Open Access

On a Hilbert-type inequality with a homogeneous kernel in 2 and its equivalent form

Journal of Inequalities and Applications20122012:94

https://doi.org/10.1186/1029-242X-2012-94

Received: 19 August 2011

Accepted: 20 April 2012

Published: 20 April 2012

Abstract

By using the way of weight functions and the technique of real analysis, a new integral inequality with a homogeneous kernel and the best constant factor in 2 is given. The equivalent form and the reverses are considered.

Mathematics Subject Classification (2000): 26D15.

Keywords

weight functionHölder's inequalityequivalent form

1. Introduction

One hundred years ago, Hilbert proved the following classic inequality [1]
n m a m b n m + n π n α n 2 1 / 2 n b n 2 1 / 2 .
(1.1)

The inequality (1.1) may be classified into several types (discrete and integral etc.), which is of great importance in analysis and its applications [1, 2]. Ever since the advent of inequality (1.1), all kinds of improvements and extensions can be seen in [312]. Note that the kernel of (1.1) is homogeneous of degree -1. In 2009, [13] reviews the negative degree homogeneous kernel of the parameterized Hilbert-type inequalities.

In recent years, many authors have started on Hilbert-type inequality of 0-degree homo-geneous kernel and non-homogeneous kernel. They even established inequalities in 2. In 2008, Yang [14] obtained the improved inequality as follows: If p, r > 1, (1/p) + (1/q) = 1, (1/r) + (1/s) = 1, 0 < λ < 1 and the right-hand side integrals are convergent, then
- - f ( x ) g ( y ) x + y λ d x d y < k λ ( r ) - x p ( 1 - λ r ) f p ( x ) d x 1 / p - x q ( 1 - λ s ) g q ( x ) d x 1 / q ,
(1.2)

where the constant factor k λ ( r ) = B ( λ r , λ s ) + B ( 1 - λ , λ r ) + B ( 1 - λ , λ s ) is the best possible.

Motivated by (1.2) and the technique of real analysis, we establish a new inequality in 2 with a homogeneous kernel of 0-degree. Furthermore, the equivalent form and the corresponding reverse inequalities are also considered.

In what follows, α1, α2 will be real numbers such that 0 < α1 < α2 < π.

2. Lemmas

LEMMA 2.1. If k : = 2  ln ( 4 cos α 1 2 sin α 2 2 ) - α 1 cot  α 1 + ( π - α 2 ) cot  α 2 , the weight function
ϖ ( x ) : = - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 1 y d y , x ( - , ) ,
(2.1)
then for all x (-∞, 0) (0, ∞)
ϖ ( x ) = k .
(2.2)
Proof. If x (-∞,0), then
ϖ ( x ) = - 0 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 1 - y d y + 0 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 1 y d y .
Letting u = y/x for the first integrals and u = -y/x for the second integrals gives
ϖ ( x ) = 0 min i { 1 , 2 } min { 1 , u 2 } u 2 + 2 u  cos  α i + 1 1 u d u + 0 min i { 1 , 2 } min { 1 , u 2 } u 2 - 2 u  cos  α i + 1 1 u d u = 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 1 u - 1 u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u + 1 u - 1 u 2 - 2 u  cos  α 2 + 1 d u . = 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u = 2 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u = 2 ln  2  cos  α 1 2 - α 1 2  cot  α 1 + ln  2 sin α 2 2 - α 2 2  cot  α 2 + π 2  cot  α 2 = 2  ln 4  cos  α 1 2 sin α 2 2 - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 = k .
(2.3)

Similarly, ϖ(x) = k for x (0, ∞). Hence (2.2) is valid for x (-∞, 0) (0, ∞).   □

Note. (i) It is obvious that ϖ(0) = 0. (ii) If α1 = α2 = α, then
min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 = min { x 2 , y 2 } x 2 + 2 x y  cos  α + y 2 ,

and ϖ(x) = 2 ln (2 sin α) + (π - 2α) cot α.

