex functions introduced by Goodman. The order of starlikeness and the radius of α-spirallikeness of order β (β<1) are computed. Inclusion relations and convolution properties for the class S m l ( α 1 ,α,μ) are obtained. A special member of S m l ( α 1 ,α,μ) is also given. The results presented here not only generalize the corresponding known results, but also give rise to several other new results.

MSC:30C45.

1 Introduction

Let A be a class of functions f(z) of the form

f(z)=z+ n = 2 a n z n
(1.1)

which are analytic in the open unit disk U={z:|z|<1}. For β<1, a function f(z)A is said to be starlike of order β in U if

z f ( z ) f ( z ) >β(zU).
(1.2)

This class is denoted by S (β) (β<1). For π 2 <α< π 2 and β<1, a function f(z)A is said to be α-spirallike of order β in U if

{ e i α z f ( z ) f ( z ) } >βcosα(zU).
(1.3)

When 0β<1, it is well known that all the starlike functions of order β and α-spirallike functions of order β are univalent in U. A function f(z)A is said to be convex univalent in U if

{ 1 + z f ( z ) f ( z ) } >0(zU).
(1.4)

We denote this class by K. Also, let UCV(K) be the class of uniformly convex functions in U introduced by Goodman [1]. It was shown in [2] that f(z)A is in UCV if and only if

{ 1 + z f ( z ) f ( z ) } >| z f ( z ) f ( z ) |(zU).
(1.5)

In [2], Rønning investigated the class S p defined by

S p = { f ( z ) S ( 0 ) : f ( z ) = z g ( z ) , g ( z ) UCV } .
(1.6)

The uniformly convex and related functions have been studied by many authors (see, e.g., [110] and the references therein).

If

f(z)=z+ n = 2 a n z n Aandg(z)=z+ n = 2 b n z n A,

then the Hadamard product (or convolution) of f(z) and g(z) is given by

(fg)(z)=z+ n = 2 a n b n z n .

For

α j C(j=1,2,,l)and β j C{0,1,2,}(j=1,2,,m),

the generalized hypergeometric function

F m l ( α 1 ,, α l ; β 1 ,, β m ;z)

is defined by the following infinite series:

F m l ( α 1 , , α l ; β 1 , , β m ; z ) = n = 0 ( α 1 ) n ( α l ) n ( β 1 ) n ( β m ) n z n n ! ( l m + 1 ; l , m N 0 = N { 0 } ; z U ) ,

where ( c ) n is the Pochhammer symbol defined by

( c ) n = { 1 ( n = 0 ) , c ( c + 1 ) ( c + n 1 ) ( n N ) .

Corresponding to the function

z l F m ( α 1 ,, α l ; β 1 ,, β m ;z),

the Dziok-Srivastava operator (see [11])

H( α 1 ,, α l ; β 1 ,, β m ):AA

is defined by the following Hadamard product:

H ( α 1 , , α l ; β 1 , , β m ) f ( z ) = ( z l F m ( α 1 , , α l ; β 1 , , β m ; z ) ) f ( z ) ( l m + 1 ; l , m N 0 ; z U ) .

If f(z)A is given by (1.1), then we have

H( α 1 ,, α l ; β 1 ,, β m )f(z)=z+ n = 1 ( α 1 ) n ( α l ) n ( β 1 ) n ( β m ) n a n + 1 n ! z n + 1 (zU).
(1.7)

In order to make the notation simple, we write

H m l ( α 1 )=H( α 1 ,, α l ; β 1 ,, β m )(lm+1;l,m N 0 ).
(1.8)

It should also be remarked that the Dziok-Srivastava operator H m l ( α 1 ) is a generalization of several linear operators considered in earlier investigations (see [1219], also see [20]).

In this paper we introduce and investigate the following subclass of A.

Definition A function f(z)A is said to be in S m l ( α 1 ,α,μ) if it satisfies the condition

{ e i α z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) } +μ>| z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) 1|(zU),
(1.9)

where

lm+1,l,m N 0 , π 2 <α< π 2 andμ>cosα.
(1.10)

Note that f(z)=z S m l ( α 1 ,α,μ) and that

S 0 1 (1,α,0)= { f ( z ) A : { e i α z f ( z ) f ( z ) } > | z f ( z ) f ( z ) 1 | ( z U ) } .
(1.11)

Also,

S 0 1 (1,0,0)= S p and S 0 1 (2,0,0)=UCV.
(1.12)

Throughout this paper we assume, unless otherwise stated, that l, m, α and μ satisfy (1.10).

