# Some retarded nonlinear integral inequalities and their applications in retarded differential equations

## Abstract

In this article, we discuss some generalized retarded nonlinear integral inequalities, which not only include nonlinear compound function of unknown function but also include retard items, and give upper bound estimation of the unknown function by integral inequality technique. This estimation can be used as tool in the study of differential equations with the initial conditions.

2000 MSC: 26D10; 26D15; 26D20; 34A12; 34A40.

## 1 Introduction

Gronwall-Bellman inequalities [1, 2] and their various generalizations can be used important tools in the study of existence, uniqueness, boundedness, stability, and other qualitative properties of solutions of differential equations, integral equations, and integral-differential equations.

Lemma 1 (Gronwall [1]). Let u(t) be a continuous function defined on the interval [a, a + h], a, h are nonnegative constants and

$0\le u\left(t\right)\le \underset{a}{\overset{t}{\int }}\left[bu\left(s\right)+a\right]ds,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}t\in \left[a,a+h\right].$
(1.1)

Then, 0 ≤ u(t) ≤ ah exp(bh), t [a,a + h].

Lemma 2 (Bellman [2]). Let f, u C([0, h], [0, ∞)), h, c are positive constants. If u satisfy the inequality

$u\left(t\right)\le c+\underset{0}{\overset{t}{\int }}f\left(s\right)u\left(s\right)ds,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}t\in \left[0,h\right].$
(1.2)

Then, $u\left(t\right)\le c\text{exp}\left({\int }_{0}^{t}f\left(s\right)ds\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}t\in \left[0,h\right]$.

Lemma 3 (Lipovan [3]). Let u, f C([t0,T), R+). Further, let α C1([t0,T),[t0,T)) be nondecreasing with α(t) ≤ t on [t0,T), and let c be a nonnegative constant. Then the inequality

$u\left(t\right)\le c+\underset{\alpha \left({t}_{0}\right)}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)u\left(s\right)ds,\phantom{\rule{1em}{0ex}}t\in \left[{t}_{0},T\right)$
(1.3)

implies that $u\left(t\right)\le c\text{exp}\left({\int }_{\alpha \left({t}_{0}\right)}^{\alpha \left(t\right)}f\left(s\right)ds\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}t\in \left[{t}_{0},T\right).$.

Lemma 4 (Abdeldaim and Yakout [4]). We assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

$u\left(t\right)\le {u}_{0}+{\left(\underset{0}{\overset{t}{\int }}f\left(s\right)u\left(s\right)ds\right)}^{2}+\underset{0}{\overset{t}{\int }}f\left(s\right)u\left(s\right)\left(u\left(s\right)+2\underset{0}{\overset{s}{\int }}f\left(\tau \right)u\left(\tau \right)d\tau \right)ds,\forall t\in I,$
(1.4)

where u 0 be a positive constant. Then

$u\left(t\right)\le {u}_{0}\text{exp}\left(\underset{0}{\overset{t}{\int }}f\left(s\right){B}_{1}\left(s\right)ds\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I,$
(1.5)

where

${B}_{1}\left(t\right)=\frac{{u}_{0}\text{exp}\left(4{\int }_{0}^{t}f\left(s\right)ds\right)}{1-{u}_{0}{\int }_{0}^{t}f\left(s\right)\text{exp}\left(4{\int }_{0}^{s}f\left(\tau \right)d\tau \right)ds},\phantom{\rule{2.77695pt}{0ex}}\forall t\in I,$
(1.6)

such that ${u}_{0}{\int }_{0}^{t}f\left(s\right)\text{exp}\left(4{\int }_{0}^{s}f\left(\tau \right)d\tau \right)ds<1$.