LEMMA 2.2. If p > 1 , 1 p + 1 q = 1 and f(x) is a nonnegative measurable function in (-∞,∞), then for all x (-∞, 0) (0, ∞)
J : = - y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p d y k p - x p - 1 f p ( x ) d x .
(2.4)
Proof. By Hölder's inequality with weight [15] and Lemma 2.1, we obtain
- min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p = - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x 1 / q y 1 / p f ( x ) y 1 / p x 1 / q d x p - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y f p ( x ) d x × - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 y q - 1 x d x p - 1 = k p - 1 y - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y f p ( x ) d x .
(2.5)
By Fubini theorem, we find
J k p - 1 - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y f p ( x ) d x d y = k p - 1 - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x p - 1 y d y f p ( x ) d x = k p - x p - 1 f p ( x ) d x .
   □
LEMMA 2.3. If 0 < p < 1 , 1 p + 1 q = 1 and g(x) is a nonnegative measurable function in (-∞,∞), then for all x (-∞, 0) (0, ∞)
J k p - x p - 1 f p ( x ) d x ,
(2.6)
L : = - x - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 g ( y ) d y q d x k q - y q - 1 g q ( y ) d y ,
(2.7)

where k = 2 ln ( 4  cos  α 1 2 sin α 2 2 ) - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 .

Proof. It can be completed similarly by following the proof of Lemma 2.2 as long as applying the reverse Hölder's inequality [15], hence we omit the details. Since q < 0, thus (2.7) takes the positive inequality.   □

3. Main results and applications

THEOREM 3.1. If p > 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we obtain the following equivalent inequalities
I : = - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) g ( y ) d x d y < k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.1)
J = - y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p d y < k p - x p - 1 f p ( x ) d x ,
(3.2)

where the constant factors k = 2  ln ( 4  cos  α 1 2 sin α 2 2 ) - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 and k p are both the best possible.

Proof. If (2.5) takes the form of equality for some y (-∞,0) (0,∞), then there exist constants A and B such that they are not all zero and
A x p - 1 y f p ( x ) = B y q - 1 x a .e . in( - , ) × ( - , ) .

i.e., A|x| p f p (x) = B|y| q a.e. in (-∞,∞) × (-∞, ∞). We conform that A ≠ 0 (otherwise B = A = 0). Then x p - 1 f p ( x ) = B y q A x a.e. in(-∞,∞), which contradicts the fact that 0 < - x p - 1 f p ( x ) d x < . Hence (2.5) takes a strict inequality and the same as (2.4), thus (3.2) is valid.

By Hölder's inequality with weight [15], we find
I = - y - 1 + ( 1 / q ) - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x y 1 - ( 1 / q ) g ( y ) d y J 1 / p - y q - 1 g q ( y ) d y 1 / q .
(3.3)
By (3.2), we obtain (3.1). On the other hand, suppose that (3.1) is valid. Let
g ( y ) : = y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p - 1 ,
then J = - y q - 1 g q ( y ) d y . In view of (2.4), J < ∞. If J = 0, then (3.2) is naturally valid; if J > 0, by (3.1), then
0 < - y q - 1 g q ( y ) d y = J = I < k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q
(3.4)
J 1 / p = - y q - 1 g q ( y ) d y 1 / p < k - x p - 1 f p ( x ) d x 1 / p .
(3.5)

Hence we obtain (3.2). Thus (3.2) and (3.1) are equivalent.