2 Subordination theorem

Let f(z) and g(z) be analytic in U. We say that the function f(z) is subordinate to g(z) in U, and we write f(z)g(z), if there exists an analytic function w(z) in U such that

| w ( z ) | |z|andf(z)=g ( w ( z ) ) (zU).

If g(z) is univalent in U, then

f(z)g(z)f(0)=g(0)andf(U)g(U).

Theorem 1 A function f(z)A is in S m l ( α 1 ,α,μ) if and only if

e i α z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) h(z)cosα+isinα,
(2.1)

where

h ( z ) = 1 + 2 π 2 ( 1 + μ cos α ) ( log 1 + z 1 z ) 2 = 1 + 8 π 2 ( 1 + μ cos α ) { z + 2 3 z 2 + 23 45 z 3 + } ( z U ) .
(2.2)

Proof Let us define w(z)=u+iv by

e i α z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) =w(z)cosα+isinα(zU).
(2.3)

Then w(0)=1 and the inequality (1.9) can be rewritten as

u> cos α 2 ( cos α + μ ) v 2 + 1 2 ( 1 μ cos α ) .
(2.4)

Thus

w(U)Ω= { w = u + i v : u  and  v  satisfy  ( 2.4 ) } .

It follows from (2.2) that h(0)=1. In order to prove the theorem, it suffices to show that the function w=h(z) given by (2.2) maps U conformally onto the parabolic region Ω.

Note that 1 2 (1 μ cos α )<1. Consider the transformations

w 1 = w 1 , w 2 =exp ( π w 1 2 cos α cos α + μ ) ,t= 1 2 ( w 2 + 1 w 2 ) .
(2.5)

It is easy to verify that the composite function

t=ch ( π 2 cos α ( w 1 ) cos α + μ ) =g(w)(say)

maps Ω + =Ω{w=u+iv:v>0} conformally onto the upper half-plane Im(t)>0 so that w=(w)[ 1 2 (1 μ cos α ),+) corresponds to t=(t)[1,+) and w=1 to t=1. With the help of the symmetry principle, the function t=g(w) maps Ω conformally onto the region G={t:|arg(t+1)|<π}. Since

t=2 ( 1 + z 1 z ) 2 1
(2.6)

maps U onto G, we see that

w = g 1 ( t ) = 1 + 1 2 π 2 ( 1 + μ cos α ) ( log ( t + t 2 1 ) ) 2 = 1 + 2 π 2 ( 1 + μ cos α ) ( log 1 + z 1 z ) 2 = h ( z )

maps U conformally onto Ω. The proof of the theorem is now completed. □

Corollary 1 Let f(z) S m l ( α 1 ,α,μ). Then for zU,

| ( H m l ( α 1 ) f ( z ) z ) sec α e i α |exp { 2 π 2 ( 1 + μ cos α ) 0 1 1 ρ ( log 1 + ρ | z | 1 ρ | z | ) 2 d ρ }
(2.7)

and

| ( H m l ( α 1 ) f ( z ) z ) sec α e i α |exp { 8 π 2 ( 1 + μ cos α ) 0 1 1 ρ ( arctan ρ | z | ) 2 d ρ } .
(2.8)

The results are sharp.

Proof

From Theorem 1 we have

e i α cos α ( z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) 1 ) h(z)1

for f(z) S m l ( α 1 ,α,μ) and h(z) given by (2.2). Since the function h(z)1 is univalent and starlike (with respect to the origin) in U, using the result of Suffridge [[21], Theorem 3], we get

e i α cos α 0 z ( ( H m l ( α 1 ) f ( t ) ) H m l ( α 1 ) f ( t ) 1 t ) dt 0 z h ( t ) 1 t dt.