Lemma 5 (Abdeldaim and Yakout [4]). We assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

${u}^{p+1}\left(t\right)\le {u}_{0}+{\left(\underset{0}{\overset{t}{\int }}f\left(s\right){u}^{p}\left(s\right)ds\right)}^{2}+2\underset{0}{\overset{t}{\int }}f\left(s\right){u}^{p}\left(s\right)\left(u\left(s\right)+\underset{0}{\overset{s}{\int }}f\left(\tau \right){u}^{p}\left(\tau \right)d\tau \right)ds,$
(1.7)

for all t I, where u0 > 0, p (0,1), are constants. Then

$u\left(t\right)\le {u}_{0}^{\frac{1}{p+1}}+\frac{2}{p+1}\underset{0}{\overset{t}{\int }}f\left(s\right){B}_{2}\left(s\right)ds,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I,$
(1.8)

where

${B}_{2}\left(t\right)=\text{exp}\left(\frac{2}{p+1}\underset{0}{\overset{t}{\int }}f\left(s\right)ds\right){\left({u}_{0}^{\frac{1-p}{p+1}}+2\left(1-p\right)\underset{0}{\overset{t}{\int }}f\left(s\right)\text{exp}\left(-2\frac{1-p}{p+1}\underset{0}{\overset{s}{\int }}f\left(\tau \right)d\tau \right)ds\right)}^{\frac{1}{1-p}},$
(1.9)

for all t I.

Lemma 6 (see [5]). Let φ C(R+,R+) be a increasing function, u,a,f C([t0,T),R+), a(t) be a increasing function, and α C1([t0,T), [t0,T)) be nondecreasing with α(t) ≤ t on [t0,T) where T (0,∞) is a constant. Then the inequality

$u\left(t\right)\le a\left(t\right)+\underset{\alpha \left(0\right)}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)ds,\phantom{\rule{1em}{0ex}}t\in \left[{t}_{0},T\right)$
(1.10)

implies that

$u\left(t\right)\le {W}^{-1}\left(W\left(a\left(t\right)\right)+\underset{\alpha \left(0\right)}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right),\phantom{\rule{1em}{0ex}}t\in \left[{t}_{0},{T}_{1}\right),$
(1.11)

where

$W\left(t\right)=\underset{1}{\overset{t}{\int }}\frac{dt}{\phi \left(t\right)}ds,\phantom{\rule{1em}{0ex}}t>0,$
(1.12)

W -1 is the reverse function of W, T 1 is the largest number such that

$W\left(a\left({T}_{1}\right)\right)+\underset{\alpha \left(0\right)}{\overset{\alpha \left({T}_{1}\right)}{\int }}f\left(s\right)ds\le \underset{1}{\overset{\infty }{\int }}\frac{dt}{\phi \left(t\right)}ds.$

There can be found a lot of generalizations of Gronwall-Bellman inequalities in various cases from literature (e.g., [313]).

In this article, we discuss some retarded nonlinear integral inequalities, where linear case u(t) in integral functions in [4] is changed into the nonlinear case ϕ(u(t)), and the non-retarded case t in [4] is changed into retarded case α(t), and give upper bound estimation of the unknown function by integral inequality technique.

## 2 Main result

In this section, we discuss some retarded integral inequalities of Gronwall-Bellman type. Throughout this article, let I = [0, ∞).

Theorem 1. Let φ,φ',α C1(I, I) be increasing functions with φ'(t) ≤ k, α(t) ≤ t, α(0) = 0, t I; k, u0 be positive constants, we assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

$u\left(t\right)\le {u}_{0}+{\left(\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)ds\right)}^{2}+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)\left(\phi \left(u\left(s\right)\right)+2\underset{0}{\overset{s}{\int }}f\left(\tau \right)\phi \left(u\left(\tau \right)\right)d\tau \right)ds,$
(2.1)

for all t I. If ${u}_{0}^{-1}-k{\int }_{0}^{\alpha \left(t\right)}f\left(s\right)\text{exp}\left(4{\int }_{0}^{s}f\left(\tau \right)d\tau \right)ds>0$, then

$z\left(t\right)\le {\Phi }^{-1}\left(\Phi \left({u}_{0}\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right){B}_{3}\left(s\right)ds\right),\forall t\in I,$
(2.2)

where

$\Phi \left(x\right):=\underset{1}{\overset{x}{\int }}\frac{ds}{\phi \left(s\right)},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall x>0,$
(2.3)
${B}_{3}\left(t\right):=\text{exp}\left(4\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right){\left({\left(\phi \left({u}_{0}\right)\right)}^{-1}-k\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\text{exp}\left(4\underset{0}{\overset{s}{\int }}f\left(\tau \right)d\tau \right)ds\right)}^{-1}.$
(2.4)

Remark 1. If α(t) = t, φ(u(s)) = u(s), then Theorem 1 reduces Lemma 4.