For any ε > 0, suppose that
f ̃ ( x ) = x - 1 - 2 ε p , x [ 1 , ) , 0 , x ( - 1 , 1 ) , ( - x ) - 1 - 2 ε p , x ( - , - 1 ] , g ̃ ( x ) = x - 1 - 2 ε q , x [ 1 , ) , 0 , x ( - 1 , 1 ) , ( - x ) - 1 - 2 ε q , x ( - , - 1 ] .
Then we get the following inequality
H ( ε ) : = - x p - 1 f ̃ p ( x ) d x 1 p - x q - 1 g ̃ q ( x ) d x 1 q = 1 ε ,
(3.6)
I ( ε ) : = - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ̃ ( x ) g ̃ ( y ) d x d y = I 1 + I 2 + I 3 + I 4 ,
(3.7)
where
I 1 : = - - 1 ( - y ) - 1 - 2 ε q - - 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 ( - x ) - 1 - 2 ε p d x d y , I 2 : = - - 1 ( - y ) - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y , I 3 : = 1 y - 1 - 2 ε q - - 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 ( - x ) - 1 - 2 ε p d x d y , I 4 : = 1 y - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y .
By Fubini theorem [16], it follows
I 1 = I 4 = 1 y - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y = 1 y - 1 - 2 ε 1 y min i { 1 , 2 } min { u 2 , 1 } u 2 + 2 u  cos  α i + 1 u - 1 - 2 ε p d u d y ( u = x / y ) = 1 y - 1 - 2 ε 1 y 1 u 2 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u d y + 1 y - 1 - 2 ε 1 1 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u d y = 0 1 1 u y - 1 - 2 ε d y u 1 - 2 ε p u 2 + 2 u  cos  α 1 + 1 d u + 1 2 ε 1 u - 1 - 2 ε p u 2 + 2 u  cos  α 1 + 1 d u = 1 2 ε 0 1 u 1 + 2 ε q u 2 + 2 u  cos  α 1 + 1 d u + 1 1 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u . I 2 = I 3 = 1 y - 1 - 2 ε q 1 min i { 1 , 2 } min { x 2 , y 2 } x 2 - 2 x y  cos  α i + y 2 x - 1 - 2 ε p d x d y = 1 2 ε 0 1 u 1 + 2 ε q u 2 - 2 u  cos  α 2 + 1 d u + 1 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u .
If the constant factor k in (3.1) is not the best possible, then there exists a constant 0 < Mk, such that
I : = - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) g ( y ) d x d y < M - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
In view of (3.6) and (3.7), we obtain
0 1 u 1 + 2 ε q u 2 + 2 u  cos  α 1 + 1 d u + 1 1 u 2 + 2 u  cos  α 1 + 1 u - 1 - 2 ε p d u + 0 1 u 1 + 2 ε q u 2 - 2 u  cos  α 2 + 1 d u + 1 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u = ε I ( ε ) < ε k H ( ε ) = k
(3.8)
By (3.8), (2.3) and Fatou lemma [16], we find
k = 0 1 u u 2 + 2 u  cos  α 1 + 1 d u + 1 u - 1 u 2 + 2 u  cos  α 1 + 1 d u + 0 1 u u 2 - 2 u  cos  α 2 + 1 d u + 1 u - 1 u 2 - 2 u  cos  α 2 + 1 d u = 0 1 lim ε 0 + u 1 + 2 ε q u 2 + 2 u  cos  α i + 1 d u + 1 lim ε 0 + 1 u 2 + 2 u  cos  α i + 1 u - 1 - 2 ε p d u + 0 1 lim ε 0 + u 1 + 2 ε q u 2 - 2 u  cos  α i + 1 d u + 1 lim ε 0 + 1 u 2 - 2 u  cos  α i + 1 u - 1 - 2 ε p d u lim ε 0 + 0 1 u 1 + 2 ε q u 2 + 2 u  cos  α i + 1 d u + 1 1 u 2 + 2 u  cos  α i + 1 u - 1 - 2 ε p d u + 0 1 u 1 + 2 ε q u 2 - 2 u  cos  α i + 1 d u + 1 1 u 2 - 2 u  cos  α i + 1 u - 1 - 2 ε p d u M .

Hence k is the best value of (3.1). We conform that k p is also the best value of (3.2). Otherwise, we can get a contradiction by (3.3) that (3.1) is not the best possible.   □

THEOREM 3.2. If 0 < p < 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we have the following equivalent inequalities
I = - - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) g ( y ) d x d y < k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.9)
J = - y - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 f ( x ) d x p d y > k p - x p - 1 f p ( x ) d x ,
(3.10)
L : = - x - 1 - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 g ( y ) d y q d x < k q - y q - 1 g q ( y ) d y ,
(3.11)

where the constant factors k = 2  ln ( 4  cos  α 1 2 sin α 2 2 ) - α 1  cot  α 1 + ( π - α 2 )  cot  α 2 , both k p and k q are the best possible.