This implies that

e i α cos α log H m l ( α 1 ) f ( z ) z = 0 1 h ( ρ w ( z ) ) 1 ρ dρ(zU),
(2.9)

where w(z) is analytic and |w(z)||z| in U.

Noting that h(z) maps the disk |z|<ρ (0<ρ1) onto a region which is convex and symmetric with respect to the real axis, we know that

h ( ρ | z | ) { h ( ρ w ( z ) ) } h ( ρ | z | ) (zU).
(2.10)

Now (2.2), (2.9) and (2.10) lead to

log| ( H m l ( α 1 ) f ( z ) z ) sec α e i α | 2 π 2 ( 1 + μ cos α ) 0 1 1 ρ ( log 1 + ρ | z | 1 ρ | z | ) 2 dρ

and

log | ( H m l ( α 1 ) f ( z ) z ) sec α e i α | 2 π 2 ( 1 + μ cos α ) 0 1 1 ρ ( log 1 + i ρ | z | 1 i ρ | z | ) 2 d ρ = 8 π 2 ( 1 + μ cos α ) 0 1 1 ρ ( arctan ρ | z | ) 2 d ρ

for zU. Hence we have (2.7) and (2.8).

Furthermore, for

α j C{0,1,2,}(j=1,,l),

it is easy to see that the function f 0 (z) in S m l ( α 1 ,α,μ), defined by

H m l ( α 1 ) f 0 ( z ) = z exp { 2 π 2 ( 1 + μ cos α ) cos α e i α 0 z 1 t ( log 1 + t 1 t ) 2 d t } ( z U ) ,
(2.11)

shows that the estimates (2.7) and (2.8) are sharp. □

Corollary 2 Let f(z) S m l ( α 1 ,α,μ), where

α j C{0,1,2,}(j=1,2,,l).

Then

f ( z ) = z exp { 2 cos α e i α π 2 ( 1 + μ cos α ) 0 1 1 ρ ( log 1 + ρ w ( z ) 1 ρ w ( z ) ) 2 d ρ } { z + n = 1 n ! ( β 1 ) n ( β m ) n ( α 1 ) n ( α l ) n z n + 1 } ( z U ) ,
(2.12)

where w(z) is analytic in U with w(0)=0 and |w(z)|<1 (zU).

Proof From (2.9) and (2.2), we have

H m l ( α 1 ) f ( z ) = z exp { 2 cos α e i α π 2 ( 1 + μ cos α ) 0 1 1 ρ ( log 1 + ρ w ( z ) 1 ρ w ( z ) ) 2 d ρ } ( z U ) .
(2.13)

For

α j C{0,1,2,}(j=1,2,,l),

from (2.13) and (1.7), we obtain (2.12). □

3 Properties of the class S m l ( α 1 ,α,μ)

Theorem 2 Let f(z) S m l ( α 1 ,α,μ). Then

H m l ( α 1 )f(z) S ( 1 2 ( 1 μ cos α ) )
(3.1)

and the order 1 2 (1 μ cos α ) is sharp.

Proof Let h(z) be given by (2.2). It follows from the proof of Theorem 1 that

h(U)= { w = u + i v : u = cos α 2 ( cos α + μ ) v 2 + 1 2 ( 1 μ cos α ) } .
(3.2)

By using (3.2), we find that

min | z | = 1 ( z 1 ) { e i α ( h ( z ) cos α + i sin α ) } = min v ( , + ) g(v)cosα+ sin 2 α,

where

g(v)= cos 2 α 2 ( cos α + μ ) v 2 + cos α μ 2 +vsinα(<v<+).

Since

g (v)= cos 2 α cos α + μ v+sinα, g (v)>0,

the function g(v) attains its minimum value at

v 0 = ( cos α + μ ) sin α cos 2 α .

Thus

min | z | = 1 ( z 1 ) { e i α ( h ( z ) cos α + i sin α ) } = g ( v 0 ) cos α + sin 2 α = sin 2 α ( cos α + μ ) 2 cos α + cos α ( cos α μ ) 2 + sin 2 α = 1 2 ( 1 μ cos α ) .
(3.3)

If f(z) S m l ( α 1 ,α,μ), then we deduce from Theorem 1 and (3.3) that

z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) > 1 2 ( 1 μ cos α ) (zU)

and the order 1 2 (1 μ cos α ) in (3.1) is sharp for the function f 0 (z) defined by (2.11). □

Theorem 3 Let f(z) S m l ( α 1 ,α,μ) and 1 2 (1 μ cos α )β<1. Then H m l ( α 1 )f(z) is α-spirallike of order β in |z|<ρ, where

ρ=ρ(β,α,μ)= ( tan ( π 4 2 cos α ( 1 β ) cos α + μ ) ) 2 .
(3.4)

The result is sharp.