Proof. Let z(t) denotes the function on the right-hand side of (2.1), which is a nonnegative and nondecreasing function on I with z(0) = u0. Then (2.1) is equivalent to

$u\left(t\right)\le z\left(t\right),u\left(\alpha \left(t\right)\right)\le z\left(\alpha \left(t\right)\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.5)

Differentiating z(t) with respect to t, we have

$\begin{array}{ll}\hfill \frac{dz}{dt}& =2{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(u\left(\alpha \left(t\right)\right)\right)\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)ds+{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(u\left(\alpha \left(t\right)\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}×\left(\phi \left(u\left(\alpha \left(t\right)\right)\right)+2\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(\tau \right)\phi \left(u\left(\tau \right)\right)d\tau \right)ds,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.\phantom{\rule{2em}{0ex}}\end{array}$
(2.6)

Using (2.5), we obtain

$\frac{dz}{dt}\le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(z\left(\alpha \left(t\right)\right)\right)w\left(t\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I,$
(2.7)

where $w\left(t\right):=\phi \left(z\left(\alpha \left(t\right)\right)\right)+4{\int }_{0}^{\alpha \left(t\right)}f\left(s\right)\phi \left(z\left(s\right)\right)ds,w\left(0\right)=\phi \left(z\left(0\right)\right)=\phi \left({u}_{0}\right)$, w is a nonnegative and nondecreasing function on I. By the monotonicity φ, φ',z, and α(t) ≤ t we have φ(z(α(t))) ≤ w(t), φ'(z(α(t))) ≤ k. Differentiating w(t) with respect to t, and using (2.7) we have

$\begin{array}{ll}\hfill \frac{dw}{dt}& \le {\phi }^{\prime }\left(z\left(\alpha \left(t\right)\right)\right){\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right){w}^{2}\left(t\right)+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)w\left(t\right)\phantom{\rule{2em}{0ex}}\\ \le k{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right){w}^{2}\left(t\right)+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)w\left(t\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.\phantom{\rule{2em}{0ex}}\end{array}$
(2.8)

By w(t) > 0, we have

${w}^{-2}\left(t\right)\frac{dw}{dt}\le k{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right){w}^{-1}\left(t\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.9)

Let v(t) = w-1(t), from (2.9) we have

$\frac{dv}{dt}+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)v\left(t\right)\ge -k{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.10)

Consider ordinary differential equation

$\frac{dy}{dt}+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)y\left(t\right)=-k{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right),y\left(0\right)={\left(\phi \left({u}_{0}\right)\right)}^{-1},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.11)

The solution of Equation (2.11) is

$\begin{array}{ll}\hfill y\left(t\right)& ={\left(\phi \left({u}_{0}\right)\right)}^{-1}\text{exp}\left(-4\underset{0}{\overset{t}{\int }}{\alpha }^{\prime }\left(s\right)f\left(\alpha \left(s\right)\right)ds\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}-\text{exp}\left(-4\underset{0}{\overset{t}{\int }}{\alpha }^{\prime }\left(s\right)f\left(\alpha \left(s\right)\right)ds\right)\underset{0}{\overset{t}{\int }}k{\alpha }^{\prime }\left(s\right)f\left(\alpha \left(s\right)\right)\text{exp}\left(\underset{0}{\overset{s}{\int }}4{\alpha }^{\prime }\left(\tau \right)f\left(\alpha \left(\tau \right)\right)d\tau \right)ds\phantom{\rule{2em}{0ex}}\\ ={\left(\phi \left({u}_{0}\right)\right)}^{-1}\text{exp}\left(-4\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)-\text{exp}\left(-4\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)\underset{0}{\overset{\alpha \left(t\right)}{\int }}kf\left(s\right)\text{exp}\left(4\underset{0}{\overset{s}{\int }}f\left(\tau \right)d\tau \right)ds.\phantom{\rule{2em}{0ex}}\\ =\text{exp}\left(-4\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)\left({\left(\phi \left({u}_{0}\right)\right)}^{-1}-k\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\text{exp}\left(4\underset{0}{\overset{s}{\int }}f\left(\tau \right)d\tau \right)ds\right).\phantom{\rule{2em}{0ex}}\end{array}$
(2.12)