Proof. By Lemma 2.3, similar to the proof of (3.2), we obtain that (3.10) and (3.11) are valid. In view of the reverse equality of (3.3), (3.9) is valid too. On the other hand, suppose that (3.9) is valid, let g(y) defined as Theorem 3.1, it is obvious J > 0. If J = ∞, then (3.10) is valid naturally; if 0 < J < ∞, then by (3.9), we find
- y q - 1 g q ( y ) d y = J = I > k - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q , J 1 / p = - y q - 1 g q ( y ) d y 1 / p > k - x p - 1 f p ( x ) d x 1 / p .
(3.12)

Hence we obtain (3.10). Thus (3.10) and (3.9) are equivalent.

(3.11) and (3.9) are equivalent. In fact, we have proved (3.11) is valid above. On the other hand, suppose that (3.11) is valid, by the reverse Hölder's inequality with weight [15], we obtain
I = - ( x 1 - ( 1 / p ) f ( x ) d x ) x - 1 + ( 1 / p ) - min i { 1 , 2 } min { x 2 , y 2 } x 2 + 2 x y  cos  α i + y 2 g ( y ) d y L 1 / q - x p - 1 f p ( x ) d y 1 / p .
(3.13)

By (3.11), we obtain (3.9), and it is equivalent between (3.11) and (3.9). Thus (3.9), (3.10), and (3.11) are equivalent.

k is the best value of (3.9). In fact, If there exists a constant Mk, such that (3.9) is still valid as we replace k by M. By the reverse inequality of (3.8), we obtain
0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u 1 + 2 ε q d u + 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u > k
(3.14)
Suppose that 0 < ε 0 < q 2 such that 2 ε 0 q + 1 > 0 . Letting 0 < εε0 gives u 2 ε q u 2 ε 0 q ( u ( 0 , 1 ] ) and
0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u 1 + 2 ε 0 q d u k 2 0 1 u 2 ε 0 q = k 2 1 1 + ( 2 ε 0 ) / q .
By Lebesgue control convergent theorem [16], it follows
0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u 1 + 2 ε q d u = 0 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u d u + o ( 1 ) ( ε 0 + ) .
Then by Levi theorem [16], we obtain
1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 u - 1 - 2 ε p d u = 1 1 u 2 + 2 u  cos  α 1 + 1 + 1 u 2 - 2 u  cos  α 2 + 1 1 u d u + o ̃ ( 1 ) ( ε 0 + ) .

By (3.14), if follows that kM for ε → 0+. Hence k is the best value of (3.9). Furthermore, the constant factors in (3.10) and (3.11) are both the best value too. Otherwise, by (3.3) or (3.13), we may get a contradiction that the constant factor in (3.9) is not the best possible.   □