Proof From (3.4) and (2.2) we have

0<ρ1 ( 1 2 ( 1 μ cos α ) β < 1 )

and

h ( ρ ) = 1 + 2 π 2 ( 1 + μ cos α ) ( log 1 + i ρ 1 i ρ ) 2 = 1 8 π 2 ( 1 + μ cos α ) ( arctan ρ ) 2 = β .

Hence

inf | z | < ρ h(z)=h(ρ)=β.
(3.5)

Let f(z) S m l ( α 1 ,α,μ). Then it follows from Theorem 1 and (3.5) that

{ e i α z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) } >βcosα ( | z | < ρ ) ,

that is, H m l ( α 1 )f(z) is α-spirallike of order β in |z|<ρ. Also, the result is sharp for the function f 0 (z) defined by (2.11). □

Setting β= 1 2 (1 μ cos α ), Theorem 3 reduces to the following.

Corollary 3 Let f(z) S m l ( α 1 ,α,μ). Then H m l ( α 1 )f(z) is α-spirallike of order 1 2 (1 μ cos α ) in U. The result is sharp.

For β1, a function f(z)A is said to be prestarlike of order β in U if

{ z ( 1 z ) 2 ( 1 β ) f ( z ) S ( β ) , β < 1 , f ( z ) z > 1 2 , β = 1 ,
(3.6)

(see [20]). We denote this class by R(β) (β1). The following lemma is due to Ruscheweyh [[20], p.54].

Lemma 1 Let β1, f(z)R(β) and g(z) S (β). Then, for any analytic function F(z) in U,

f ( F g ) f g (U) co ¯ ( F ( U ) ) ,

where co ¯ (F(U)) denotes the convex hull of F(U).

Applying the lemma, we derive Theorems 4 and 5 below.

Theorem 4 Let

α 1 >0and α 1 max { α 1 , 1 + μ cos α } .
(3.7)

Then

S m l ( α 1 , α , μ ) S m l ( α 1 ,α,μ).
(3.8)

Proof

Define

ϕ(z)=z+ n = 1 ( α 1 ) n ( α 1 ) n z n + 1 (zU)

for α 1 and α 1 satisfying (3.7). Then ϕ(z)A and

z ( 1 z ) α 1 ϕ(z)= z ( 1 z ) α 1 (zU).
(3.9)

In view of α 1 α 1 >0, it follows from (3.9) that

z ( 1 z ) α 1 ϕ(z) S ( 1 α 1 2 ) S ( 1 α 1 2 ) ,

which implies that

ϕ(z)R ( 1 α 1 2 ) .
(3.10)

Also, for f(z)A, (3.9) leads to

{ H m l ( α 1 ) f ( z ) = ϕ ( z ) H m l ( α 1 ) f ( z ) , z ( H m l ( α 1 ) f ( z ) ) = ϕ ( z ) ( z ( H m l ( α 1 ) f ( z ) ) ) .
(3.11)

Let f(z) S m l ( α 1 ,α,μ). Then, by Theorems 1 and 2, we have

{ F ( z ) = z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) e i α ( h ( z ) cos α + i sin α ) , H m l ( α 1 ) f ( z ) S ( 1 2 ( 1 μ cos α ) ) S ( 1 α 1 2 )
(3.12)

for h(z) given by (2.2) and α 1 1+ μ cos α . Since the function e i α (h(z)cosα+isinα) is convex univalent in U, from (3.10), (3.11), (3.12) and the lemma, we deduce that

z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) = ϕ ( z ) ( z ( H m l ( α 1 ) f ( z ) ) ) ϕ ( z ) H m l ( α 1 ) f ( z ) = ϕ ( z ) ( F ( z ) H m l ( α 1 ) f ( z ) ϕ ( z ) H m l ( α 1 ) f ( z ) e i α ( h ( z ) cos α + i sin α ) .