By (2.10), (2.11), and (2.13), we obtain

$v\left(t\right)\ge \text{exp}\left(-4\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)\left({\left(\phi \left({u}_{0}\right)\right)}^{-1}-k\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\text{exp}\left(4\underset{0}{\overset{s}{\int }}f\left(\tau \right)d\tau \right)ds\right).$
(2.13)

By the definition of B3(t) in (2.4) and the inequality (2.13), we have w(t) < B3(t),t I. From (2.7), we get

$\frac{dz}{dt}\le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(z\left(\alpha \left(t\right)\right)\right){B}_{3}\left(\alpha \left(t\right)\right)\le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right){B}_{3}\left(\alpha \left(t\right)\right)\phi \left(z\left(t\right)\right),\forall t\in I.$
(2.14)

By taking t = s in the inequality (2.14) and integrating (2.14) from 0 to t, by the definition (2.3) of Φ we obtain

$z\left(t\right)\le {\Phi }^{-1}\left(\Phi \left(z\left(0\right)\right)+\underset{0}{\overset{t}{\int }}{\alpha }^{\prime }\left(s\right)f\left(\alpha \left(s\right)\right){B}_{3}\left(\alpha \left(s\right)\right)ds\right)\le {\Phi }^{-1}\left(\Phi \left(z\left(0\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right){B}_{3}\left(s\right)ds\right),$
(2.15)

for all t I. This completes the proof of the Theorem 1.

Theorem 2. Let ψ(t),φ(t),φ(t)/t,α(t) C1(I,I) be increasing functions with ψ'(t) = φ(t),α(t) ≤ t, α(0) = 0, t I; k, u0 be positive constants, we assume that u(t) and f(t) are nonnegative real-valued continuous functions defined on I and satisfy the inequality

$\begin{array}{ll}\hfill \psi \left(u\left(s\right)\right)& \le {u}_{0}+{\left(\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)ds\right)}^{2}\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)\left(u\left(s\right)+2\underset{0}{\overset{s}{\int }}f\left(\tau \right)\phi \left(u\left(\tau \right)\right)d\tau \right)ds,\phantom{\rule{2em}{0ex}}\end{array}$
(2.16)

for all t I. Then

$u\left(t\right)\le \text{exp}\left({\Xi }^{-1}\left(\Xi \left(\text{ln}\left(1+{\psi }^{-1}\left({u}_{0}\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}4f\left(s\right)ds\right)\right),\forall t\in \left(0,{T}_{2}\right).$
(2.17)

where

$\Xi \left(t\right):=\underset{1}{\overset{t}{\int }}\frac{\text{exp}\left(s\right)ds}{\phi \left(\text{exp}\left(s\right)\right)},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t>0,$
(2.18)

Ξ-1,ψ-1 are the reverse function of Ξ, ψ respectively, T2 is the largest number such that

$\Xi \left(\text{ln}\left(1+{\psi }^{-1}\left({u}_{0}\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}4f\left(s\right)ds\le \underset{1}{\overset{\infty }{\int }}\frac{\text{exp}\left(s\right)ds}{\psi \left(\text{exp}\left(s\right)\right)},\phantom{\rule{2.77695pt}{0ex}}\forall x\in {\mathbf{R}}_{+}.$

Remark 2. If α(t) = t,φ(u(t)) = up(t),ψ(u(t)) = up+1(t)/(p + 1), by Theorem 2, we can obtain the result similar to Lemma 5.