By Note (ii), Theorems 3.1 and 3.2, it follows that

COROLLARY 3.3. If p > 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we obtain the following equivalent inequalities
- - min { x 2 , y 2 } x 2 + 2 x y  cos  α + y 2 f ( x ) g ( y ) d x d y < k 1 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.15)
- y - 1 - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 f ( x ) d x p d y < k 1 p - x p - 1 f p ( x ) d x ,
(3.16)
where the constant factors k1 = 2 ln (2 sin α) + (π - 2α) cot α and k 1 p are both the best possible. In particular, for α = π/3 or 2π/3, it reduces to
- - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) g ( y ) d x d y < ln 3 + 3 π 9 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.17)
- y - 1 - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) d x p d y < ln 3 + 3 π 9 p - x p - 1 f p ( x ) d x .
(3.18)
COROLLARY 3.4. If 0 < p < 1 , 1 p + 1 q = 1 , f , g 0 such that 0 < - x p - 1 f p ( x ) d x < and 0 < - x q - 1 g q ( x ) d x < , then we have the following equivalent inequalities
- - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 f ( x ) g ( y ) d x d y > k 1 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.19)
- y - 1 - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 f ( x ) d x p d y > k 1 p - x p - 1 f p ( x ) d x ,
(3.20)
- x - 1 - min x 2 , y 2 x 2 + 2 x y  cos  α + y 2 g ( y ) dy q d x < k 1 q - y q - 1 g q ( y ) d y ,
(3.21)
where the constant factors k1 = 2 ln (2 sin α) + (π - 2α) cot α, k 1 p and k 1 q are both the best possible. In particular, for α = π/3 or 2π/3, it reduces to
- - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) g ( y ) d x d y > ln 3 + 3 π 9 - x p - 1 f p ( x ) d x 1 / p - x q - 1 g q ( x ) d x 1 / q ,
(3.22)
- y - 1 - min x 2 , y 2 x 2 ± x y + y 2 f ( x ) d x p d y > ln 3 + 3 π 9 p - x p - 1 f p ( x ) d x ,
(3.23)
- x - 1 - min x 2 , y 2 x 2 ± x y + y 2 g ( y ) d y q d x < ln  3 + 3 π 9 q - y q - 1 g q ( y ) d y .
(3.24)

Acknowledgements

The study was partially supported by the Emphases Natural Science Foundation of Guangdong Institution of Higher Learning, College and University (No. 05Z026).

Declarations

Authors’ Affiliations

(1)
Department of Mathematics, Guangdong University of Education

References

  1. Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge, UK; 1934.Google Scholar
  2. Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and their Integrals and Derivatives. Kluwer Academic Publishers, Boston, MA; 1991.View ArticleGoogle Scholar
  3. Gao M: On Hilbert's inequality and its applications. J Math Anal Appl 1997, 212: 316–323.MathSciNetView ArticleGoogle Scholar
  4. Kuang J: On new extensions of Hilbert's integral inequality. Math Anal Appl 1999, 235: 608–614.MathSciNetView ArticleGoogle Scholar
  5. Pachpatte BG: On some new inequalities similar to Hilbert's inequality. J Math Anal Appl 1998, 226(3):166–179.MathSciNetView ArticleGoogle Scholar
  6. Sulaiman WT: Four inequalities similar to Hardy-Hilbert's integral inequality. J In-equal Pure Appl Math 2006, 7(2):8.MathSciNetGoogle Scholar
  7. Yang B: On the norm of an integral operator and applications. J Math Anal Appl 2006, 321: 182–192.MathSciNetView ArticleGoogle Scholar
  8. He B, Yang B: On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0-Degree and the Hypergeometric Function. Math Practice Theory 2010, 40(18):203–211.MathSciNetGoogle Scholar
  9. Brnetić I, Pečarić J: Generalization of Hilbert's integral inequality. Math Inequal Appl 2004, 7(2):199–205.MathSciNetGoogle Scholar
  10. Li Y, He B: On inequalities of Hilbert's type. Bull Aust Math Soc 2007, 76(1):1–13.View ArticleGoogle Scholar
  11. Li Y, Wang Z, He B: Hilbert's Type Linear Operator and Some Extensions of Hilbert's Inequality. J Inequal Appl 2007, 2007: 10. Article ID 82138MathSciNetGoogle Scholar
  12. Zeng Z, Xie Z: On a New Hilbert-Type Integral Inequality with the Homogeneous Kernel of 0 Degree and the Integral in Whole Plane. J Inequal Appl 2010, 2010: 9. Article ID 256796MathSciNetGoogle Scholar
  13. Yang B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing, China; 2009.Google Scholar
  14. Yang B: A new Hilbert-type integral inequality with some parameters. J Jilin Univ 2008, 46(6):1085–1090.MathSciNetGoogle Scholar
  15. Kuang J: Applied Inequalities. Shangdong Science Technic Press, Jinan, China; 2004.Google Scholar
  16. Kuang J: Introduction to Real Analysis. Hunan Education Press, Changsha, China; 1996.Google Scholar

Copyright

© He; licensee Springer. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.