Therefore, by Theorem 1, f(z) S m l ( α 1 ,α,μ) and (3.8) is proved. □

Theorem 5 Let f(z) S m l ( α 1 ,α,μ) and g(z)R( 1 2 (1 μ cos α )). Then

(fg)(z) S m l ( α 1 ,α,μ).
(3.13)

Proof Let f(z) S m l ( α 1 ,α,μ). According to Theorems 1 and 2, we have

F(z)= z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) e i α ( h ( z ) cos α + i sin α )

and

H m l ( α 1 )f(z) S ( 1 2 ( 1 μ cos α ) ) .
(3.14)

If we put ϕ(z)=(fg)(z), then

z ( H m l ( α 1 ) ϕ ( z ) ) H m l ( α 1 ) ϕ ( z ) = g ( z ) ( z ( H m l ( α 1 ) f ( z ) ) ) g ( z ) H m l ( α 1 ) f ( z ) = g ( z ) ( F ( z ) H m l ( α 1 ) f ( z ) ) g ( z ) H m l ( α 1 ) f ( z ) ( z U )
(3.15)

for g(z)R( 1 2 (1 μ cos α )).

In view of (3.14) and (3.15), an application of the lemma leads to

z ( H m l ( α 1 ) ϕ ( z ) ) H m l ( α 1 ) ϕ ( z ) e i α ( h ( z ) cos α + i sin α ) .

Consequently, by applying Theorem 1, ϕ(z) S m l ( α 1 ,α,μ) and the proof of (3.13) is completed. □

Note that R( 1 2 )= S ( 1 2 ). Since R( β 1 )R( β 2 ) for β 1 β 2 1 (see [[15], p.49], we have

K=R(0)R ( 1 2 ( 1 μ cos α ) ) (cosα<μcosα).

Thus Theorem 5 yields the following.

Corollary 4

  1. (i)

    If f(z) S m l ( α 1 ,α,0) and g(z) S ( 1 2 ), then

    (fg)(z) S m l ( α 1 ,α,0).
  2. (ii)

    If f(z) S m l ( α 1 ,α,μ) with cosα<μcosα and g(z)K, then

    (fg)(z) S m l ( α 1 ,α,μ).

Theorem 6 The function f(z)A defined by

H m l ( α 1 )f(z)= z ( 1 b z ) 2 cos α e i α (zU)
(3.16)

belongs to the class S m l ( α 1 ,α,μ), where

α j C{0,1,2,}(j=1,2,,l),

b is complex and

|b| { cos α + μ 3 cos α μ ( cos α < μ < cos α 3 ) , μ cos α + μ ( μ cos α 3 ) .
(3.17)

The result is sharp, that is, |b| cannot be increased.

Proof For f(z)A defined by (3.16) and

α j C{0,1,2,}(j=1,2,,l),

we easily have

e i α z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) = 1 + b z 1 b z cosα+isinα(zU).
(3.18)

Hence, by Theorem 1, f(z) S m l ( α 1 ,α,μ) if and only if

1 + b z 1 b z h(z),
(3.19)

where h(z) is given by (2.2). Clearly, (3.19) is equivalent to

{ w : | w 1 + | b | 2 1 | b | 2 | < 2 | b | 1 | b | 2 } h(U)
(3.20)

for 0<|b|<1. Let

δ=min { | w 1 + | b | 2 1 | b | 2 | : w h ( U ) } ,
(3.21)

where h(U) is given by (3.2). Then we have

{ δ = min { g ( u ) : u 1 2 ( 1 μ cos α ) } , g ( u ) = ( u 1 + | b | 2 1 | b | 2 ) 2 + 2 ( 1 + μ cos α ) ( u cos α μ 2 cos α ) ( u cos α μ 2 cos α ) .
(3.22)

Note that

1 2 ( 1 μ cos α ) < 1 + | b | 2 1 | b | 2 , g (u)=2 ( u ( 2 | b | 2 1 | b | 2 μ cos α ) ) .
(3.23)