Proof. Let ψ(z(t)) denotes the function on the right-hand side of (2.16), then z(t) is a nonnegative and nondecreasing function on I with z(0) = ψ-1(u0). Then (2.16) is equivalent to

$u\left(t\right)\le z\left(t\right),u\left(\alpha \left(t\right)\right)\le z\left(\alpha \left(t\right)\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.19)

Differentiating ψ(z(t)) with respect to t, we have

$\begin{array}{ll}\hfill {\psi }^{\prime }\left(z\left(t\right)\right)\frac{dz}{dt}& =2{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(u\left(\alpha \left(t\right)\right)\right)\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(u\left(s\right)\right)ds+{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(u\left(\alpha \left(t\right)\right)\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}×\left(u\left(\alpha \left(t\right)\right)+2\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(\tau \right)\phi \left(u\left(\tau \right)\right)d\tau \right)ds,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.\phantom{\rule{2em}{0ex}}\end{array}$
(2.20)

Using (2.19) and the relation ψ'(z(t)) = φ(z(t)), from (2.20) we obtain

$\frac{dz}{dt}\le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\left(z\left(t\right)+4\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)\phi \left(z\left(s\right)\right)ds\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.21)

Let $w\left(t\right):=z\left(t\right)+4{\int }_{0}^{\alpha \left(t\right)}f\left(s\right)\phi \left(z\left(s\right)\right)ds$, then w(0) = z(0) = ψ-1(u0), z(t) ≤ w(t), w is a nonnegative and nondecreasing function on I. Differentiating w(t) with respect to t, and using (2.21) we have

$\begin{array}{ll}\hfill \frac{dw}{dt}& \le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)w\left(t\right)+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(z\left(\alpha \left(t\right)\right)\right)\phantom{\rule{2em}{0ex}}\\ \le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)w\left(t\right)+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(w\left(\alpha \left(t\right)\right)\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.\phantom{\rule{2em}{0ex}}\end{array}$
(2.22)

By w(t) > 0, we have

$\frac{dw}{w\left(t\right)dt}\le {\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)+4{\alpha }^{\prime }\left(t\right)f\left(\alpha \left(t\right)\right)\phi \left(w\left(\alpha \left(t\right)\right)\right)/w\left(\alpha \left(t\right)\right),\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall t\in I.$
(2.23)

Integrating (2.23) from 0 to t, we have

$\begin{array}{ll}\hfill \text{ln}w\left(t\right)& \le \text{ln}\left(1+w\left(0\right)\right)+\underset{0}{\overset{t}{\int }}{\alpha }^{\prime }\left(s\right)f\left(\alpha \left(s\right)\right)ds+\underset{0}{\overset{t}{\int }}4{\alpha }^{\prime }\left(s\right)f\left(\alpha \left(s\right)\right)\phi \left(w\left(\alpha \left(s\right)\right)\right){\left(w\left(\alpha \left(s\right)\right)\right)}^{-1}ds\phantom{\rule{2em}{0ex}}\\ \le \text{ln}\left(1+w\left(0\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds+\underset{0}{\overset{\alpha \left(t\right)}{\int }}4f\left(s\right)\phi \left(w\left(s\right)\right){\left(w\left(s\right)\right)}^{-1}ds\phantom{\rule{2em}{0ex}}\\ \le \text{ln}\left(1+w\left(0\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds+\underset{0}{\overset{\alpha \left(t\right)}{\int }}4f\left(s\right)\phi \left(\text{exp}\left(\text{ln}w\left(s\right)\right)\right){\left(\text{exp}\left(\text{ln}w\left(s\right)\right)\right)}^{-1}ds,\phantom{\rule{2em}{0ex}}\end{array}$
(2.24)

for all t I. Using Lemma 6 and the Definition (2.18) of Ξ, we obtain

$\begin{array}{ll}\hfill \text{ln}w\left(t\right)& \le {\Xi }^{-1}\left(\Xi \left(\text{ln}\left(1+w\left(0\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}4f\left(s\right)ds\right)\phantom{\rule{2em}{0ex}}\\ ={\Xi }^{-1}\left(\Xi \left(\text{ln}\left(1+{\psi }^{-1}\left({u}_{0}\right)\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}f\left(s\right)ds\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}4f\left(s\right)ds\right),\forall t\in \left(0,{T}_{2}\right).\phantom{\rule{2em}{0ex}}\end{array}$
(2.25)

Using the relation u(t) ≤ z(t) ≤ w(t), we can obtain the estimation (2.17) of (2.16).

## 3 Application

In this section, we apply our result to the following nonlinear differential equation [4]

$\left\{\begin{array}{c}\frac{dx\left(t\right)}{dt}=F\left(t,x\left(\alpha \left(t\right)\right)\right)+H\left(t,x\left(\alpha \left(t\right)\right),K\left(t,x\left(\alpha \left(t\right)\right)\right)\right),\forall t\in I,\hfill \\ x\left(0\right)={x}_{0},\hfill \end{array}\right\$
(3.26)

where x0 is a constant, F, K C(I × I, R), H C(I3, R), satisfy the following conditions

$\left|F\left(t,x\left(\alpha \left(t\right)\right)\right)\right|\le {f}^{2}\left(\alpha \left(t\right)\right){\left|\phi \left(x\left(\alpha \left(t\right)\right)\right)\right|}^{2},\left|K\left(t,x\left(\alpha \left(t\right)\right)\right)\right|\le f\left(\alpha \left(t\right)\right)\left|\phi \left(x\left(\alpha \left(t\right)\right)\right)\right|,$
(3.27)
$\left|H\left(t,x,y\right)\right|\le \left|y\right|\left(\phi \left(\left|x\right|\right)+2\underset{0}{\overset{t}{\int }}\left|y\right|ds\right),$
(3.28)

where f(t) is nonnegative real-valued continuous function defined on I.

Corollary 1. Consider nonlinear system (3.26) and suppose that F,K, H satisfy the conditions (3.27) and (3.28). Let φ,φ', α C1(I, I) be increasing functions with φ'(t) ≤ k,α(t) ≤ t, α(0) = 0,t I, k be positive constants; then all solutions of Equation (3.26) exist on I and satisfy the following estimation

$\left|x\left(t\right)\right|\le {\Phi }^{-1}\left(\Phi \left(\left|{x}_{0}\right|\right)+\underset{0}{\overset{\alpha \left(t\right)}{\int }}\frac{f\left(s\right)}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(s\right)\right)}B\left(s\right)ds\right),\forall t\in I,$
(3.29)

where

$\Phi \left(x\right):=\underset{1}{\overset{x}{\int }}\frac{ds}{\phi \left(s\right)},\phantom{\rule{2.77695pt}{0ex}}\forall x>0,$
(3.30)
$\begin{array}{ll}\hfill B\left(t\right)& :=\text{exp}\left(4\underset{0}{\overset{\alpha \left(t\right)}{\int }}\frac{f\left(s\right)}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(s\right)\right)}ds\right)\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}×{\left({\left(\phi \left(\left|{x}_{0}\right|\right)\right)}^{-1}-k\underset{0}{\overset{\alpha \left(t\right)}{\int }}\frac{f\left(s\right)}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(s\right)\right)}\text{exp}\left(4\underset{0}{\overset{s}{\int }}\frac{f\left(\tau \right)}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(\tau \right)\right)}d\tau \right)ds\right)}^{-1}.\phantom{\rule{2em}{0ex}}\end{array}$
(3.31)

Proof. Integrating both sides of the Equation (3.26) from 0 to t, we get

$x\left(t\right)={x}_{0}+\underset{0}{\overset{t}{\int }}F\left(s,x\left(\alpha \left(s\right)\right)\right)ds+\underset{0}{\overset{t}{\int }}H\left(s,x\left(\alpha \left(s\right)\right),K\left(s,x\left(\alpha \left(s\right)\right)\right)\right)ds,\forall t\in I.$
(3.32)