(i)If

cosα<μ< cos α 3 and|b|= cos α + μ 3 cos α μ ,
(3.24)

then

1 | b | 1 + | b | = 1 2 ( 1 μ cos α ) , | b | 2 = ( cos α + μ 3 cos α μ ) 2 < cos α + μ 5 cos α + μ ,

and so

2 | b | 2 1 | b | 2 μ cos α < 1 2 ( 1 μ cos α ) .
(3.25)

From (3.22), (3.23) and (3.25), we have g (u)>0(u 1 2 (1 μ cos α )), and hence

δ= g ( 1 2 ( 1 μ cos α ) ) = 1 + | b | 2 1 | b | 2 1 2 ( 1 μ cos α ) = 2 | b | 1 | b | 2 .
(3.26)

(ii) If

cosα<μ< cos α 3 and cos α + μ 3 cos α μ <|b|< cos α + μ 5 cos α + μ ,
(3.27)

then

1 | b | 1 + | b | < 1 2 ( 1 μ cos α ) and g (u)>0 ( u 1 2 ( 1 μ cos α ) ) .

Hence

δ= g ( 1 2 ( 1 μ cos α ) ) < 2 | b | 1 | b | 2 .
(3.28)

(iii) If

μ cos α 3 and|b|= μ cos α + μ ,
(3.29)

then

| b | 2 = μ cos α + μ cos α + μ 5 cos α + μ ,

and so

2 | b | 2 1 | b | 2 μ cos α 1 2 ( 1 μ cos α ) .

Thus g(u) attains its minimum value at

u 0 = 2 | b | 2 1 | b | 2 μ cos α

and

δ= g ( u 0 ) =2|b| cos α + μ cos α ( 1 | b | 2 ) = 2 | b | 1 | b | 2 .
(3.30)

(iv) If

μ cos α 3 and μ cos α + μ <|b|<1,
(3.31)

then from (iii) we easily have

δ= g ( u 0 ) < 2 | b | 1 | b | 2 .
(3.32)

Now, by virtue of (3.19), (3.20), (3.21), and (i)-(iv), we have proved the theorem. □

Theorem 7 Let

f(z)=z+ n = 2 a n z n S m l ( α 1 ,α,μ),

where

α j C{0,1,2,3,}(j=1,2,,l).

Then

| a 2 | 8 ( cos α + μ ) π 2 | β 1 β m α 1 α l |.
(3.33)

The result is sharp.

Proof It can be easily verified that, for zU,

z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) =1+ α 1 α l β 1 β m a 2 z+
(3.34)

and

h ( z ) = 1 + 8 z π 2 ( 1 + μ cos α ) ( n = 1 z n 1 2 n 1 ) 2 = 1 + 8 π 2 ( 1 + μ cos α ) n = 1 ( 1 n ν = 0 n 1 1 2 ν + 1 ) z n = 1 + 8 π 2 ( 1 + μ cos α ) z + ,
(3.35)

where

f(z)=z+ a 2 z 2 + S m l ( α 1 ,α,μ)

and h(z) is given by (2.2). From (3.34), (3.35) and Theorem 1, we obtain

π 2 e i α 8 ( cos α + μ ) ( z ( H m l ( α 1 ) f ( z ) ) H m l ( α 1 ) f ( z ) 1 ) = π 2 e i α α 1 α l 8 ( cos α + μ ) β 1 β m a 2 z + π 2 cos α 8 ( cos α + μ ) ( h ( z ) 1 ) K .
(3.36)

It is the well-known Rogosinski result (cf. [[22], p.195]) that if

g(z)= n = 1 b n z n

is analytic in U, g(z)ϕ(z) and ϕ(z)K, then | b n |1 (nN). Hence (3.33) follows from (3.36) at once. □

The estimate (3.33) is sharp since equality is attained for the function f 0 (z) defined by (2.11).