From (3.27), (3.28), and (3.32) we obtain

$\begin{array}{ll}\hfill \left|x\left(t\right)\right|& \le \left|{x}_{0}\right|+\underset{0}{\overset{t}{\int }}{f}^{2}\left(\alpha \left(s\right)\right){\left|\phi \left(x\left(\alpha \left(t\right)\right)\right)\right|}^{2}ds\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+\underset{0}{\overset{t}{\int }}f\left(\alpha \left(s\right)\right)\left|\phi \left(x\left(\alpha \left(t\right)\right)\right)\right|\left(\phi \left(\left|x\left(\alpha \left(s\right)\right)\right|\right)+2\underset{0}{\overset{s}{\int }}f\left(\alpha \left(\tau \right)\right)\left|\phi \left(x\left(\alpha \left(\tau \right)\right)\right)\right|d\tau \right)ds\phantom{\rule{2em}{0ex}}\\ \le \left|{x}_{0}\right|+{\left(\underset{0}{\overset{\alpha \left(t\right)}{\int }}\frac{f\left(s\right)\left|\phi \left(x\left(s\right)\right)\right|}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(s\right)\right)}ds\right)}^{2}\phantom{\rule{2em}{0ex}}\\ \phantom{\rule{1em}{0ex}}+\underset{0}{\overset{\alpha \left(t\right)}{\int }}\frac{f\left(s\right)\left|\phi \left(x\left(s\right)\right)\right|}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(s\right)\right)}\left(\phi \left(\left|x\left(\alpha \left(s\right)\right)\right|\right)+2\underset{0}{\overset{s}{\int }}\frac{f\left(\tau \right)\left|\phi \left(x\left(\tau \right)\right)\right|}{{\alpha }^{\prime }\left({\alpha }^{-1}\left(\tau \right)\right)}d\tau \right)ds,\forall t\in I.\phantom{\rule{2em}{0ex}}\end{array}$
(3.33)

Applying Theorem 1 to (3.33), we get the estimation (3.29). This completes the proof of the Corollary 1.

## References

1. Gronwall TH: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math 1919, 20: 292–296. 10.2307/1967124

2. Bellman R: The stability of solutions of linear differential equations. Duke Math J 1943, 10: 643–647. 10.1215/S0012-7094-43-01059-2

3. Lipovan O: A retarded Gronwall-like inequality and its applications. J Math Anal Appl 2000, 252: 389–401. 10.1006/jmaa.2000.7085

4. Abdeldaim A, Yakout M: On some new integral inequalities of Gronwall-Bellman-Pachpatte type. Appl Math Comput 2011, 217: 7887–7899. 10.1016/j.amc.2011.02.093

5. Agarwal RP, Deng S, Zhang W: Generalization of a retarded Gronwall-like inequality and its applications. Appl Math Comput 2005, 165: 599–612. 10.1016/j.amc.2004.04.067

6. Bihari IA: A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation. Acta Math Acad Sci Hung 1956, 7: 81–94. 10.1007/BF02022967

7. Pachpatte BG: Inequalities for Differential and Integral Equations. Academic Press London; 1998.

8. Kim YH: On some new integral inequalities for functions in one and two variables. Acta Math Sinica 2005, 21: 423–434. 10.1007/s10114-004-0463-7

9. Cheung WS: Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal 2006, 64: 2112–2128. 10.1016/j.na.2005.08.009

10. Wang WS: A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl Math Comput 2007, 191: 144–154. 10.1016/j.amc.2007.02.099

11. Wang WS, Shen C: On a generalized retarded integral inequality with two variables. J Inequal Appl 2008, 2008: 9. Article ID 518646

12. Wang WS, Li Z, Li Y, Huang Y: Nonlinear retarded integral inequalities with two variables and applications. J Inequal Appl 2010, 2010: 8. Article ID 240790

13. Wang WS, Luo RC, Li Z: A new nonlinear retarded integral inequality and its application. J Inequal Appl 2010, 2010: 8. Article ID 462163

## Acknowledgements

The authors are very grateful to the editor and the referees for their helpful comments and valuable suggestions. This research was supported by National Natural Science Foundation of China (Project No. 11161018), Guangxi Natural Science Foundation (Project No. 0991265), Scientific Research Foundation of the Education Department of Guangxi Province of China (Project No. 201106LX599), and the Key Discipline of Applied Mathematics of Hechi University of China (200725).

## Author information

Authors

### Corresponding author

Correspondence to Wu-Sheng Wang.

### Competing interests

The author declares that they have no competing interests.

## Rights and permissions

Reprints and Permissions

Wang, WS. Some retarded nonlinear integral inequalities and their applications in retarded differential equations. J Inequal Appl 2012, 75 (2012). https://doi.org/10.1186/1029-242X-2012-75