References

  1. Goodman AW: On uniformly convex functions. Ann. Polon. Math. 1991, 56: 87–92.

    MathSciNet  Google Scholar 

  2. Rønning F: Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 1993, 118: 189–196.

    Article  MathSciNet  Google Scholar 

  3. Gangadharan A, Shanmugam TN, Srivastava HM: Generalized hypergeometric function associated with k -uniformly convex functions. Comput. Math. Appl. 2002, 44: 1515–1526. 10.1016/S0898-1221(02)00275-4

    Article  MathSciNet  Google Scholar 

  4. Goodman AW: On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155: 364–370. 10.1016/0022-247X(91)90006-L

    Article  MathSciNet  Google Scholar 

  5. Kanas S, Srivastava HM: Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9: 121–132. 10.1080/10652460008819249

    Article  MathSciNet  Google Scholar 

  6. Kanas S, Wiśniowska A: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105: 327–336. 10.1016/S0377-0427(99)00018-7

    Article  MathSciNet  Google Scholar 

  7. Kanas S, Yaguchi T: Subclasses of k -uniformly convex and starlike functions defined by generalized derivative. Indian J. Pure Appl. Math. 2001, 32: 1275–1282.

    MathSciNet  Google Scholar 

  8. Owa S: On uniformly convex functions. Math. Japon. 1998, 48: 377–384.

    MathSciNet  Google Scholar 

  9. Rønning F: A survey on uniformly convex and uniformly starlike functions. Ann. Univ. Mariae Curie-Skłodowska, Sec. A 1993, 47: 123–134.

    Google Scholar 

  10. Rønning F: On uniform starlikeness and related properties of univalent functions. Complex Variables Theory Appl. 1994, 24: 233–239. 10.1080/17476939408814715

    Article  MathSciNet  Google Scholar 

  11. Dziok J, Srivastava HM: Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103: 1–13.

    Article  MathSciNet  Google Scholar 

  12. Bernardi SD: Convex and starlike univalent functions. Trans. Amer. Math. Soc. 1969, 135: 429–446.

    Article  MathSciNet  Google Scholar 

  13. Carlson BC, Shaffer DB: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 1984, 15: 737–745. 10.1137/0515057

    Article  MathSciNet  Google Scholar 

  14. Owa S, Srivastava HM: Univalent and starlike generalized hypergeometric functions. Canad. J. Math. 1987, 39: 1057–1077. 10.4153/CJM-1987-054-3

    Article  MathSciNet  Google Scholar 

  15. Ruscheweyh S: New criteria for univalent functions. Proc. Amer. Math. Soc. 1975, 49: 109–115. 10.1090/S0002-9939-1975-0367176-1

    Article  MathSciNet  Google Scholar 

  16. Sokół J: On some applications of the Dziok-Srivastava operator. Appl. Math. Comp. 2008, 201: 774–780. 10.1016/j.amc.2008.01.013

    Article  Google Scholar 

  17. Sokół J, Piejko K: On the Dziok-Srivastava operator under multivalent analytic functions. Appl. Math. Comp. 2006, 177: 839–843. 10.1016/j.amc.2005.11.039

    Article  Google Scholar 

  18. Sokół J: Classes of multivalent functions associated with a convolution operator. Comp. Math. Appl. 2010, 60: 1343–1350. 10.1016/j.camwa.2010.06.015

    Article  Google Scholar 

  19. Srivastava HM, Yang D-G, Neng X: Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator. Integral Transforms Spec. Funct. 2009, 20: 581–606. 10.1080/10652460902723655

    Article  MathSciNet  Google Scholar 

  20. Ruscheweyh S Sem. Math. Sup. 83. In Convolutions in Geometric Function Theory. Presses University Montreal, Montreal; 1982.

    Google Scholar 

  21. Suffridge TJ: Some remarks on convex maps of the unit disk. Duke Math. J. 1970, 37: 775–777. 10.1215/S0012-7094-70-03792-0

    Article  MathSciNet  Google Scholar 

  22. Duren PL: Univalent Functions. Springer, New York; 1983.

    Google Scholar 

Download references

Acknowledgements

Dedicated to Professor Hari M Srivastava.

This work was partially supported by the National Natural Science Foundation of China (Grant No. 11171045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Xu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors did not provide this information

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Xu, N., Yang, DG. & Sokół, J. A class of analytic functions involving in the Dziok-Srivastava operator. J Inequal Appl 2013, 138 (2013). https://doi.org/10.1186/1029-242X-2013-138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-138

Keywords